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Abstract. Astronomical time series are special in that time sampling in them is uneven yet
often with periodic gaps due to daytime, moon and seasons. There is therefore a need for
special-purpose time-series analysis (TSA) methods. The emergence of massive CCD photomet-
ric surveys from the ground and space raises the question of an automatic period search in
> 10° light curves. We caution that already at the planning stage it is important to account for
the effects of time sampling and analysis methods on the sensitivity of detections. We present
a transparent scheme for the classification of period-search methods. We employ tools for eval-
uating the performance of those methods, according to the type of light curves investigated.
In particular we consider sinusoidal and non-sinusoidal oscillations as well as eclipse or transit
light curves. From these considerations we draw recommendations for the optimum analysis of
astronomical time series. We present briefly the capability of an automatic period-search pack-
age TATRY. Finally we discuss the role of Monte Carlo simulations in the analysis of detection
sensitivity. As an example, we demonstrate a practical method to account for the bandwidth
(multi-trial) penalty in the statistical evaluation of detected periods.

Keywords. methods: data analysis, methods: statistical, (stars:) binaries: eclipsing, stars: os-

cillations (including pulsations), (stars:) planetary systems, (Galaxy:) globular clusters: general,
(galaxies:) Magellanic Clouds

1. Introduction

We present a biased overview of methods for enhancing period searches in astronomical
data, relying heavily on our own work. In this context, astronomical data are ones with
uneven time sampling. Data having regular time sampling are best analysed using FFT-
based methods and are not discussed here. The massive present-day photometric surveys
yield > 10° light curves, so we concentrate on methods that permit a fully automatic
period analysis. First we turn attention to the proper planning of observation sampling.
We then discuss the orthogonal models of periodic signals as they permit analytical
evaluation of statistical properties in period search. From statistics we employ the concept
of test power in order to evaluate the sensitivity of period-search methods. On that
basis we are able to derive recommendations for optimum period analysis. We continue
with the discussion of two correction effects to be accounted for in calculating realistic
probability distributions. Finally we turn our attention to pitfalls and profits of Monte
Carlo simulations for statistical analysis of time series.

2. Sample Planning

A frequent fatal error in planning astronomical observations is observing objects at the
same position with respect to the meridian, say on D consecutive nights. The correspond-
ing sampling pattern may then be represented as a product IIp (¢) - III; (), where IT and
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I denote the Heaviside top-hat and Dirac picket-fence functions in the time domain.
Applying the convolution * and its theorem to the Fourier transforms J, one obtains
the corresponding window function in the frequency domain, W = |FIlp * FIIL;|? =
|sinc(Dv) * III; (v)|?. Tt corresponds to an infinite series of peaks/aliasses of width 1/D.
Next, let us consider the same number of observations scattered uniformly over a frac-
tion d of nights. Such a pattern may be represented by IIp(t) - [ (t) * I14(¢)] and
W = |sinc(Dv) * [II; (v) - sinc(dv)]|?. Now all aliases beyond width 1/d of the sinc(dv)
function are greatly reduced in size. Such a reduction is obtained by reshuffling observa-
tions on different nights without changing their time span per night. The effect resembles
the aperture synthesis obtained by shifting radio antenna between observations.

3. Period Search by Quadratic Norms
3.1. Statistical Principles of Detection: Periodogram Statistics and Distributions

Our considerations are based on R.A. Fisher’s statistical theory of the least squares (LSQ)
fit of n observations x = (z1,---,x,) with the orthogonal model x| = 3, ¢;pi(¢), where
vectors/functions p;(¢) = pi(27t) are orthogonal with respect to the scalar product
defined by observed phases: 0 = (p;,p;) = >, wypi(¢)p;(p) for i # j. Hereafter we
assume that the average values (1,x) = (1,x)) = 0. By virtue of the Fisher lemma the
model x| and residuals from fit x| = x—x|| are orthogonal (x);,x) = 0. In consequence,
an n-dimensional analogue of Pythagoras theorem holds:

x| = Iy l*+ Il where

n= n|+ ny (3.1)

observation = model+ residuals
x| = (x,x) and n, ny and n, denote the number of observations, the number of
model parameters and the number of degrees of freedom of the residuals. Because of the
relation ||x —x||* = [|x||* —2(x, %) +[|x ||*, where only the middle term depends on the

frequency v, our considerations for LSQ also apply to the case of the cross-correlation
function (CCF) periodogram.

Suitable families of orthogonal functions p; are either Szegéo trigonometric polynomials
or top-hat functions corresponding to the phase bins (Schwarzenberg-Czerny 1996, 1989).
Nominally, Szegt polynomials follow from Gramm-Schmidt orthonormalization of Fourier
harmonics, yet convenient recurrence formule also exist. Phase folding and binning of
data is equivalent to LSQ fitting a step function composed of a linear combination of
top-hats. The box function employed for planetary transit searches corresponds to two
phase bins of unequal width (Schwarzenberg-Czerny & Beaulieu 2006), so the present
considerations apply in this area too. Quite unique orthogonal functions were employed
by MACHO (Akerlof et al. 1994).

A statistics ©(v, x) is the merit figure indicating the quality of the fit. A periodogram
is the plot of ©(v,x) against v. Patterns in the periodogram may relate to the presence
in the data of oscillations with the corresponding frequency. The significance of those fre-
quencies depends on the probability distribution of © for hypothetical data consisting of
pure noise. In Statistics, that case is called a null hypothesis, Hy. © must be dimension-
less, as no statistical conclusions may depend on units. There are three ways to construct
dimensionless © statistics from the dimensioned |[|x||, [[x) || and [|x || (Table 1). Because
of Eq. (3.1), all these ©’s are uniquely related:

1

- 3.2
14+ 0O40v (3:2)
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Table 1. Basic Classes of Period Statistics

| Statistics Definition| Distribution | Name | Analogue |
O40v = N:ll“‘ F(n),nl;040v) | Fisher-Snedecor AOVY mhAOV®
0= H\TXHHH B(ny,nLl;0)) 8 distribution | Power®, L-§(+:%
0, = Hﬁ(xLHH B(ni,nl;01) [ distribution X2, PDM* (6:7)

References: (1)- Schwarzenberg-Czerny (1989), (2)- Schwarzenberg-Czerny (1996), (3)- Deeming (1975), (4)-
Lomb (1976), (5)- Scargle (1982), (6)- Stellingwerf (1978), (7)- Schwarzenberg-Czerny (1997)

so the corresponding F' and (3 distributions may be obtained from each other by suitable
changes of variable. From this we find that conclusions drawn from the ©40v, ©) and
©, periodograms must all be identical if and only if the model x| remains the same.
In other words, what counts is not the shape of the periodogram peak but its probabil-
ity (Schwarzenberg-Czerny 1998). Turning that argument ad absurdum, one may state
that obtaining a clean, single-peak periodogram is sufficient to raise any periodogram to
the power of 1000 or so. As no additional information is supplied, such a nice view has
spurious meaning. In practical terms it is sufficient to discuss periodograms in which os-
cillations correspond to peaks. The results would also apply to the periodograms showing
through at the corresponding frequencies.

However, to the human eye equivalent periodograms may look deceptively different.
For a high S/N and x? periodogram, an alias minimum of © | that is twice as high as the
true minimum would not look significant. At the same time the corresponding alias peak
power O =1 —©_ would almost match the true peak, pretending to be significant. For
the human eye it is therefore better to plot a log ©® 1oy periodogram, as the probability
distribution of its values is close to the normal one. Then a twice-higher peak has twice
the o significance.

3.2. Sensitivity of Detection: Test Power

To evaluate the sensitivity of detection we must consider two different hypothetical data
sets: for a pure noise with standard deviation 1, and for noise plus a periodic signal of
amplitude A (same units). In Statistics these two cases are called the “null” and the
“alternative” hypotheses, Hy, and Hj, respectively. Accordingly, for Hy and Hy, © obeys
different probability distributions, Py(©) and P;(©). Ideally the two distributions are
separated by a critical value, ©.. We could say that © < ©. corresponds to a pure noise
and © > O, to the detected of a signal. However, in reality the two distributions overlap
for a range of ©. Two kinds of errors thus arise: one claims detection while in reality Hy is
true (false positives), and conversely one claims no detection while in reality H; remains
true (misses). In classical statistics we fix ©, so that false positives seldom occur, i.e.
the significance level a = Py(© < O,) is close to 1. Then the test power of the criterion
O, is defined as § = P;(0© < O.), where the probability of misses is 1 — . Thus, for a
fixed O, large B corresponds to good detection sensitivity. The analytical formulse for
Py are listed in Table 1. No corresponding formulae are known for P, as they depend in a
complex way on signal shape. However, for small signal-to-noise, A/1 < 1, it is possible
to derive approximate asymptotic formulee for P; (Schwarzenberg-Czerny 1999). In that
approximation, Py and P; retain the same shape yet are shifted, in units of their standard
deviation, by

s

AO/\/Var{©} = A2n\/% where (3.3)
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||S|| ||2 = (m|\5ig'na[7 meodel)Q

B Hxl\signal ||2 Hmeodel HQ '

(3.4)

T|signal and T 04¢1 denote the shapes of the real signal and of the fitted model, respec-
tively. The bigger AT is, the more sensitive is our method/model for a given signal.

After feeding into Egs. (3.3, 3.4) the von Mieses function e™" s’ ¢ a5 a signal and
Fourier harmonics or top-hat functions as model functions, our calculations yield the test
power for the most popular Fourier and binning periodograms. Small x values corespond
to near sinusoidal input signals, and large ones to narrow gaussian spikes of width v/2x.
These calculations reveal that excessively crude or excessively fine models both yield
decreased sensitivity because (respectively) of the factors [s)||* and 1//myf in Eq. (3.3).
Thus, for optimum sensitivity, the resolution of the model should just resolve the features
in the signal.

Advertisement
TATRY: automatic period analysis of light curves in photometric surveys.

The code input is one filter light curve. The advantage is the simple and uniform
form of data, the disadvantage is the factor of 2 period ambiguity in certain situations
(e.g. ellipsoidal vs. sinusoidal variations). The code has been extensively used as a
black bor in huge surveys encompassing > 10° variable stars, namely, in the Carnegie
LCVSS (Globular Clusters, by Kaluzny, Thompson et al.), OGLE (LMC/SMC & GC,
by Udalski, Soszynski et al.), EROS (LMC/SMC, by Beaulieu, Marquette et al.) and
DIRECT (M33, by Hartman, Stanek et al.). The results were published in about 20
papers that appeared in A&A, /it Acta. Astron., ApJ, AJ & MNRAS.

In all our projects, the performance of TATRY was extensively and independently ver-
ified with respect to earlier and/or visual inspection results, for > 10* light curves.
According to their own tests, Kaluzny(LCVSS) & Soszynski (OGLE; private commu-
nication) independently evaluated TATRY as the best tool available for the automatic
period analysis of light curves. Our own tests of > 10* ASAS light curves, originally
classified as good period detections, yielded a 97% consistency between ASAS & TATRY,
except for the aforementioned 1:2 ambiguity.

The documentation and executable of the code are both freely distributed. The source
code’s release is pending publication of the underlying science.

4. Related Issues
4.1. Strength and Pitfalls of Monte Carlo TSA

Monte Carlo (MC) simulations have venerable origins, and date back to von Neumann’s
work in 1940 at Los Alamos. MC constitutes a powerful method for studying likely events
and their expectation integrals, E{F (z)} = [ F(z)f(z)dz. The application of MC meth-
ods follows rules of Statistics as a branch of Mathematics. Current prevailing editorial
policies seem to expect any observer or referee to be able to analyse the reliability of
conclusions by MC simulations. In my opinion it is as justifiable as expecting an observer
to perform state-of-the-art hydrodynamic simulations and/or to support observations
with quantum mechanical calculations of involved atoms and transition probabilities. It
is doable, but by no means by all. The policy results in the emergence of many poor
simulations at best, and in the publication (in otherwise respectable journals) of chains
of logically linked wrong papers based on shabby simulations, at worst. In particular,
the application of MC methods for rare events, such as in significance analysis, is always
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uneconomic and often risky, because of untested statistical properties of random number
generators and discrete computer arithmetic for these rare events.

4.2. Corrected Significance: Bandwidth Penalty

From Table 1 one may derive the analytic tail probability of large © for a single fre-
quency: Q1(© > 0p) =1— P, (0 < Op). As more and more frequencies are examined
in the periodogram, the probability of a spurious occurrence of a peak due to pure noise
increases, in the same way as the probability of winning a lottery increases with the num-
ber of trials. This increased probability, called bandwidth penalty, has to be accounted
for any realistic statistical evaluation. Because the aliasing values of a periodogram at
different frequencies may be strongly correlated, out of N investigated frequencies only
N < N may be independent. In that case the postulated tail probability, according to
Horne & Baliunas 1986, could be:

Qn (©0) = Q1(6y)"eff. (4.1)

The hitch is in the unknown value of Ng. Paltani (2004) proposed a useful method to
estimate Ny by MC simulations, though relying on their mean, rather than extreme,
values. The Paltani procedure, improved by us in steps (e) and (f), may be summarized
in the following way:

(a) Replace observations x with a simulated white noise;

(b) Calculate the periodogram © for a given frequency grid;

(¢) Find the extreme value Oy of the simulated periodogram;
(d) Repeat steps (a)—(c) as many times as desired for accuracy;
(¢) Find median value ©,, of ©,, where Qx(0,,) = 0.5;

() Solve Eq. (4.1) for Ny = ln[éﬂ%;

(g9) Calculate Qn(©p) from Eq. (4.1) for ©y.

In this way one makes use of likely events Qn (0,,) > Qn (0©g), which would be rejected
in the brute-force simulations.

4.3. MC Study of Bandwidth Correction

The modified Paltani method enables a convenient study of Nz by MC simulations for
several realistic, uneven sampling patterns. For illustration, we included a case with a
large time gap in the middle of the observations. The simulations depend on several
parameters: the number of calculated frequencies N, the number of observations N,
the maximum number of resolved frequencies N, ., = AtAv where At and Av denote
the ranges of time and frequency spanned by the observations and their periodogram,
respectively, and the number of model parameters N).

In all simulations the condition Neg < N held strictly. However, another condition,
Negg < Niaz+/ N — 1, held only approximately. It is expected that a finer model would
yield a more precise phase determination, so some factor involving N} seems in place.
Surprisingly, the condition Neg < Nyps does not hold in our simulations. To our knowl-
edge, that effect was not mentioned in the literature. At this stage no definite explanation
seems available. However, one could suspect that periodogram values depend on observa-
tions in such a complicated way that effectively they become chaotic. In the same sense,
the consecutive values of a random number generator show no correlation despite them
all depending on just one seed value. An alternative explanation would be that Eq. (4.1)
never held, i.e. that in a periodogram there were no truly independent frequencies.
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4.4. Corrected Significance: Correlation or Red Noise Effect

The presence of a correlation (red noise) in observations may ruin simplistic statistical
estimates. For example, the LSQ fit of a sine to the solar spot Wolfer numbers spanning
100 years yields the nominal period of P ~ 11 y with an error of the order of 0.002P.
However, the propagation of such an ephemeris for the next 50 years demonstrates that a
realistic period error was ~ 0.1 P. This has happened because consecutive residuals from
the fit are correlated (they keep the same sign for decades), while the standard LSQ error
estimates implicitly assume that residuals are (uncorrelated) white noise. Conversely, for
simulated data consisting of white noise plus the oscillation of the same variances or
amplitudes as above, the 0.002P error estimate proves realistic.

This remarkable correlation effect is seldom discussed in texts on LSQ. In fact, the
correlation of every N.,., consecutive observations decreases the effective number of
observations by roughly a factor of N, and hence increases the real LSQ errors by
a factor of v/N,g(Schwarzenberg-Czerny 1991). A simple way to estimate N, is by
counting the number of sign changes in the residuals from the fit (the post mortem
analysis). For white noise, one expects N,;5/2 changes of sign (every second residual
should change sign, on average). If the observed number of sign changes in the residuals
is Ngign < Nops /2, then the number of consecutive correlated observations is Neopr =
NOb.S/(QNSi{/7L)'

Conclusion: Statistics does work for planning and analysis of astronomical
time series observations, though care is needed.
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Appendix
The following recurrence yields Szeg6 polynomial expansion coefficients ¢,,n = 0,1,---, 2N
for observations t,,, z,,,m = 1,---, M (Gieronimus 1958, Schwarzenberg-Czerny 1996):
(f7 p7l) (an I’ 1)
po(z)=1 ¢, = o, = —1L -~ (1)
[P |2 1P [
Pr+1 (Z) =1Zp, (Z) — Qp z" Pn (Z) ( 2)

where z,, = 2"t f = zVx, i.e. component-by-component product of vectors z”

x. The modified Eq. (1) for «,, remains valid for the FFT limit case p, (z) — z".

and
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