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SEMI-CLASSICAL SOLUTIONS FOR A
NONLINEAR COUPLED ELLIPTIC-PARABOLIC PROBLEM

CATHERINE CHOQUET

We give an existence result for a fully nonlinear system consisting of a parabolic
equation strongly coupled with an elliptic one. It models in particular miscible dis-
placement in porous media. To this aim, we adapt the tools of Ladyzenskaja, Solon-
nikov and Uraléeva (27, 28] to the coupled nonlinear setting. Under some reasonable
assumptions on the data, we state the existence of semi-classical solutions for the
problem. We also give an existence result of weak solutions for a degenerate form of
the problem.

1. INTRODUCTION

We consider a single-phase miscible displacement of an incompressible fluid by an-
other in a porous medium. It is modeled by a fully nonlinear system of partial differential
equations, consisting of an elliptic pressure equation strongly coupled with a parabolic one
for the concentration. We assume that the displacement occurs during the time interval
(0,T), T > 0, in a bounded C%* domain §2 of R, for instance n = 2 or 3, with 0 < o < 1.
Its boundary is 0X2. We denote by v the exterior normal to 9. Let also Qr = Q2 x (0,T).
We denote by c the concentration of mass of one of the two fluids of the mixture, and by
p the pressure. The equations of the flow are given in Scheidegger [37], Peaceman [34],
Douglas and Roberts [16). The pressure p(z, t) satisfies the incompressibility equation

(1.1) div(g) = f* - f~ inQr,
where the rate of flow g(z,t) is given by the Darcy law

k(z) .
1.2 =-——=Vp in Qr.
( ) q l‘( C) Y4 T
In Equation (1.2), the function k(z) is the rock permeability. The function u(c) is the
viscosity of the mixture, depending nonlinearly of the concentration. For instance in the

Koval model [25], p is defined on the interval (0,1) by

p(u) = p(0) (1 + (MY* - 1yu) ™,
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where M = p(0)/u(1) is the mobility ratio. For sake of simplicity, we neglect here the
gravitational term. The concentration c(z,t) is such that

(1.3) #(z)8ic + g - Ve — div(E(g)Ve) = ff(1—¢) inQr.

We take into account the two main mechanisms of migration, the convection and the
diffusion effects. The velocity-dependent dispersion is usually modeled by a nonlinear
tensor which is of the form (see [37])

E(g)=¢ (dmId + lg} (d€(q) + dr(Id - E(q))))

where £(q);; = g:q;/lg|?, the real d,, is the molecular diffusion, d; and dr are the lon-
gitudinal and transverse dispersion constants. However we emphasise that this work
remains true for other settings: for more complex diffusion tensors containing effective
drift correction (see for instance (8, 33, 2]), or in presence of turbulent diffusive effects
(see [10, 7] for oceanic turbulent flows, [30] for atmospheric transport problems, [41] for
bio-turbulent flows). See also [40] and the references therein for problems of dispersion
in fixed beds. The only necessary assumptions are given in (1.9). In what follows, we
assume that the porosity ¢ of the rock is ¢ = 1 to make the computations clearer.
The equations (1.1)—(1.3) are provided with the initial and boundary conditions:

(1.4) qg-v=0, E(Vc-v=0 indQ x (0,7);
(1.5) c(z,0) =c,(z) inQ.

We shall also normalise the pressure by the following condition
(1.6) /p(:z:, t)dz =0, te(0,T).
o

We now enumerate the assumptions used in this work. The rock permeability is such
that

(17 ke (@)Y, KPS k@E-E k@) < kFlEl inQ, VEER”
where 0 < k~ < k*. We consider an extension of the viscosity u to R such that
(1.8) u € Whe(R), 0<u <plu)<ut VueR

We assume that the diffusion coefficients are such that d,, > 0, dr > 0 and d;, > 0. Note
that

E(q)¢-& > ¢—(dm +drlal)I€P, |E(@)€] < ¢+ (dm +delgl) €] VE € R™,

19 n
( ) Iak(E(Q)IJ)I| < dL‘l—-El akQIzl Ve ]R7 V(l,], k) € (l,n)n‘
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[3] Semi-classical solutions 3711

To ensure the existence of semi-classical solutions for the problem, we add an assumption
between the viscosity function and the dispersive tensor, that is

#I
(1.10) ||—|| < dr.
plLe(0,1)

The exact meaning of the symbol < is explained in Condition (4.21). Note that this latter
assumption is consistent with the physical context of the problem. Indeed (1.10) does not
limit the values but the variations of the viscosity compared with the dispersive effects
modeled by the coefficient dr. Thus it corresponds to the physics of flow in porous media
where the convection effects are much greater than the diffusive ones (see also Remark
2 below). The injection and production source terms are f* and f~, respectively. The
functions f* and —f~ are assumed nonnegative. They satisfy

1) (fHf)e (L°°(0,T; W‘*2’°+2(Q)))2, 80 > %(211 -3+ VinZ +6n+9),

and the compatibility condition / (f* — f7)dz = 0. The initial concentration is such
Q
that

(1.12) o €C™(N), 0<czr) <1 inQ

2. STATEMENT OF THE MAIN RESULTS
We begin by defining the concept of weak solution for Pb. (1.1)-(1.5).

: DEFINITION 1: A pair (p,c) is a weak solution of Problem (1.1)-(1.5) if
p € L=(0,T; H()) and ¢ € L*(0,T; L%(Q)) N L?(0,T; H'(R)) satisfy the following
identities

: k(z) — + r o0
Q) /n#(c)v Vi dadt = //(f Yo dzdt for any ¥ € C(Qr);

(ii) / p(z,t) dz = 0 almost everywhere in (0,T);
0
T T
(iii) /o/n(-qsca,w +(g-Ve)y + E(q)Ve- Vl/)) dzdt = /o/nf+(1 — ¢ dzdt

+ /ﬂ &(z)co(z)y(z,0) dz for any ¢ € C®(Qr) with ¥(z,T) =0

We cite Fabrie and Langlais [17], Feng [19], Chen and Ewing [11)] (and Choquet [13] for
the compressible setting) for a proof of existence of weak solutions.
We then give a definition of semi-classical solution.

DEFINITION 2: A pair (p, c) is a semi-classical solution of Problem (1.1)-(1.5) if it
is a weak solution in the sense of Definition 1 with the following additional properties

(v.0) € (L=(0, ;@)
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372 C. Choquet [4]

Our first goal is to prove the following result for the elliptic-parabolic problem.

THEOREM 1. Suppose that assumptions (1.7)-(1.12) hold. There exists a unique
semi-classical solution (p,c) of Problem (1.1)—(1.5) such that
(i) the pressurepisin L*®(0,T; H*%(Q)) for g > 3 and then in L*(0, T; C>*(f2))
for a € (0,1);
(ii) the concentration c is in H**/2(Q7)NL>(0,T;C**(Q)) and 0 < c(z,t) < 1
in Qr.

REMARK 1. We do not prove the uniqueness part of Theorem 1 in this paper. This
result is already shown in [19, Section 3] by Feng.

Let us mention some previous papers dealing with such a regularity analysis. Vari-
ants of the system have been analysed by series of authors. An elliptic-hyperbolic model
without the couplings due to the dispersion term and the concentration-dependent viscos-
ity was studied by Frid [20], Schroll and Tveito [38]. Amirat and Ziani considered in [4]
an elliptic-parabolic model where the velocity is independent of the concentration. In the
presence of capillary forces and without dispersion coupling term, Alt and DiBenedetto
[1] and Kruzkov and Sukorjanskii [26] proved existence and uniqueness results for smooth
solutions of the immiscible model. Frid and Shelukin [21] obtained similar results for a
very particular triangular capillarity matrix, with periodic boundary conditions and with-
out dependence on the velocity. We also can cite some studies of compressible models
in the one-dimensional case. In the case d,, > 0 and d, = 0, Feng [18] has proved lo-
cal existence of strong solution and Choquet [14] has considered the question of global
existence of weak and strong solutions. Amirat and Moussaoui [3] have studied a case
with d,, = d, = 0, but for a constant viscosity. But the study of the fully nonlinear and
coupled problem is very seldom addressed. However the existence of classical “sufficiently
smooth” solutions is for instance the first assumption in numerous numerical studies (see
for instance [23, 12] and the references therein). Up to our knowledge the most complete
analysis is performed by Mikeli¢ in [32].

The last part of the paper is devoted to the study of a degenerate model. Actually
the molecular diffusion d,; can be neglected in most of the porous media (see [15]). This
motivates the study of the asymptotic behaviour of Model (1.1)-(1.5) as d,, — 0. Amirat
and Ziani obtained a first result in [5]. We complete their work with the following result.

THEOREM 2. Assuming k € (W'=(Q)", (f*.f) € (L=(0.T; HI(Q)))Z,
co € HY(Q) and d, = 0, there exists a weak solution (p,c) of the elliptic-degenerate
parabolic problem without diffusion in any arbitrary bounded connected set Q) of R".
The solution satisfies

p€ L*(0,T; H'(Q)) n L (0, T; W*(Q)), 8 < 3/2,
c€ L®(Qr), 0<c(z,t) <1 almost everywhere in Qr, [g]'?Ve € (L3(Qr))".
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2
If moreover (f*,f7) € (L°° (0,T; W‘"‘(Q))) and c, € W4(Q), then the results remains
true for any 6 < 2.

The paper is organised as follows. Sections 3 and 4 are devoted to the proof of
Theorem 1. Our starting point is a regularised problem introduced by Feng in [19]
to obtain an existence result of weak solutions for a similar problem. In Section 4 we
obtain estimates in Holder spaces for the solution (p.,c.) of the regularised problem.
The difficulty lies with the multiple couplings of the problem. On the first hand the
viscosity in the pressure equation (1.1) is concentration dependent. It prevents the use
of classical results for elliptic equations (of [22] for instance). Our pressure equation is
more comparable to the ones studied in [31, 9]. But curiously the coupling with the
concentration equation allows a weaker assumption on the data of our elliptic problem
than the one used in these two latter works (see Remark 2 at the end of Section 4). On
the other hand, the velocity in the dispersion tensor of the parabolic equation (1.3) does
not allow a direct reference to the results of [27]. Furthermore, in view of Section 5, we
have to obtain some estimates for the concentrations gradients which do not depend on
the diffusion parameter d,,,. We then let the regularisation parameter tend to let zero
and we pass to the limit to get the result claimed in Theorem 1. Finally in Section 5,
we briefly study the asymptotic behaviour of the model when the diffusion coefficient d,,
tends to zero to justify the existence result of weak solutions for the degenerate problem
announced in Theorem 2.

3. A REGULARISED PROBLEM

Our starting point is a regularised problem originally introduced by Feng [19] to
state the existence of weak solutions for Pb. (1.1)—(1.5). Let £ > 0 be a given real. The
pressure solution p, of the regularised problem satisfies

] _ k(z) .

. d =ft-f, =- Qr,
(3.1) ivge=f"~f7, ¢ e Vpe inQr
while a truncated Darcy velocity @, defined by

qe

2 =
is used to ensure the control of the dispersion effects in the following concentration
equation
(3.3) de. + Q. - Ve, — div(E(Q:)Ve,) = ff(1 - ¢) in Q.

Equations (3.1), (3.3) are provided with the initial and boundary conditions:

(34) g.-v=0, E(Q:)Vc,-v=0, z€dNte(0,T),
(3.5) ¢ (z,0) = ¢,(z), z €
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The pressure is normalised by the condition / Pe(z,t)dz =0fort € (0, T).

0
Using a fixed point approach, Feng states in [19] an existence result for Problem
(3.1)—(3.5). More precisely, the following result is established.
THEOREM 3. There exists a unique classical solution (p.,c.) of Problem (3.1)-
(3.5) with p. € L°°(O,T;Cz'°(§)), c. € H*/?(Qr) u L>(0,T;C"*(R)), for a real
a € (0,1). Moreover the following estimates are independent of €.

|Pell Lo o, 7w (02y) < C for some 7 > 2;
licell L 0,12 @pnm 0.1 120)) < C, “ (dm + d,r|Q£|1/2) Ve,

0<clz,t) <1 in Qr.

¥

<
L)

Our aim is now to describe the limit (p, g, ¢ of the sequence (p,, g, c.) as € = 0. The
estimates listed in Theorem 3 lead to the existence of a weak solution for Pb. (1.1)—(1.5).
But we claim that they can be considerably improved to get Theorem 1. The next section
is dedicated to this work.

4. HOLDER ESTIMATES

We begin by recalling the following classical regularity result for the elliptic pressure
problem.

LEMMA 1. The following uniform estimate holds true.
”pEIIL”(O,T;Co'ﬂ(ﬁ)) S C fOI' some 0 < ﬁ < 1.

We refer to remarks in [28, p. 467] or to [22] for details, in particular for the oblique
derivative problem of boundary conditions.

We then turn to the parabolic part of the problem. The pressure problem being
strongly coupled with the concentration’s one, we could compare in some sense the Darcy
velocity g. with a nonlinear function of the concentration c.. Our idea is then to adapt
the tools developed by (27] for the quasi-linear parabolic equations of divergence form to
the concentration problem. The difficulty is of course the absence of an explicit relation
between ¢, and g.. Hopefully, assumption (1.9) on the dispersion tensor gives a control
of some energies weighted by this Darcy velocity g..

For any r 2> 0, we denote by {2, the set Q. = 2N K, where K, is an arbitrary ball of
radius r centred in a point z, € . Let p > 0 a given real. Our first step is to estimate

the integrals / |Vee|**dz for any s € R,.
2,

LEMMA 2. Let assumption (4.21) below be satisfied. There exists p, > 0 de-
pending only of the data of the problem such that for any p < p, the following uniform
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estimate holds true.

T
sup [ [Veu(a, 0" o+ [ [ (dm+ driQuIo) Ve ddt < C,
0o Ja,

0Ki<T Ja,

for any 0 € s < s, and a 2> 2. The constant C, depends only on s and on the data of
Problem (1. ) (1.5).

PRoOOF: Let t; € (0,T). We aim to obtain an estimate for Ve, as independent on d,,
as possible. We thus adapt our proof to the variations of the velocity ¢, in the dispersion
term. Then, for any ¢t € (0,T) and N € N* with N > 1, we consider the set Q7 , which
is the intersection of ,, with the set of points

{x e N-1< lq,_,(:z:,t)l < N}.

In the same way, for any N’ € N* such that 1 < N' < 1/d,

1 1 1
A =, 0 {z €95 G < ezt < 7}

and
Qg;.,t = szn {x €N;0< |q£(:l,‘,t)| < dm}

We now work in each of these sets, bearing in mind that

N /N
Qg = U N Qop,t . QZ{),t U sz,

" We consider an arbitrary smooth function £ of compact support in g, x (0,t;), with
values between 0 and 1 and vanishing in the vicinity of the bounds of ;, x (0,¢,). We
also consider for each N € N* (respectively 1 < N’ € 1/d,,, dn) a smooth function &y
(respectively & /nv, €4,,) With values between 0 and 1, equal to zero in the vicinity of the

lower base and lateral surface of |J Q..
ogi<h

Let N € N* with N > 1 and s > 0. In what follows, C denotes a generic constant
independent of ¢ and N. Sometimes we emphasise the dependence with s using the
notation C,. Multiplying (3.3) by 3 k., 8k (|Vce|?*8kc.£En) and integrating over Qy, x
(0, ) we start from the following relation.

// Z dice + Q. - Ve, — dlv(E(Qe)Vce))Bk(|Vce|2‘6kce{{N) dzdt
n

20 k=1

= _Z / (1 = ce) B (|Vee[** Bec. E€n) dazat.

2,
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We transform the first term in (4.1) by integrations by parts.

(4.2)
[ S acdn(Ve o en) dati = [ [ S o) the Vel dat
Q2p k=1

2pk—
3
s+2

t
([ Vate e n)ds= [ [ [Varoeen dsd).
2, 0 JS3,

The convection term is

t) t1
- (@ - Vo) 34| Ve By ) dxdt"_z; L[ (@ Ve)

D25 =)

(|V05|2’3kce Ou(E€n) + | Vee[**OFece E€n + 25|V 2 3 Bic Blyce ggN) dzdt.

i=1

Using the Cauchy-Schwarz and Young inequalities, we get

[ @ vera(va o sen| < ['[ 1@dive+ vieen)

20 k=1

t1 C t1
+¢s.,k§_j / /n 1Ql IV l0fccPeen + 5 / / Qe [Vee P26
43)  +4 ; / / Qel Vel (o, Buce e + = / / 1Qel IV e
i 1
for any §,, 6, > 0. Each source term reads
[o ! [ £4(1- ) 84(196u" Ouce i) dadt = /0 /ﬂ S|V el Bece et dadt
2p 2p
-/ § [ 001+ ) (Ve B e dact.
2p

The first term of the right hand-side is nonnegative. Since f* € L?*+2(0, T; W12:+2(Q2))
for any s < s,, the second one is estimated in the following way.

n t
> / 8+ (1 = c) Vel dpee £ dnd]
k=170 2,

bl (2s+1)/(28+2) 1/(2542)
£C / (/ |Vcs|2"+2f§1vda:) s s (/ |Vf+|2’+2§§1vdx) dt
0 Q2, N2,

t t1
(4.4) <C, / / | Ve |2 ¢€n dzdt + C, / / [V F¥|2+2 eey dadt.
0 sz 0 n!p
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The diffusion part of (4.1) leads to

_/‘; l‘/‘; Z div(E(Qe)VCe)ak (lvcslhakce fEN) dzdt

20 k=1

- /n 3 (OB (@0 ce + E Qi) (Ve Bucet(€Ew)

2 kj=1 i=1

(4.5) +|Vc€|2aaj2kc€ EEn + 2s|vcel2a—26kce (Z 31053,?11-‘:) ffN) dzdt.

=1

With Assumption (1.9), the terms containing E(Q,);i8%c. are such that:

/ /,, 3 Q)i (1Veel* e + 26| Ve 20kcs( Z@;ce Fhee) ) et dadt

el
> dr / Ji 104 1Vedeen g;l(af,-c,)%zzdt
(4.6) +2sdr / / Q] |Vc¢|2"'2§EN(JZ_13csaz-ce)zdzdt
and
[ oer ;,,2 E(Qu)548%ce Shee 0;(€6w) dadi]
< 24 f / chslz‘lell‘JElace | |(€&w) 2| |V (EEN)?| dudt
< / / [oX IVc,P”efN(;ace c.) dadt
(4.7) / IQeIIVcclz‘”IV(Eén)‘”I dzdt,

for any 8, > 0. The terms in (4.5) containing 9 (E(Q,);i)0ic. are such that:

(48) /0 "/n Z(zak E(Q.) ),‘ace) G (chel 2ice

% jk=1 “i=1

n
+ 28|Ve, [ 2Bke, (Z &cgﬁ,?,cg)) + (vcslz'a,‘csa,-(gg,v)) dzdt = I, + J, + K.

=1
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Let us begin with the estimate of I;. We recall that |Q.(z,t)| > 0 for (z,t) € | Q..
. 0gIKT
Thus, using Cauchy-Schwarz and Young inequalities and assumption (1.9), we can write

t n n
ni<d [ P> (,2 akog.a.-cg) (Ve[ Byce E6n| dadt
t) n n
<d / / IVcelz"“(Zlafkcel(&nr)”z) D 0kQe; (€6n)?| dzdt
S jlc— k=1
<46 1Qcl Ve, | 0% cc|2EEn dzdt
[L PO
t) s
(4.9) +ZC / /,, ch}” |8k Qe (€€8) V2|7 dadt,
ki=1 20 €

for any § > 0. The Holder inequality gives

C v 2 2542 !
/ 0 I Ich | |0k Qe (66n)1/2| ddt
kl 1 20

C (s+1)/(s+2)
<S [*([ 101verrgey iz)
1] 3,

n
Iaer’ (EéN)1/2(3+2)|23+4 1/(s+2)
X dz dt
> [ P )

(4.10)

Let us particularly consider the last term of this relation. In view of (3.2), it reads

Z / |0k Qe (EEn) 2o+ | 2044 dz < - / |Oxge (£€n )1/ U+ 244
02,

I, =
k=1 Qe[+ G o, (1 elge)2+4|Qc P+

<o 30([ 1uanlEon) 2 s g ) 0D
x akl \Ja,, (1 +E|q£')20+4|QE|23+3

(e, Ok (€6 N ) /2 e+ 2044
4.11 dz ).
(4.11) */n,, (T el g )

We denote by I3 and I the terms in the left-hand side of (4.11). Using the definition of
Qy,, and (3.2), we estimate I3 by

dx

|95 (gey (§€n) 12+ D) 204 - / e 12
= C, =C, A(g. J2s+2))(28+4 g
2, (L +Elg)ZHQ. o, 12/ 1Ok (ger (€€N) )] z

C,

U< e m -y -1

)2e+3 I |ge (&€ )1/2e+2) ”:::;-H(n,,)'
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The function g (£€x)/%*+2) is such that g.(z,t) (£€y)Y2*+?(z,t) = 0 for z € 09y, and
t € (0,T). Moreover it satisfies
A(ge (€€w)'20+D) = V(ge - V(€N D) + V((f+ - ) (66m)1/®*D)

- curl(V(% (§£N)1/2(a+2)) A Vpe) =F

in Q2, x (0,t;). Thus we claim with [24] that

1/2i 2 28+4 2 4
(4.13) ||Qs (6¢n) /2t )"wl 2eka(Qy,) C”F”Ls’j;*‘(nz,)'

Since Vp, = —u(c)k~'(z)q., we get
25+4 2s+4
||q;(€§~)1/(2(’+2))”v;1 aeta(qy,) S C/ lq |2s+4|v(£§ 1/(2(s+2))| 3

+ / [+ = £ (Eem) D + ose(k ™1V, Q)+ f lge ****¢€n
2 n?p

o

l-"c
He

2544
Iq l2a+4lvc |2a+4€€

N
oo n?p t JQ3,

Here and below we denote by ||, /s||.4 the norm || (c.)/p(c.)|| ;- Note that (1.7) ensures
the existence of some constant C > 0 such that osc(k~'Vk,Q,) < C(2p)?. Including
the latter inequality in (4.12), we obtain

Cs He
Ls mmmmy—yywv—es > ( P

+/|f+ _f—|23+4(£§N)(a+2)/(s+1)+C/ Iq£l2a+4|v(€é-~)l/2(a+2)12’+4dx
k n?p

28+4

f (1 + elgel) 1ge 2 ¥1Qu] Ve[ 6w de
3,

N
00,823, ¢

+osc(k~'VEk, Qgp)z‘“/nlqsf’“.f{;v da:).
20

We note that / |f* = fPo+(Een) /) < C. Moreover, |g(z,2)]+® < N?*+% and
1 +€|g:(z,t)| < (1+€N) in QF,,. Then with (4.12) we get

1 2a+4 s+ G, / 2544 o+
7 ([ 10 1Verrigewas) "o < 2 ([ 1Qu 9 et de)

1

X/ |ge] (|V(§€1~r)1/2("+2)|2'+4 + osc(k™'Vk, sz)z‘“ﬁﬁlv)d-’t
2,

C‘ . s+2 C’
§ote (‘/‘;2p Qe IVC,lz Heen d:t) + 3otz

#E 2344

He
On the other hand, the term I, of (4.11) is estimated by

"kl ak(EEN 1/2(a+2)|23+4 / 1/2(s+2){25+4
o= / e <O [ lad[ViEEn) e do
e k; ,, (1+ele))?+Q. I"’*’ R | |

(4.14) +

N
ooﬂ,“
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Thus we have

1. s+1 s
=7 /n 1l Ve az) "1 < oy (f,,,,, 1Qul Vel *gen dz) ™

x ([l [Vigem e[+ az).
sz

(4.15)

With (4.11), and (4.14)—(4.15), we obtain

1 28+4 s+l Cs 2844 s+l
([ 1@dIVe et de) ' < e ([ 1Qul Vet )

x [ lael (1766 /oD + osc(k Tk, 0,266 ) da
22

7]

Cs #e 23+4 ( / 5+2 C
Ve, |24 d ) s
§o+2 pello2d),  \Jq,, |Qel [Vee|* " €€n dz + §a+2

and then, using in particular the Young inequality:

(s+1)/(s+2) (s+1)/(s+2)
([, 1@uliveeenaz) ™R <G ([ @uiversenan)
) Q2, ) 2,
1/(s+2)
X (/ |gel (IV(§€N)1/2(’+2)|2"+‘ + osc(k~Vk, sz)h“gg”) dz) *
g #5 / 2544 Ca
5 N leossy, Jo,, 191V o™ 80w d2 4 55
Cot’ . Cs (11| 2
< | == 4+ 22 5+4
= ( 57 g wn;v,,) /n Qe [Veel™ et da
(4.16) +% 'QEI ('V(g{N)l/2(3+2)|2a+4 + OSC(k_IVk, sz)23+4f§1v) dz + %}"_
Combining (4.9), (4.10) and (4.16) integrated from 0 to t,, we conclude that
|h| = ‘Z// (Zak(E(QE)Jt)a ce) Vcelza kCeffN dzdt|
3.k=1 Q2p =1
t
<o [ [ 1@dive 3 [6Bcel et dad
Jk=1
“ 2s+4
+6_’, / lfIs| IV(&A')I/?("“)|2H4 + osc(k~'Vk, k) * £€x) dzdt
3Jo .
% ) [ 1 ¢
4.17 + e el [V, |22+ d.'L‘dt+
( ) ( d3 5 e lloouogeg OF, |Qc] Ve[ € 5

for any d3, 85 > 0. One easily checks that the second integral J; in (4.8) which is exactly
of the same order as I, also satisfies an estimate like (4.17). We then consider K;. It
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satisfies for any 6 > 0

IK.|—|Z [ Cam@uac)

Q25 =)

<ac > / / |0k Qe: (6En)2| Vel *%105(66n) 7|

jikd=1

C |0k Qe (EEN) 2|2
5 . L 2542 v 1/242 / [} v . 25+2,
// 1Qe) [Vee P+ |V (€tn) |+Z /%———,QI V.|

where the last integral is already estimated in the study of I;. We conclude that for any
04, 6"1 >0

1y
Kyl < s / / 1Qu Vo242 |V (€€w) 2 dadt
0o Ja,

Vee|™ Bkee 8;(€n))|

t
/Q |ge| (1V(EEn)/H+D28H4 4 osc(k~1Vk, Qp,) 2 H¢EN) dzdt
2p

G R ) [, o v
4.18 +| =2+ =||= el | Ve |> ¢ty dxdt.
(4.18) ( 04 04 1 pe oo ogece, 28/ Jo Jaa, Qe Ve 48w

Finally, with (4.1)-(4.8), (4.17) and (4.18), we have proven that

t1
/ Veo(z, 1) 22 (E6n) (2, 1) + f / Vel 24 g6y dadt
QZp sz

s
s+2

n

t1
/ o d Id+ (dT - (5 - 63)|Qe|) |Vcs|2"£EN Z( )2

i,j=1

s20(dr=6,-5) [ [, 1@dive- g6y (3 Ot

i,j=1
t
< 2342 o
= /o /n,,, (Ve (s+ 2
“ c [ 1 1
s0, [[[ otz [ 1@ive e+ 6 (5 +3)
0 J 1Jo Ja,, 3 A
31
+C, (61,+5l, / / |ge| (|9 (E€N) 2+ 2544 4 osc(k™ Wk, Q) HEEN)
3 0 Jy,
: 1
19) 4G (2424 (2 +1)

t)
2s+4
& 0 b3 04 e HooUogegt, )¢ / / IQEI lvcel &n

for any 6,, 41,82, 83, 03, 84,05 > 0. We emphasise that this estimate is independent of N
and e. The last term of (4.19) is treated using Lemma 3 below. At this step one can only
assert that w < 1. We denote by A the following quantity

Co(83/8s + 83/8a + (1/63 + 1/84) e/ pell%g v ot y )
T 1= —m = 2(s+ 1)1 — 13— CsMs/vs — Ca/vall L/ pell?

0u(EEN) + C €bn + |Qel (3; &n + %lV(fEN)l/zlz))

ﬂe

00,Uoge<e; ¢
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Lemma 3 then leads to

c, (3—;+5'+(§3 ) 5

e |12

/ / 1Ql Vet
00, Uogege, M), e

/ 1Qel Vet |V (gew) 2] + — / A 1Qel Ve Y 1822 et
2p i=1

029

s+1)// |Q€HVCE|23-2(ZGCE 5)2§§~

i,j=1

6200 % [ ol stk T e + 1960 ) +
3

for any “o, 1,72, V3, 73- In view of combining (4.19) and (4.20) we need to fulfill the

following relation

dT—Jo—éa—A g£>0

(4.21) A>0,
dr—6—-6-A =—=>0.
T2
Since we can choose arbitrarly the numbers é;, &}, %, 7}, (4.21) is translated by the condi-
tion ||&'/ pl|7ee(0,1y < dr in Assumption (1.10).

Now, combining (4.19) and (4.20) with Assumption (4.21), we obtain an estimate
similar to the one get by {27, V.3.17] (but without any condition on p like (V.3.16)
p. 435). The only major difference is that we used untill here the function ££y instead
of the function £2. We thus follow the lines of [27] adapting their tools to the term
|Qe]| Ve |2+ as in (4.9)-(4.14). In particular, |Q,|'/?|Vc,| and |g.| are uniformly bounded
in L?(Qr) by the result of Theorem 3. Working successively with s = 0,...,s,, we then
claim that for any N > 1,

ty
(4.22) / / (dm +1Qe)) IV dzdt + sup / Ve |**2dz < C,,
o Jaf, 0

(oxtl) é\lp"

for any 0 < s < 8o, 5, being defined in Assumption (1.11) on the source term. Using
Theorem 3 and the Holder inequality, we note that

C C l/T
N r N —1/r
950 < ([, lotorite) < ([, ladteorae <) o

2p,t

and thus |, ,| < C/N" with r > 2. The Holder inequality then yields for all & > 1 to

1/a
_ c
/QN Ivce|(23+2)/a dr < (/N Ivcel2a+2 d.'L'> IQ |(a l)/a < Fam7e

2p.t LY
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We choose @ > 2 and we sum up the latter results for N > 1. We conclude that for any
> 2, |Ve|+D/e dx < C, and then

UN>1Q€:,_¢

s <8, and a

(4.23) / [Ve|**'dz < C5, V€ (0,T), Vs < so.
UN>19§';‘¢
The same tools give

T
(4.24) / / (dm + |Qe|/®) |Vee |/ dzdt < Cy, Va2 2, Vs < s,
0 Junsi10f

We emphasise that we reach such an estimate in 3 , thanks to relation (4.20) which
gives a result for the convective form |Q.||Vc|?*** and not only for |Vc.|?*+*. We also
note that the estimate in Qé‘;,t does not depend on d,,;,. Indeed, in this part of the proof
we always use the control given by the dispersive term instead of the one given by the
diffusion coefficient d,,,. It is the gain in regard of [27]. The cost is the dividing factor
1/a due to the renormalisation tools. Relation (4.20) allows us to exploit the control
given by the dispersive part of the diffusion tensor.

We now consider the sets Qé{,{:" and Qg,';jt. We note that all the estimates can also
be carried out within Qé’/,ﬁ" to get (4.19)-(4.20). Dividing by (dr, + |Q.|) instead of |Q.|
in the estimates of I; (4.9), I, and K, we also obtain a relation of the form (4.19) in

131
Q37,. The analogous of (4.20) for / / |Vee|***€€n has been proved by [27, 11.5.8],
0 J

assuming that p < p, where p, is given bypthe data of the problem. Bearing in mind that
|ge(z,t)] € 1 in all these sets, we sum up the relations (4.19)-(4.20} for Qg;,’:t and Qé‘/,f',
1< N’ € 1/d,,, and we apply the Gronwall lemma to get directly
(4.25) / |Vee|**?dr < C,, Vte (0,T), Vs < s,.

adm /v

2p,t 2p,t
1EN/C1/dm

With (4.23) and (4.25), we state that c, is uniformly bounded in L (0, T; W'*+1(Q,)),
0 < s < s,. With (4.24) and (4.25) and 0 < |g.(z,t)| < 1 in Q57 U Q;‘/,f;", we
conclude that 1SN’ dy

T
/ / (dm + d7|Qc|/®)| Ve |®* 2 dzdt < Cy, 0< 5K 50, 2.
o Ja,

This ends the proof of Lemma 2. 0
We give here the following auxiliary result using the notations of the proof of Lemma

LEMMA 3. Letw = osc (cs, U QZ,,,). For any Yo, 71, 72,73, 73 > 0, the follow-
ogtgh
ing estimate holds true.

Cls)n _ Cls)

!
(1—7ow—71w—2(s+1)72w—73w—___ He
3

He

: )
00,Uogege, N9, ¢
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“ 23+4 s+ Vw [ 252 2
/ / @l Verigen < 2D [ 1g,119¢, (Zacsa-ce) €e

I,J—

[ 1@el Ve 9 ey + / i |Q;||Vc5r“2|a2-c€|zfe~
20 2p

+7’ / /n |ge| (IV(66n) 1242125+ + 0sc(k ™V, Qp) 66 w).
3 J0 20

PROOF: We note that |Q.|[Ve|?*¢en = 0, |Qel|Vee|*+?(8ic.)%E€n. Let
z, € 2,. We have by integration by parts

13
[ / lQel Ivcsl2a+2(aics)2§§N dzdt
0 JQ2,
t1
N / / Q| | Vel *2Bsce 8; (ce (2, 1) — ce(o, t)) E€n dzdt = —(Tyi + Tos + Tyi + Ls;)
0 Jag,
t
=~ [ (eant) = ez ) 1Qul IVe*0ce i) doct
2,
t1
/ / ce(z,t) <(Zo, )) |Qel lvcelzﬁ-z iiCe E&n dzdt
2,
/ / (ce(z,t) = e(Tort)) |Qel 2(5 + 1) |V [ (Za Ce 3?,05) Oice €&y dzdt
Qa,

(4.26) - /otl/n (ce(z,t) — ce(To, 1)) Bi(1Qel) |Vee | 2Bic. E€n ddt.

We then estimate the four terms in (4.26). On the one hand, the Cauchy-Schwarz and
Young inequalities give directly for any 7,,7, 72,73 > 0

n
> T
=1

t)
< Yow / / 1Qu| [Veo P ¢ey drdt
0 JQq,

t1
(4.27) +&v / 104 Ve |2+2|V (E€w) 22 dandt,
Yo Jo Jag,
n 4
Zfzi $’71w// Qe [Vee[***4Ey dzdt
i=1 0 /03
Cw " 2s 2
(4.28) +== | | 1QlIVel Zl scel” 6w dzdt,
T Jo Ja,,
ty
i $2(s+1)'ygw// 1Q¢| Ve | *€€n dzdt
2 + Dw
(4.29) 2ot e [ 10 Ve (3 oy )" et

tJ=1
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t)
< Mw / f |Qe Ve |* ey dzdt

IaQE E&N)llzlz
4.30 +— / e AL Ve, |25+2 dzdt.
(4.30) Z on, (L + ElgDIQe] |V !

The last term in (4.30) is already estimated in the proof of Lemma 2 (see (4.10)—(4.16)).

It leads to
|az‘k] €£N)l/2|2 25+2
Z Ve
ij=1 Q2 1+5|‘15 2Q|
Csvs | Cs || He ||? ) / tl/ 2s+4
£l —=—+—=||= Ve[t
( V3 Y3 e °°,Uo<¢$tlngz.: 0 J0y, IQEI | EI S
t1
(431) 22 [ 10l (9 (eem oo sk~ Wk, 0, +
T3 Jo Ja,, 3
for any «4 > 0 The result of Lemma 3 follows from (4.26)-(4.31). 0
Using Lemma 2, we can now state and prove the following result for the pressure
function.
LEMMA 4. Foranyt € (0,T), the pressure p, satisfies
o— 1
/(IVpe(x 42 + |Vp.(z, t)|* Z |0 Jps(z,t)|2> dz < Cs, VO<s< S 5
i,j=1
ProOF: We multiply Eqation (3.1) by a test function of the form d,n(z),1 < r < n,

where 7 is an arbitrary sufficiently smooth function that is of compact support in Q.
With a double integration by parts, we get

Z / Bipe) Bindz = / an(f* - f7)dz.

Let N > 0 be given. We set
b = min(|Vp,|*, N).

In the latter inequality, we choose n = b°8,p.£2, where s > 0, £ is a smooth function with
compact support taking values between 0 and 1 in the sphere €2,,. For sake of clarity we
set k(c.) = k(z)/p(c:). For 1 < r < n, we obtain

Z/ﬂ (K'(ce) Brce Bipe + K(c:) Bpe) (b°F2pe €7

+30,p b ODE +20°0,p. £8,)dz = | B (ft - fT)b B,pe 2 da.
N3,
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Summing up the latter result for r from 1 to n, we easily get

3 / (w(ce) 1022212 0° € + 2 n(cc) 10026 €2) dix

i,r=1

<C / (0 19| 19060 | 3 pe] € + 561 [V [V, V5] €2

i,r=1

+20° |Vee| |Vpe|2 € |VE| + 25 |Vpe| IZ B2pe| €1V

i,r=1
(4.32) + V(T = 76| VD €) dz
Using the Cauchy-Schwarz and Young inequalities, we obtain the following estimates,
for any 6 > 0
[, #ioed IZ 8. €1VE| dz < 5 Z/ b 0pe[? €2 d
C (3 2 2
(4.33) +— b® Vo) |VE|* dz,
6 Q2p
[ e 1vedvadl3 dnletas<s 3 f b 62pe[? €2 d
Q20 i,r=1 ir=1
c ] 2 2 ¢2
(4.34) +— b [Vpe|® |V |* €2 dx,
8 Ja,
and

(4.35) / b Ve, |V € |VE do < / B [Vpel? |VEP do + f b [Vpel? Verl? € da.
2 3, 3,
The term

(4.36) / sb"lIVcEHVpEFIVbezdxs/ sb’IVceHVpeIIZ 2pe| €2 dz
N2, 4]

20 ir=1

is treated as in (4.34). We now estimate the integral / b°| Ve |2| Vp, |*€2dz appeared in
Q

2,
(4.34)-(4.35). Using the Holder inequality, we get for arfy v>0
b (Va2 (Va2 e < ([ 6+ (Wpef e @) T ([ g s g2) V0T
0, € 3 = 2, (3 s, € .

We choose v = s/(1 + s) > 0 such that b**"|Vp|**+7/s = p5|Vp,|*. With the result of
Lemma 2 we ensure that the last term of the latter inequality is uniformly bounded by
a constant C if s € (s, — 1)/2. We then write with a Young inequality

(s+1)/(s+2)
@) [ vivepivare<c, ([ veare) <Co+ [ vivade
2, 2,

2,
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The integral form containing the source terms f* and f~ is similarly estimated. We recall
that by (1.7)-(1.8), «(c.) = k(z)/u(ce) = k= /u* > 0 in Qr. Thus, with (4.32)-(4.37),
we can write

(4.38) (k—; - 5) /n b i 162p. 12 €2 dz + /

sb* 1| Vb €2 dz
® ir=1 $t2p

< 9/ b | Vpe|? |V£|2dz+—c—/ b IVp5|4§2dz+€’-
§ Ja,, 6 Jaa, §

for any 6 > 0. Choosing for instance § = k~/(2ut), Relation (4.38) is completely similar
with [28, 3.6] with m = 2. We know by Theorem 3 that |Vp,| is uniformly bounded
in L*=(0,T; L*(?)). Moreover Lemma 1 ensures that osc(p;, 2,) < Cp?. Following the
lines of {28], we thus obtain the result announced in Lemma 4. 0

We turn back to the concentration problem. We now have enough uniform estimates
on the velocity ¢. to state the following result.

LEMMA 5. The concentration c, is uniformly bounded in H**/?(Qr) for
a € (0,1).

PRrROOF: We already know that maxgq, |c.(z,t)| = 1. Let k € [—1,1] be an arbitrary
number, We consider a smooth function § with compact support in €, such that £ is
equal to zero in the vincinity of the bounds of the cylinder Q, x [t;,Ti], with 0 < ¢;
< Ti < T. We multiply Equation (3.3) by £2(z, t)c¥ (z, t) = £2(z, t) max(c(z, t) — k,0)
and we integrate over (};,. We obtain

1d / W22 4p (Q)VH) . VW e2dr +2 | E(Q.)VH - Ve e dr
2dt Q, Q, QP
(439) - / W26 3,¢ dz + / (Qe - V) ¥ €2 d — / FH1 =) e® e dg = 0.
Q, 2, Q,

We now perform classical estimates on the terms of (4.39). We have clearly
2 2
| / M€t da| < / 82¢ |9,¢| dz.
(173 Q,

Since 0 < ¢.(z,t) < 1 and then |c£’°)(z,t)l £ 2 in Qf, we write

i/ ffl-c)c®e¢ dz| <2 / |f*] € dz.

Q, Q,
Moreover, the convective term is such that
C
| / (Q.- Vel ) €2 da| < &, / |Qe| Ve dz + = / Qe €7 dz
Q, 0, 6o Ja,

and the diffusive ones satisfy

|[B@)ved Ve eds| <6 [ (dm -+ dulQu) VP s+ [ b i9eas
Q, 0, 1

1t
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for any d,,6; > 0, while

E(Q.)Vc® - v 2dx > / (dm + drlQe)) |V €2 da.
Q, 2,

Equation (4.39) then gives
ld
2dt Jo,

g 2\ (k)2 + 3 2 17 (k)2 £2
439 < [ (el g 1o w0 [ (1r1+ Z1ad + 1@ IR €

62 4 / (dm(1 = 61) + (dr — 8,)IQe) VPP €2
Q2

The domain Ay ,(t) is the set of points z € 2, at which ¢,(z,t) > k. Let us estimate
the last term of the latter relation. To this aim, we denote by F the function defined in
Qr by F(z,t) = |f+(z, t)] + |Qe(z, 1) + |Qe(z, )2V (z, t)]2. In view of the regularity
of f* € L*(0,T; Wh**2(Q)) and of Lemmas 2 and 4, we ensure that |@.|?|Vc.|? and
thus |Q.[?|Vc{™[? are uniformly bounded in L7 (0,T; L9(S)) with r = (s, + 2)/2 and
q = (8o + 2)(25, — 2 + 4a)/ (45, + 1 + 4a) for any a 2 2, that is r < (s, + 2)/2 and
g < (so+ 2)(s0 + 3)/(4s, + 9). The function F is thus also bounded in L7 (0, T; L(S2)).
Since we assume in (1.11) that s, > (2n — 3 + v4n? + 6n + 9)/2, some computations
show that r and ¢ satisfy

1 n 1 n
-t —=1- ,O< <1, € ) ): ( ’ g
r  2q X1 X1 " (1—X1 ), 1€ 2(1 — x1) oo)

Using a Holder estimate, we thus can write

T 2 T
[ i+ gl +ai@rvdpeas<e [ |7¢
ty Ak'p(t) o 131 Ak_p(t)
T /7 N\ LT
é(mfﬁhwanum)(/ (mesA, () "dt)
13}

with 7 = r/(r — 1) and § = ¢/(¢ — 1). Then c, belongs to the space B.($r,1,C,

(14 2xa/n)2r/(r — 1),00,2x1/n) in the sense of [27]. This implies that ¢, is uniformly

bounded in H**/2(Q) for a € (0,1). Lemma 5 is proven. 0
Classical regularity results then imply the following uniform estimates.

LEMMA 6.
(i) The pressure p, is uniformly bounded in the space L (0, T; H*9(S2)), for
g > 3.

(ii) The concentration c, is uniformly bounded in L* (0, T;C**(12)).

PROOF: Since ¢, is uniformly bounded in H**/2(Qr) for @ € (0,1), the coef-
cients k/u(ce) in the elliptic pressure equation (3.1) and their partial derivatives are also
uniformly bounded in L*°(0, T} L"(Q))("x"), for ¢ > 3. Thus, by [28, Theorem 15.1], p.
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belongs to C1*' (Q)NH>9(RN), with o’ = 1—-n/q. Furthermore the norms |Pelleror @ynerza(a)
are bounded from above by a quantity depending only on n, ¢ and ||p,|| 2@y < C. The
functions g, and Q. are then uniformly bounded in C%*(Q). This bound for the co-
efficients of Equation (3.3) let us claim in [27, Section III.11] that the concentration
¢, is uniformly bounded in L*(0,T;C%*($2)). Note that, turning back to the pressure
equation (3.1), we can ensure with [28, Theorem 3.3.2] that p, is uniformly bounded in
L=(0,T;C%**()). Lemma 6 is proven. 0

We now pass to the limit ¢ = 0. By Theorem 3 there exist subsequences of (p.) and
(c.), not relabeled for convenience, such that

pe — p weak * in L*(0, T; Wi (Q)), g — g weak x in (L°° (0, T; L'(Q)))n,

for some limit functions p € L*(0,T; W' (Q)) and q € (L°°(0,T; L'(Q)))n. Using a
classical compactness argument of Aubin’s type [39], we can also ensure the existence of
a function ¢ € L? (0, T.:H 1(Q)), with 0 € ¢(z,t) < 1 almost everywhere in Qr, and of a
convenient subsequence of (c.) such that

ce — ¢ weakly in L*(0,T; H'(Q)), strongly in L?(Qr) and almost everywhere in Q.

These results are sufficient to pass to the limit in the pressure problem (3.1)-(3.4), to

get
k
divig) = ff - f~, q=———Vpin Qr, -v =0 on 9.
@=f"-f", ¢ o VP, g

We then multiply (1.1) by p, (3.1) by p. and we integrate over . We conclude that
k(z)

, k(z) . k(z)
lim | —=Vp,-V d:c=/—V - Vpdz = lim Vp. - Vpdz,
=0 Jq p(ce) Per Ve a K(c) prvp =0 Jq p(ce) P P

and then
k(z)

. ML) _ 2 -
!l_r'ltl) n#((:s)Wpe Vp|*dz = 0.

Since k(z)/p(c) = k~/u* > 0 in Qr, we claim that it follows

Vp. — Vp strongly in (L°° (0, T; L2(Q)))ﬂ
and then ¢, — ¢ and Q. — ¢ strongly in (L°° (0,T; Lz(Q)))n. Passing to the limit in
problem (3.3)-(3.4)2 we get
dic+q-Ve—div(E(g)Ve) = fF(1 - ¢) in Qr,
E(q)Vc-v=0ind2 x (0,T), ¢{(z,0) = co(z) in§.

Finally the uniform estimates listed in Lemma 6 give the additional regularity properties
announced in Theorem 1.

Let us finish this section with some remarks.
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REMARK 2. (i) Contrary to [21], we have here very weak assumptions on the diffusion
tensor E(g). In particular, assuming dy > 0, we respect the physics of the problem.
Indeed the dispersion effects are very superior to the molecular diffusion effects in most
of the flows (see [6] or [35]). This justifies the study of the degenerate problem in Section
5 below.

(i1) Assumption (1.10) ||¢'/u]leo < dr also respects in some sense the physics of the
problem. Indeed numerous studies have shown that it limits the digitation phenomenon,
one of the major causes of instability in groundwater flows (see for instance [29] and
the references therein). This assumption is quite similar to the one used by Mikelié¢ in
[32]. Note that Sammon [36] obtain C* regularity assuming a constant viscosity, that is
4’ = 0. On the other hand, (1.10) is considerably weaker that the hypothesis used by the
authors who study the regularity of a completely decoupled pressure equation. Indeed in
[31] as in [9], the idea is to consider coefficients a;; corresponding here to k;;/u(c) not
very “different” from the identity function, in the sense where there exists some constant
€ > 0 such that |1 — a;j|lec < €. In our work, assumption (1.10) is only a limitation of the
variations of the elliptic coefficients. It is the complex coupling with the concentration
equation which improves our estimates.

5. EXISTENCE OF A WEAK SOLUTION FOR A DEGENERATE PROBLEM

This section is devoted to the statement of Theorem 2 which gives an existence
result of weak solutions for the elliptic-degenerate parabolic problem. To this aim, we
set d,, = 7, where n > 0 is a given real. In view of letting the diffusion coefficient d,,
tend to zero, we start from the following problem in a bounded connected set Q of R".

(5.1) div(gg) = ft—f", ¢= —LI:—((:;—)) Vp, inQr,

(5.2) Bicy + @y - Vg — div(E(g,)Vey) = ff(1-¢c,)  in Qp,

(5.3) gy -v=0, E(gy)Vep,-v=0 indQx (0,7T),
(5.4) cn(z,0) = Cop(z)  inS

The pressure is normalised by / Pp(z,t)dz = 0 in (0,T). We assume now that
)

ke (W=@)", (f.f) € (L=(0,T; H‘(Q)))Q, Com € COX(Q), 0 < con(z) < 1 in
Q, with ¢, = ¢, strongly in H*(2). All the other hypotheses listed in Section 1 remind
valid here. Theorem 1 ensures for any n > O the existence of an unique semi-classical
solution (p,, ¢;) for Pb. (5.1)~(5.4).

We aim now let 7 tend to zero. The first step is the statement of uniform estimates
for the solutions of (5.1)-(5.4) independently of d, = 7. We begin by a straightforward
estimate for the pressure p,.

LEMMA 7. The sequence (p,) is uniformly bounded in L*(0,T; H'(S)).
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PROOF: Multiplying Equation (5.1) by p,, integrating over  and using the Poincaré
inequality, one easily get Lemma 7. 0
Energy estimates for the concentration give the following resuit.

LEMMA 8. The sequence (c,) is uniformly bounded in the space L=(Sdr). More-
over the gradients satisfy the following uniform estimate.

gl Venlizz(nryys < C-

PrROOF: We begin by recalling that the concentration ¢, is physically admissible
in the sense that 0 < ¢,(z,t) < 1 almost everywhere in Qr. The sequence (c;) is then
uniformly bounded in L®(Qr). We now multiply Equation (5.2) by ¢, and we integrate
over ). We obtain

1d
63) 35 [lea. 0 da+ [ BlaVer-Verda+ [ (ar-Ven) o = [ 1+01-er)ene

Since ¢, is uniformly bounded in L*®(§2y), we can write using the Cauchy-Schwarz and
Young inequalities and Lemma 7

d d
[0 Feherds| <C [lalds+ T [ lal1Veds <0+ L [ lanl19ed
Q Q 2 Q 2 1]

The source term in (5.5) brings no difficulty. Using assumption (1.9), relation (5.5) thus

leads to 1d o
buhad )2 or 24,
o dt /‘;lcﬂ( ’t)l dz+/{;(n+ 2 anI) |V617| dz < C.

We then prove Lemma 8 using the Gronwall lemma. 0

At this step, we have enough estimates to conclude that p, (respectively g,) is actu-
ally bounded in L%(0, T; W2%/3(Q)) (respectively in (L"’ (0, T; W"“/s(Q))) ). Following
the lines of [5], we can assert that, for extracted subsequences,

py — p strongly in L*(0, T; H'(Q)), ¢, ¢ strongly in (L*(Qr))",
cy — cin L=(Qr) weak — %, c,q, = cg strongly in (L2(QT))",

where (p,c) is a weak solution of (1.1)-(1.5) with the following degenerate dispersion
tensor

B(q) = lal (de£(q) + dr(Id - £(@))-

But one actually can improve the estimate for the pressure p,. We claim and prove
the following result.

LEMMA 9. The pressure p, is uniformly bounded in L°(0,T; W>#(Q)) for any
0 < 3/2.
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PROOF: We introduce the same type of domain decomposition as in the proof of
Lemma 2. For any ¢ € (0,T), we define the sets
oy = {:c €N, Ng lq,,(z,t)' <N+ l},
for any N € N, and

QN2 - {z €N N-1/2< |gy(z,t)] < N + 3/2}

for any N € N*. Let also &y € C§°( U va'm) such that &y = 1in |J Q. Let
t€(0,7T) te(0,T)
N > 1. We note that for any N € N, p, satisfies

~ A &) =20 g, Ver) o+ HG) (1 py gy - B9 (0, vy 6 - p, g,

Since k € W °°(Q) the analogous of relation (4.13) gives for any 1 < 4,5 <
6o | mf < / ol < C / v lB Ve +C / o lanl%€
1/2
_ 2 4
+ C/Q,.,,, - e < (f aal") (/ gl 1Veal'ez) " + Cw,

where Cy = /

n:v,x/z

1/2
|, etz <c@([,, la i)+

where C(t) is uniformly bounded in L?(0,T). Let 1 < 8 < 2 and s > 1. Using the Holder
inequality and noting that Q¥ c Q"' we obtain

L, etz
6/2 1 1-(6/2)
2 Ni1-(8/2 2 8
(/ I ]pﬂl dl’) Iﬂt ‘ /2 s (/ | ]pﬂl d.’E) Ns(]__g/z) (~/S"2N lq77’ )

0/2
< o ( lg l’)1 oot O ( l I’)l_m
S N[N + 3/2)@9072 \ Joara ' N0\ s 10
t

C(t)%/? co? 1-8/2+6/4
( + v =17277) (o 1)
S\ N0/ (N + 3/2)C-3078 ~ N0/ (N — 1/2)207 ) \ fywase 177

C(t)®/? 404
< Ns(1-6/2)(N — 1/2)(s-3)6/4 (/nf"v"’ I ) )

the latter inequality being written because f* — f~ € L(0,T; L*(2)) and |gy| is uni-
formly bounded in L*(0,T; L%(Q)). Let 7 > 1 and r’ such that 1/r +1/r' = 1. We now
use the discrete Holder inequality and get

(lgo® + |f* — f7|?)€% dz. Using Estimate (4.22) for s, = 0, we write

https://doi.org/10.1017/50004972700039757 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700039757

[25] Semi-classical solutions 393

1 1/r
|8Z%p,|° dz < (C(t)’9/2 — )
L s Pl 82 < > T

(4-6)r' Ja\ 1/r
s
(S (Lpntor) )
N21 t

We choose r' = 4/(4 — 8) that is r = 4/0. If moreover r(4s — s — 36)/4 > 1 that is
s > 460/(4 — ), we can write

(4-6)/4
[ mra<oern([ k) <avvowen( [
UNalﬂ{v Un;lnN'llz U

t

(4-0)/4
lglt)

[t

Since |gq|*/*V¢, is uniformly bounded in (L2(Qr))", the analogous of (5.6) in QY is
/n |Bmldz < Cl)

where C,(t) is bounded in L'(0,T). The two latter relations give
(4-0)/4

(5.7) ||Pn||$v2v0(n) < G0+ C(t)°" (/n |Qn|’) .

We recall the following Gagliardo-Nirenberg inequality for s = 126/(6 + 6).

1/2 1/2
lgallze@y < Cllpaliwracay < Cllpallyoy IPall sy,

where the last term is uniformly bounded since p, is uniformly bounded in L* (0, TH l(Q)).
This gives in (5.7)

36(4-6)/2(8+6
IPallfy 0@y < Col®)”2 + CO”lipallipsigy

Note that the condition s = 126/(6 + 6) > 40/(4 — 8) is satisfied provided that § < 3/2.
We now integrate the latter relation from 0 to T and we use once again the Holder
inequality for some 7 > 1 to get

0 < TC 8/2 4 T AR T 3r'0(4—0)/2(6+6)\ /"
Ipnllze o rw2eay € | o(t)"/ " dt + | C(t)™*dt | ”pn“Wz.a(m :

The first term of the right hand-side is bounded by a constant since C,(t) € L*(0,T) and
6 < 2. For the second one we choose ' = 2(8 + 6)/3(4 — 8) so that we can write

T Ur  30(4~6)/2(6+6
IPallZoorwroay < C + ( /o c()”? dt) A Lo((o,T;)v/vz(,arQ;)-

Moreover, since C(t) is uniformly bounded in L?(0,T) and r8/2 = (6 + 6)/5 < 2, we
write

) 36(4—6)/2(0+6
“Pn”z,v(o,r;wu(n)) <C+C ”pn“L‘((O.T;)‘{V’(-‘(ﬂ;)’
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where 3(4 — )/2(8 + 6) < 1. This proves Lemma. 9. 0

The estimate of Lemma 9 fully justifies Theorem 2. Note that [5] obtained

p € L°(0,T; W*9(Q2)) for § < 4/3. Moreover, following the lines of the proof of Lemma
9 using (4.22) with s, = 1 instead of s, = 0, we reach an uniform bound for p, in
L9(0,T; W24(Q)) for any 6 < 2.
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