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Abstract. In this paper, we prove an extension of a theorem of Marcus, which says
that every subshift of finite type of entropy log n, n an integer, factors onto the full
n-shift. Let p{x) be a monic polynomial, irreducible over Q, whose coefficients
(except for the leading coefficient) are non-positive integers. Suppose C(A) is the
companion matrix of p(x), where A is the largest real root of p(x) (A exists, by the
Perron-Frobenius theorem). Then for any aperiodic, non-negative, integral matrix
A, with Perron value A, we give necessary and sufficient conditions for the existence
of a positive integer n and a right-closing map f:1.A-*J.C(\) satisfying fir" = o~"f
(where a is the shift map).

Section 1. Preliminaries
We begin by briefly outlining a few of the basic facts of symbolic dynamics. A more
complete reference is found in [1].

Given an m by m matrix A whose entries are non-negative intgers, let G(A)
denote the directed graph with m nodes and AtJ labelled edges from node i to node
j , for each pair i, j . (Throughout this paper, all matrices will be integral, with the
exception of the Jordan matrices in lemma 5.) Let if be the set of edges of G(A).
We say that edge /follows edge c if e joins node i to node j , and / joins node j to
node k, for some i, j , k. We then define the subshift of finite type (SFT) SA to be
{x e Sfz: xi+l follows x, for all i e Z}.

A non-negative matrix A is irreducible if, for each pair i, j , there exists a positive
integer n with Ay>0. If n can be chosen independently of i and j , we say that A
is aperiodic.

At times, it is convenient to describe an SFT by a transition matrix A whose
entries are 0's and l's, and where the symbols are the nodes of G(A). A node j
follows a node i if there is an edge from i to j in G(A). Clearly, an SFT given by
an arbitrary non-negative matrix A (where the symbols are the edges of G(A)) can
also be described by a 0-1 matrix: the edges of G(A) become the nodes of a new
graph and one node follows another in the obvious sense.

We will need the following parts of the Perron-Frobenius theorem:

Let A be a non-negative, irreducible matrix. Then
(i) A has a real eigenvalue A, corresponding to a strictly positive eigenvector, such

that, ify is any other eigenvalue, then |y |< |A|. A is called the Perron value of A.
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(ii) The eigenspace of A is one dimensional.

It is well known that h{~LA, cr) = log A in this case, where h{?.A,o~) denotes the
topological entropy of (2.A, cr).

In [5], Williams gives a useful algebraic condition for two SFT's to be topologically
conjugate. Two non-negative matrices A and B are called strong shift equivalent
in one step if there are non-negative (not necessarily square) matrices U and V
such that A = UV and B = VU. Extending this relation transitively, we say that A
and B are strong shift equivalent if there is a finite sequence of one-step equivalences
leading from A to B. Williams proved that 1A and 1B are topologically conjugate
if and only if A and B are strong shift equivalent.

If SA and 2 B are SFT's, we define a factor map to be a continuous, surjective
map /:XA-»EB such that fir = of. (In this paper, all maps will be assumed to be
continuous and surjective.) If such an / exists, we say that 2A factors onto 2B. It
is natural to ask under what conditions 2A factors onto 2B. For the lower entropy
case, h(1A, <r)> h(1.B, a), Boyle [2] has given necessary and sufficient conditions
for 1A to factor onto SB. In the equal entropy case, h(1A, cr) = h(1B, cr), no such
conditions are known.

The first positive result in the equal entropy case was found by Marcus [4].

THEOREM. Let 1.A be an SFT of entropy log n {n a positive integer). Then 1A factors
onto the full n-shift.

In this paper, we prove an analogous theorem, in which the role of the full shift is
replaced by the SFT defined by the companion matrix of an irreducible monic
polynomial whose coefficients are non-positive integers (except for the leading
coefficient). We do not know under what circumstances we can obtain maps which
commute with the first power of the shift. The example of Kitchens, which we
present in § 3, shows that we cannot obtain such maps in general. However, we give
necessary and sufficient conditions for the existence of a special type of map which
commutes with some power of the shift. The main result (theorem 1) should be
regarded as an attempt to extend Marcus' theorem to the non-integer entropy case.

With this in mind, we wish to represent the dynamical system (2.A, cr") in terms
of the matrix A. It is a fact that Ay counts the number of paths in G{A) of length
n from i to / We may think of A" as representing a graph whose edges are labelled
by paths of length n in G(A). Applying the shift to SA- corresponds to applying
the nth power of the shift to 1A; i.e. (S^-, cr) is conjugate to (SA, cr"). A factor
map f:(ZA", o-)-*(2B», cr) may be regarded as a continuous map 2.A^1B which
commutes with cr".

The main technique used in this paper is that of state splitting. Given a non-
negative matrix A and a node (or state) s of G( A), let E be the set of edges leading
out of 5. Given a partition of E into E^ and E2, we define a new matrix A' by
splitting 5 into two new nodes Si and s2 and defining new transitions (edges) as
follows:

(1) e is an edge of G(A') joining s, to j iff e joined s to j in G{A) and ee E^.
(2) e is an edge of G(A') joining s2 to j iff e joined s to j in G(A) and ee E2.
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(3) For any edge e joining i to 5 in G{A), there are two new edges ex and e2,
joining i to s, and i to s2 respectively.
These rules hold if e is not a loop. If e is a loop and (for example) eeEx, then e
gives rise to two new edges, a loop at sx and an edge from sx to s2. A similar rule
holds if e e E2. If A' is obtained from A by state splitting, then A' is strong shift
equivalent to A.

Next, we describe the effect of state splitting on a right eigenvector for A. Suppose
r = (r1,..., rm) is a right eigenvector for A. Then a right eigenvector r' =
(r\,..., r'm+i) for A' is given by r\ = r, for i ^ s, and the two new entries corresponding
to Si and s2 are given by

<=7 I rj.
A fis an edge joining s to j

A e is an edge joining s to j
eeE2

Finally, we mention the idea of right closing maps. A factor map/: S^-»2B is called
right closing if it never identifies two negatively asymptotic points; i.e. if x, y e 2A

with/(x) =f(y), and there exists an integer N such that xn = yn for n < JV, then JC = >>.
A special case are the right resolving maps. A one block map/: &-* 2T (the symbol

sets of 1A and SB) is right resolving if /(*,) = yx and y2 follows _yt implies that there
is a unique x2 following x, with f(x2) = y2. lff:£f-> ST is onto, then f:1A-*'LB is
onto (use compactness).

Right closing maps are related to right resolving maps by the following theorem,
due to Kitchens [3]. A factor map / :2 A ->2 B is right closing if and only if there
exists A such that 2^ is topologically conjugate to 2A, and a right resolving map
g : 2 A ^ S B which makes the following diagram commute:

Given a right resolving map f:1A^1B, we define the relation matrix R by

otherwise.

Since / is right resolving, it is easy to check that AR = RA.

Section 2.
Let p{X) = Xd-Y?il]> atX\ a.eZ, a,>0, with p(X) irreducible over Q. Let A be
the real root of p(X) of maximum modulus, and let C(A) be the companion matrix
of p(X). Assume C(A) is aperiodic. Then we have the following:

THEOREM 1. Let A be an mxm aperiodic matrix with Perron value A. There exists a
positive integer n and a right closing map/:SA-»2C(A) such that fir" = cr"fifand only
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if A has a right eigenvector r = ( r , , . . . , rm), r, € Z[A], such that the ideal in Z[l/A]
generated by the r, is principal.

We will denote this ideal by (r). It will follow from lemma 2 below that if (r) is
principal in Z[l/A], and s = (st,..., sm) is any other right eigenvector (s, €Z[A]),
then (s) is principal in Z[l/A].

COROLLARY. If Z[l/A] is a principal ideal domain, then for every aperiodic matrix
A with Perron value A there exists an integer n and a right closing map/:£A-»2C(A)

such that fa" = a"f

An example is A, the largest root of p(X) = X2-X-I (the golden mean). Here
Z[1/A] = Z[A], which is well known to be a principal ideal domain.

By Kitchens' theorem, the existence of a right closing map / : S A ^ 2 C ( A ) such
that fa" = o-"f is equivalent to saying that for some n there exists a matrix B, such
that 1B is topologically conjugate to 2A» and a right resolving map g:2B-»2c»(A).
The condition is further clarified by the following:

LEMMA 1. There exists a right resolving map g:£B-»2C"(A) if and only if B has a
right eigenvector r {corresponding to A") with entries in {1, A,..., A**"1}.

Proof. Suppose B has a right eigenvector r with entries in {1, A,..., Ad~'}. Let x be
a state for B with rx = A'. Let F(x) denote the set of edges beginning at x, and for
any edge y, let ry denote the eigenvector entry corresponding to the state at which
y terminates. Since

I r, = A"rx = A"+' = ' l V ' .
yeF(x) j=0

(where the last expression is the unique representation of A"+l in terms of
1, A,.. . , A*"1), it follows that for each j = 0,1,..., d-l, there are exactly ft, edges
joining x t o a state with eigenvector entry AJ. The same is true for i, the unique state
for C"(A) whose eigenvector entry is A', since the same equation holds. So, for each
x we can assign a one-to-one correspondence from {ye F(x): ry = \J} to {ye
F(i): ry = \J}. This extends to a right resolving map g:£B-»2C"(A). The map is
well-defined, since for each j , 0 < j < d - l , C(A) has exactly one state whose
eigenvector entry is \J. Conversely, suppose there exists a right resolving map
g:SB-»2c»(A). Let B' be the 0-1 matrix obtained from B by converting edges to
nodes, and C" the corresponding 0-1 matrix for C. Then there is an equation
B'R = RC, where R is the relation matrix for g. Now C has an eigenvector t;
whose entries lie in {1, A,.. . , Ad"1}, since C does. Since B'(Rv) = RC'v = X(Rv),
Rv is an eigenvector for B'. Since R has exactly one 1 in each row, the entries of
Rv lie in {1, A,.. . , Ad-1}. It then follows that B' (and hence B) must have an
eigenvector whose entries lie in {1, A,... , Ad-1}. •

Thus, the existence of a right closing map / :2A-»2C ( A ) such that fo-" = anf is
equivalent to the existence of an integer n and a non-negative matrix B, with 2B

topologically conjugate to 2A% such that B has a right eigenvector whose entries
lie in {1, A,. . . , \d~x). To prove the 'if direction of theorem 1, we will apply state
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splitting to XA-> for sufficiently large n, to produce 2 B as above. Roughly, to split
a given state s, we will partition most of the n-blocks leading out of s into exactly
the right proportions to produce the desired new eigenvector entries. We then use
the equations which follow from the condition on the ideal generated by an
eigenvector to distribute the remaining blocks so that the correct proportions are
maintained. Since the details of this procedure are rather technical, we will defer
them for the moment, and turn our attention to some preliminary lemmas.

The condition that (r) is principal also has a simple reformulation:

LEMMA 2. Suppose A has a right eigenvector r = ( r , , . . . , rm), r, e Z[A]. Then (r) is
principal in Z[l/A] if and only if there exists p e Z , p > 0 , and a linear combination
Zili cist = ^P, s,> cie Z[A], where s = {st,..., sm) is some eigenvector for A.

Proof. First, suppose there exists a linear combination EJ1, cfSj = Ap, f°r some
eigenvector s. Then (s) = Z[l/A], since Ap is a unit in Z[l/A]. We have r = as for
some a e U, since the eigenspace is one-dimensional. But then

m m

\pa = £ c,5,a = £ c,fi,
i = l i = l

which implies aeZ[l/A]. Thus

(r) = (as) = a(s) = (a)

(since (s) = Z[l/A]) which says (r) is principal.
Conversely, suppose (r) is principal and let <r> = (a), a e Z[l/A]. Then there exists

a linear combination XX,d,r. = a, d,-eZ[l/A]. Also, we have aki = r{, for some
fc, € Z[l/A], i = 1 to m. Substituting and dividing through by a yields Y.T=i dkt = 1-
Since any element of Z[l/A] can be multiplied by a sufficiently high power of A
to obtain an element of Z[A], we may multiply £jli dfa = 1 by a high power of A
to obtain Y.7=\ ctst= ^P> c>> *• e Z[A], where s - (sx,..., sm) is an eigenvector. •

We can now easily prove the 'only if direction of theorem 1. For suppose B is a
non-negative integral matrix which has a right eigenvector r = ( r , , . . . , rm), r, e Z[A]
and suppose there is a linear combination £J1, cp, = Xp, ct eZ[A]. Let B' be strong
shift equivalent to B in one step, so that B = UV, B' = VU, for non-negative integral
matrices U and V. Then

B'( Vr) = VU( Vr) = VBr = V\r = A (Vr),

so Vr is a right eigenvector for B'. Clearly (Vr)feZ[A]. Also,

Ap= X c,r,= I Ci^f^^- I c, I Uv(Vr)Jt

SO

I c, I Uij(Vr)J = \"+i

and there is a linear combination of the (Vr), equal to a power of A. By induction,
the same conclusion holds if B' is strong shift equivalent to B in k steps. Now, if
there exists a right closing map/:2A-»2C(A) such thatyb"" = a"f, then by lemma 1
and Kitchen's theorem, A" is strong shift equivalent to B, where B has a right
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eigenvector r whose entries lie in {1, A,.. . , Ad~'}. Then clearly B has a linear
combination £ili ciri = \p, so by the above, A" (and hence A) must have a right
eigenvector with such a linear combination. As we have seen (lemma 2), this is
equivalent to the condition that the eigenvector for A generates a principal ideal.

In what follows, we will be working in subrings of Q[A]. Note that every element
of Q[A] may be uniquely written b = Yftll bt\', fe.eQ, where d is the degree of A.
If b,>0for 0 < i < d - l , we write b>*0.

Define a map L:Q[A]-»Qd by L(b) = (b0, &,,..., bd-i)- L is clearly a linear
isomorphism of vector spaces.

LEMMA 3. L(\b) = C'(A)(L(b)) for any beQ[\]. (C'(X) denotes the transpose of
C(A).)

Proof.

Afc = V bt\
i+1 = V b1_1A

i + ftd_1A
d

i=0 i= l

Thus L(Afc) = (fed_,a0, fco+^d-i^i,..., bd_2+^d-i«d-i)- A simple computation
shows this equals C'(A)(L(ft)). •

It is well known that any point of Rd which is not in the span of smaller eigenvalues
of C'(A) tends toward the eigenline associated with eigenvalue A under iteration
by C'(A).

We now show that no non-zero point of Qd lies in the span of smaller eigenvalues
of C(A). In fact, no proper invariant subspace of Ud can contain a point of Qd. For
let L(q)eQd and consider B = {L(q), L(q\),..., L(qXd'1)}. B is linearly indepen-
dent over Q, hence also over R. Any invariant subspace containing L(q) must also
contain B, and so must be all of Ud.

It follows from these remarks that L{k"q) tends toward the eigenline for any
qeQ[A], q^O. L{\"q) goes into the positive orthant if q>0, and the negative
orthant if q < 0.

Let e = L?J"o e., A''eZ[A], e>*0, and let A = {L(e), L(e, A) , . . . , L{ekd'1)}. Let
r = {£1=0 bjL(e\.'): bteZ, 6,>0} be the positive lattice generated by A, and A =
{£,=o oiiL(eX'): a,eQ, at > 0} the positive cone generated by A. Let £ be the positive
eigenray corresponding to A.

LEMMA 4. E <= interior (A).

Proof. Using lemma 3, it is easy to check that C'(A)(A)cA. But also elements of
A tend toward E under iteration of C"(A). Since £ is a ray and A a cone, it follows
that E s A . Now suppose that E £ interior (A). Then E must be contained in the
positive cone generated by a proper subset of A. We show that this is impossible.
Since C"(A) is aperiodic, for sufficiently large n, A" =H,=ro

1 c,A' with ct>0. Thus,

L(eA") = L ( y c-eA') = l c,L(eA'),
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so that each generator of A gets pushed into the interior of A under iteration by
C" (A). It follows that the positive cone generated by any proper subset of A eventually
get mapped completely outside itself, and hence cannot contain E. •

COROLLARY. For all sufficiently large n we may write A" = qne + sn, qn, sn e Z[A], qn,
sn>*0, where sn = 1 ^ ' b^ and 0<b ,< H^eA')!!- (|| || denotes the norm in Ud.)
Proof. Since L(A") tends toward E, and £ c interior (A), L(An)e A for sufficiently
large n. Thus, L(A") lies in some parallelepiped P of the lattice F. Choose the corner
L(p) of P closest to the origin. Write

i ( V ) c,eZ,c,>0.

Set gn = i ; r 0 ' CjA'. If L(5n) = L(A") - L(p), sn = 1 ^ b,A', then since L(A") lies in P,
we must have 0 s fc, < ||L(eA')||, the length of the ith generating edge of P. It follows
that

•so that A" = qne + sn.

We will also need the following

LEMMA 5. Ifp(x)eZ[x] with p(A) = 0, then

/or eac/i pair i..j.

Proof. Write A = RBR~\ with
/A

\ 0

where the /, are the Jordan blocks corresponding to eigenvalues of modulus smaller
than A. Then p(A)Ak = Rp(B)BkR-\ and

\

p(B)Bk = p(J2)J
k2

0

0

since p(\) = 0. Since the Js, i>2 , correspond to eigenvalues of modulus strictly
smaller than A, the entries of p{B)Bk grow exponentially more slowly than those
of Ak, which grow like A\ since A is aperiodic. The same is true of the entries of
Rp(B)BkR~l, since this simply introduces a linear scaling. The result follows.

•
Our task is to show that given a matrix A, as in theorem 1, there is an integer n
and a matrix B, with SB topologically conjugate to 2.A», such that B has an eigenvector
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whose entries lie in {1, A, . . . , kd~1}. The matrix B will be obtained by applying the
technique of state-splitting to A". To do this, we need to know that A has a right
eigenvector whose entries are of the form e = £iJ0

1 e,A', with eeZ and e>*0.
For each such entry, we will then split the corresponding state s into X,Jo e< n e w

states, with e, of them having a new eigenvector entry of the form A', for 0 < i < d - 1 .
This will be accomplished by partitioning the M-blocks beginning with s into X,Jo et

sets.
We may assume A has an eigenvector r whose entries are of the form e = Zi = 0

 eA',
e{ e Z; this follows from linear algebra. To show that we may assume e >*0, observe
that L(eA") = C'(A)(e) tends toward E, and so is eventually in the positive orthant
ofZd.

If (r) is principal, then by lemma 2 we may assume, without loss of generality,
that there is an equation Y,7=\ c,-r,- = Ap, cf e Z[A]. We now show that we can further
assume that the c,eZ. For suppose we are given the equation Xjl, c.-r,- = Ap, with
c, e Z[A]. Then each c, is of the form c, = X^jJ CyA;, c0 € Z, so that we have

m m d —1 m d — 1

I c,ri = 1 1 C^AV, = 1 1 c,y(AV),.,
i = l i = l j=0 i=l j=0

since AJr, = (>4V),. Since (AV)j = £™=1 A|-fcrfc, and A^eZ, we may gather terms to
get an equation with coefficients in Z.

We fix some notation. Given an allowable n-block x = x^x2. • • xn, call x an i-end
if xn terminates at state i. If x is an f-end, let r(x) = r,.

In what follows, we deal with a fixed state s that we wish to split. For simplicity
of notation, we let rs = e=£ jJ0 ' e,A', with e,eZ and e>*0. Let Bn= paths
x,x2 • • • xn: *! begins at s}. Given R c Bn, define the weight of i?, w(R), by w(i?) =
S«R r(x).

Definition. We say that R can be divided if it can be partitioned into X,=o e> se^s

C^oi, • • •, t /o^, Un,..., UUl,..., ,..., Ud-lA ... t /d- i ,^ . , such that the following
holds:

(1) w(UiJ) = w(Uik) l^j,k^et;
(2) \w(UiJ) = w{Ui+l,k) 0 < i < d - 2 ;
(3) Ap divides w(Uu) in Z[A], for each UtJ.

Notice that if Bn itself can be divided, then S can be split in the desired manner.
This is so because

w(BJ= X r(x)=l A:jrj = \"rs = \ne = dl ei\
i+n.

xeB, j = \ i=0

It follows that w{Uij) = Ai+n for 0< i< d - 1 . Since we divide by A" to obtain the
eigenvector entry corresponding to the new state defined by the set Uy, we see that
the new state will have an entry of A'.

We wish to show that, for sufficiently large n, Bn can be divided. Our strategy is
as follows: divide almost all the blocks of Bn, so that what is left over has bounded
weight. Use the equation X™=i ckrk = Ap to move quantities from one U^ to another.
This is done as follows: Note that for any q e Z[A], there is an equation £T=i dkrk =
\pq,dkeZ, which is found by multiplying both sides of the original equation by q
and then expanding the left hand side as before. Then given any partition into Uy's,

\
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we can transfer kpq from Uilh to Ui2J1 by moving dk fc-ends from Uhh to Uhh, for
d k >0 , and — dk fc-ends from Ui2h back to [/(,_,-, for dk<0. Since if x is a fc-end,
r(x) = rk, the net effect of this procedure is to increase w( U^ by qkp and decrease
w(t/,Ul) by the same amount. There is one major obstacle to carrying out this
procedure: Uilh must contain at least dk fc-ends, for dk > 0, and Ui2J2 must contain
at least -dk fc-ends, for dk < 0. So our goal is to divide most of the blocks of Bn in
such a way that each Uy contains lots of fc-ends. We now make these ideas more
precise. First, for any b =Yi=o bt\' eZ[A], there is an associated polynomial b(x)e
Z[x], namely Y.t=o bix'. For the matrix A, b(A) denotes Y.t=o btA'.
Definition. A polynomial p(A) moves a quantity qkp eZ[A] if there is an equation
I7=i diri= 4X" w i t h dJe Z a n d (P(A))'j - \di\ f o r 1 -J- m-

Since for any q\p there is always such an equation, any polynomial p{A) with
(p(A))SJ sufficiently large moves qkp. If p(A) moves q\p, and for some partition
Uhh and Ui2J2 each contain at least (p(A))sk fc-ends for l s f c s m , then we can
transfer the quantity qkp from Uhjl to Ui2J2 as described earlier.

LEMMA 6. Ifp(A) moves qkp, then p(A)A' moves qkp+l for / = 1,2,

Proof. We have £™ , c/j = qk" with {p(A))SJ > Cj. Hence,

qk" = 1 c/jk'

m

= I Cj(A'r)j

m m
= I c, I A'jkrk

j=i fc=i

m / m
— V I V r A1

Since

(the last inequality since (p(A))s;S:|c,|), we have the result. •

We will now prove that for sufficiently large L, BL can be divided. The ' i f direction
of theorem 1 then follows.

By the corollary to lemma 4, (using ekp in place of e), for n > 1 we can write
A" = qnek" + sn, with qn, sneZ[A], qn, s n>*0, sn = l t " o *|A' and 0 < s , < ||L(eA'+-)||.
Note that for M >/>, Ap divides sn. Also, for n sufficiently large, qn ^ 0.

Let us dispose of a simple case. Suppose that for some N, sN = 0. By lemma 5,
we have a sequence of equations

AN+m = qN{A)e(A)Ap+m + Em, (1)

where

I C E "> I
IV m-'l 0 asm ^oo, for all i , / (*)
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Observe that

(Emr)s = (AN+mr-qN(A)e(A)Ap+mr)s

= (\N+m-qN€\p+m)rs=0.

For fixed N, choose m large enough so that qN(A)Ap+m > |Em|. This is possible by
(*) above and the fact that <jn(A)>0 and qn(A)P0. We construct a partition of
BN+m as follows:
In Coi put (qN(A)Ap+m + Em)sk fc-ends. This makes sense since {qN{A)Ap+m + Em)sk

> 0. Then

*>(t/oi) = [(qN(A)Ap+m + Em)r]s = qNkp+me.

For Uijjt u0l, put (qN(A)Ap+m+i)sk fc-ends in Utj. By virtue of (1), this exhausts
the blocks of BN+m. Since w( UtJ) = qN\p+m+ie, we have divided BN+m.

Having treated this case, we may assume that sn # 0 for all n. Since in the expression
A" = qneX.p + sn, L(sn) is bounded, qn(A)Ap grows without bound as n •* oo. We wish
to choose N so that qn(A)Ap is very large. How large must it be? We require that

(a) qN(A)Ap>Y,iZl eiPt(A), where P,(A) is a polynomial with non-negative
coefficients in A, and Pt(A) moves sN\'.

(b) qN(A)Ap+i moves sN\l, for 0< i < d - 1 .
Since gn(A)Ap grows without bound, we can meet both these requirements.

Again by lemma 5, we have a sequence of equations

AN+m = qN(A)e(A)Ap+'" + sN(A)Am + Em (2)

where
\(Em)y\ n

-»0 asm-»oo.
Atj

Choose m large enough so that sN(A)Am > |£m|. Here we use the fact that sN(A) >0
and sn(A)^0 We construct a partition of BN+m as follows: Put (qN(A)Ap+m+i)sk

fc-ends in each UiJy 0< i < d - 1 , 1 < j < e,. This makes sense, since what is left over,
by (2), is (sN(A)Am + Em)sk fc-ends, which is a positive number for each fc. Since
u>( Uv) = eqNXp+m+i, this collection of blocks has been divided. Also, if we denote
the collection of leftover blocks by R, then

W(R) = [(sN(A)Am + Em)rl = sNkme,

since Emr = 0 as before. Now put all the leftover blocks in t/Oi. This increases w( U01)
by sN\me. We wish to redistribute this quantity by moving sN\m+l from U0l to each
Ujj 7* U01, 0< i< d -1. Conditions (a) and (b) guarantee that we can do this. For
we have

^t eiPi(A)Am,
i=0

(since everything is non-negative), and by lemma 6, Pi(A)Am moves sNAm+l. This
ensures that we can move et of the quantity SjvAm+l out of UOi, for 0 < / < d - l ,
without exhausting the required number of fc-ends in t/Oi. Since we added blocks
to t/Oi when we put in the leftover R, we did not diminish the capacity to transfer
quantities out of U0\- Also, by condition (b), and lemma 6, qN(A)Ap+m+' moves
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sN\m+l, we can also move sN\m+l into Uy. After redistributing the remaining sN\me,
we have

which shows that BN+m has been divided. This completes the 'if direction of
theorem 1.

Section 3. Examples
We now give a few examples. The first, which appeared in [3], shows that in certain
entropy classes it is necessary to go to higher powers. Let

" 0 0 0 0 1
0 0 1

C = 1 0 1
0 1 0

and A =
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 1 1

C is the companion matrix for X3 - X -1 and A is the companion matrix for

X 5 - X 4 - 1 = ( X 3 - X - 1 ) ( X 2 - X + 1).

2A and 1C have the same entropy, but there cannot be a map / : 2 A - » 2 C with
fir = of. This is so because 1A has a fixed point while 2 C does not. However, there
is a continuous map/: 2^ -» S c satisfying fir2 = o-2f. In figure 1 we give the sequence

FIGURE 1
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of state splittings by which we obtain from A2, a matrix B with a right eigenvector
whose entries lie in {1, A, A2}. The first graph represents A2 (so that its edges
correspond to paths of length 2 in G(A)). The states have been labelled a-e (going
from top to bottom in the matrix A), and an eigenvector entry has been attached
to each state. Note that we are using the equation A3 = A +1.

We first split state e into states ex and e2, with new eigenvector entries A2 and A,
to obtain the second graph. We next split state a into states at and a2, with new
entries 1 and A, to obtain the third graph, which corresponds to a matrix B whose
eigenvector entries lie in {1, A, A2}.

It remains an open question in which entropy classes the integer n of theorem 1
can always be taken to be one. Marcus [4] showed that this is so in the integer
entropy case. Perhaps it is also true for A the golden mean, i.e. the root of X2 - X - 1 .

Here we mention that in certain entropy classes the condition that the eigenvector
generates a principal ideal holds for every SFT of that entropy. In particular, it
always holds if Z[l/A] is a principal ideal domain. This is true, for example, if A
is an integer, or if A is the golden mean.

There are other entropy classes in which the principal ideal condition does not
always hold, as the next example shows: Let

A =
\2 1/

The characteristic polynomial of A is p(X) = X2-4X-I. Let A be the largest
root of p{X). A right eigenvector for A is r = (2A, 1 + A)'. Claim: there is no linear
combination a(2A) + fc(l + A) = Ap for any peZ, p^O, a, beZ[A]. For suppose
there were. As usual, we may assume, without loss of generality, that a, beZ.
Observe that A2 = 4A +1, and if we reduce coefficients mod 2, we have A2 = 1. Thus
Ap = 1 or A, mod 2, depending on whether pis even or odd. But b + (2a + b)\ = b + b\,
mod 2, which cannot equal 1 or A. By the earlier observations, 2A and 1 + A do not
generate a principal ideal in Z[l/A]. It follows from theorem 1 that there cannot
exist a right closing / : 2A -» 2 C with fir" = o-"f, for any n.

As a final example, we show that there are SFT's 1A and 2 C and a map/ :2 A -»2 c

which is right resolving and for which there cannot exist a left closing map 2.A -> 1C-
Let

/3 2\ /0 1\
' = ( I and C = \ I.

\2 1/ \1 4/

Let 1A be the almost conjugate extension of 1B and 1C (see [1]). Then there exists
a right resolving map f:1A^~Lc and a left resolving map g:1A^'LB. As we have
seen, A has a left eigenvector 5 with entries in {2A, 1 + A} and (s) is not principal.
Hence, no left eigenvector for SA can generate a principal ideal. If there were a left
closing map h:1.A^1c, then there would be a 1D conjugate to 1A and a left
resolving map i:1D^1c. Then D would have a left eigenvector with entries in
{1,A}, which geneates a principal ideal. It would then follow that A has a left
eigenvector which generates a principal ideal, and this is a contradiction.

-
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