J. Functional Programming 6 (5): 723-756, September 1996 © 1996 Cambridge University Press 723

n-RED™
An interactive compiling graph reduction system
for an applied A-calculus

DIETMAR GARTNER and WERNER E. KLUGE

Christian-Albrechts-Umwersitiit Kel, Institut fiir Informatik,
D-24105 Kiel, Germany
e-mail - wk@informatik.uni--kiel.d400.de

Abstract

This paper describes a compiling graph reduction system which realizes the reduction se-
mantics of a fully-fledged applied A-calculus. High-level functional programs are conceptually
executed as sequences of program transformations governed by full f-reductions. They may be
carried out step-by-step, and intermediate programs may be displayed in high-level notation,
rendering the system suitable for interactive program design, high-level debugging, and also
for teaching basic programming language concepts and language interpretation. Run-time
efficiency for production runs is achieved by means of an abstract stack machine ASM which
serves as an intermediate level of code generation. It employs multiple stacks for reasonably
fast function calls, optimized tail-end recursions, and earliest possible releases of subgraphs
that are no longer needed. The ASM involves an interpreter if and only if potential naming
conflicts need to be resolved when reducing partial function applications.

Capsule Review

The main point of the paper is an implementation technique for a functional language based
on an applied A-calculus which allows to stop the execution of a program at any point
and to reconvert the graph to the original syntax of the functional language. It even allows
one to output results containing free variables and functions. This is surely interesting and
helpful for debugging and teaching. Previous attempts to reach this aim were based on an
interpreter. The new approach is based on compilation, and reaches an efficiency close to that
of state-of-the-art implementations of Haskell, Clean and SML.

1 Introduction

Reduction languages are a subclass of functional languages whose semantics are
directly and completely defined by the rewrite (reduction) rules of the A-calculus or
of a combinatory calculus (Church, 1941; Curry, 1934; Hindley and Seldin, 1986;
Backus, 1978). Conceptually, program execution takes place entirely within the
domain of programs. It is a process of meaning-preserving program transformations
which for all semantically meaningful programs eventually terminates with a result

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

724 D. Gartner and W. E. Kluge

which is itself a program. All rewrite rules may be applied in any part of a program
without causing side-effects in other parts (referential transparency).

Reduction systems which implement this execution model can be made to reduce,
under interactive control, programs step-by-step, and to return as output sequences
of high-level intermediate programs. These programs may be inspected and modified,
and the focus of control may be freely moved about them to evaluate, in any chosen
order, other than top-level redices. Apart from termination problems, the resulting
programs remain invariant against the order in which reduction steps are carried
out.

The virtues of this concept are well recognized. It may be used to validate
program correctness and correct execution, and also to teach, in a clean setting,
basic programming language concepts and language interpretation.

In a recent paper, a strong case has been made for symbolic calculators as tools
for computer-based learning (Goldson, 1994). Goldson describes a system called
MiraCalc which allows step-by-step transformations of Miranda programs. It is
argued that students can be expected to benefit considerably from viewing functional
computations as rule-based evaluation processes. This may help to develop a better
understanding of basic programming principles and generally improve their ability
to specify, design and reason about programs.

Stepwise program execution and inspection of intermediate program terms in high-
level notation is also an established technique of debugging Lisp programs (Sun,
1990; Allegro, 1992). Debuggers for CommonLisp usually include tools for tracing
function calls, for displaying the actual parameters passed on and the values returned
by each call, for stepping through the evaluation of program terms, and for the
inspection and modification of the elements of data structures. However, owing
to the state transition semantics of Lisp, this cannot be entirely done within the
space of programs. There must also be means to display (parts of) the actual
environment.

Almost all functional systems proposed or implemented to date employ some
form of compiled graph reduction (Johnsson, 1984; Cardelli and McQueen,
1983; Peyton Jones, 1987; Fairbairn and Wray, 1987; Plasmeijer and van Eeke-
len, 1993; Peyton Jones, 1992). To measure up against conventional systems, they
are tuned to compute with competitive speed (sequences or arrays of) basic val-
ues. The languages are usually typed, globally free variables are outlawed, and
user-defined functions are converted into super-combinator terms (or other, seman-
tically equivalent representations) to avoid scoping problems at run-time due to
name clashes, and to simplify compilation to fast code. No provisions are made to
allow for a stepwise execution mode. Executing compiled code which has under-
gone various optimizations usually cannot be directly and unambiguously related
to reduction steps of the underlying calculus. It renders de-compiling intermediate
states of the computation into equivalent high-level programs a difficult prob-
lem. The code must run to completion to produce meaningful and intelligible
results.

Irrespective of a prior conversion into supercombinator terms, compilation to
conventional machine code to some extent also separates the world of functions

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-RED™ : an interactive compiling graph reduction system 725

from the world of objects (the graphs) they operate on. Functions may be applied to
functions as arguments, but there is no direct way of computing new functions, say,
as results of partial applications, let alone getting them reduced to normal forms
and returned in high-level notation as output. Functions compiled to code are static
objects which must be supplied with full sets of arguments to execute correctly. They
change whatever they are applied to, but do not modify themselves. Partial function
applications need to be packed into closures and in this form passed along until
eventually the missing arguments can be picked up. If the computation terminates
with a closure, the user is simply notified of the fact that the result is a function,
but it cannot be made visible in high-level notation (e.g. as a A-abstraction) (Turner,
1986; Harper et al., 1986; Hudak et al., 1988).

Further restrictions come with the polymorphic or monomorphic type systems.
They rule out certain higher-order functions, especially self-applications, as they
cannot unify recursive types.

In SK-combinator reduction systems the problems are of a different nature
(Turner, 1979). Source programs of an applied A-calculus are here compiled, by
abstraction of bound variables, to combinator terms which are directly taken as
executable codes. Combinator terms may be freely applied to others and reduced to
(weak) normal forms. Since they are in fact curried, partial applications of what in
high-level notation were n-ary functions can be reduced to new combinator terms
equivalent to functions of lesser arities. However, combinator terms other than basic
values are hardly intelligible, and they cannot generally be converted back into com-
prehensible high-level programs either. Major difficulties arise from the granularity
of SK-combinator reduction steps, many of which cannot be related to high-level
program transformations as they would be effected, say, by function calls carried
out in one conceptual step. Also, with all user-defined variables gone, unique new
variables would have to be introduced upon de-compilation, which may alienate the
resulting high-level programs even further. Restoring the old variables, which for
this purpose would have to be carried along with the combinators, say, by means of
descriptors, may inflict name clashes which cannot be resolved within the framework
of combinatory logic.

Essentially the same problems arise with categorial combinator reduction systems
as well (Cousineau et al., 1987).

Computing normal forms of functions and returning them as output in the same
high-level notation in which the original program was specified generally requires
a fully-fledged A-calculus which treats both functions and variables as first class
objects. When freely applying functions (i-abstractions) to other functions or to
themselves, and specifically when doing reductions within function body terms,
name clashes may have to be resolved by (the equivalent of) full f-reductions. These
clashes primarily come about when reducing partial applications of A-abstractions,
and generally when substituting terms with free variables into other terms which
contain open abstractions as subterms.

The demand for a full A-calculus also arises when selecting, under a stepwise
execution mode, other than top-level redices for evaluation. In the chosen subterms,
there may be variables that are locally free but bound in a larger context, and

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

726 D. Gdrtner and W. E. Kluge

(some of) these variables may not yet be instantiated. Dealing with them as they are
again requires full f-reductions to resolve potential naming conflicts. Alternatively,
the system could simply refuse to perform reductions in program terms which are
not fully instantiated, or ask the user to artificially instantiate free variables out
of context (as is common practice in Lisp systems), neither of which is a very
satisfactory solution.

These considerations led us to develop a reduction sytem n-RED' which, as far
as its appearance to the user is concerned, truly realizes the reduction semantics
of a fully-fledged A-calculus. The basic concepts of this system have been adopted
from Berkling’s Z-calculus machine developed as early as 1975, which used string
reduction mechanisms (Berkling, 1975).

n-REDT may be interactively controlled to perform on a program (or on any
selected subterm of it) some pre-specified number of reductions, after which an
intermediate program term is being returned in high-level notation. Computing in
one conceptual step the normal form of the entire program is merely a matter of
allowing for a sufficiently large number of reductions. Programs which have been
debugged and validated step by step are thus guaranteed to behave exactly the same
when used for production runs on one and the same machinery.

An earlier version called n-RED" achieves these ends by high-level interpretation
of A-terms (Schmittgen et al., 1992). To avoid whenever possible the complexity of
full B-reductions, this system resorts to some loose form of closing A-terms and to
reducing at run-time only full function applications. f-reductions are called upon to
reduce to new functions top-level partial applications if and only if everything else
is done, i.e. the new functions are not subject to further applications.

n-RED* shares with n-RED* the concept of closing A-terms and (as a consequence)
some pre- and post-processing functions, but rigorously employs compiled graph
reduction at run-time to improve the performance of the system by about an order
of magnitude, as compared with interpretation. All programs may be reduced to
normal forms (provided they exist). Partial applications of A-abstractions that pop to
top level are n-extended to full applications for further code-controlled reductions.
All potential name clashes are correctly resolved by means of an indexing scheme
for identically named variables that are bound in different scopes.

A tailor-made abstract stack machine ASM serves as an intermediate level of
code generation. It employs four stacks to accommodate the run-time environment.
One is used for return addresses, another two hold argument and workspace frames
for function calls, and the last one holds the frames for instantiations of non-
local variables. As compared with a one-stack abstract machine, this approach
simplifies compilation to intermediate code and the de-compilation of machine
states resulting from partially executed code into high-level programs. It also leaves
several options open for compilation to target machine code. The four stacks may
be either implemented as they are or merged into a single stack, (parts of) the actual
topmost stack frames may be placed into processor-internal register files, etc.

In the sequel, we will proceed as follows: in the next section, we will intro-
duce a high-level kernel language MINIRED and briefly explain, by means of an
example, how programs of this language may be stepwise reduced by n-RED™.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-RED™ : an interactive compiling graph reduction system 727

Section 3 describes the program execution phases of n-RED™, and section 4 spec-
ifies the underlying abstract stack machine ASM. In sections 5 and 6 we define
the compilation of MINIRED terms into ASM code, including a brief overview of
code optimizations. Code execution by the ASM will be explained in section 7,
particularly the problem of re-constructing high-level programs from intermediate
machine states, using the compiled program of section 2. In section 8 we will de-
scribe in some detail how 7n-RED' reduces partial applications of A-abstractions
and, in doing this, resolves potential name clashes, and how normal forms can be
computed eventually (provided they exist). In section 9 we will give some com-
parative performance figures for n-RED* and other implementations of functional
languages.

2 Program transformation in n-RED™

n-RED' is primarily designed to support untyped, statically scoped and strict func-
tional languages. The choice of a strict regime is mainly motivated by pragmatic
considerations. It is easier to implement, particularly with respect to stepwise pro-
gram execution, generally consumes less memory space, executes faster than a lazy
regime, and is quite appropriate for the majority of real-life applications.

For the purpose of this paper it suffices to introduce a simple high-level language
MINIRED with the following syntax:

e=c|x|ix)...xpe]| (ege; ... e,)
| 1IFeg THEN €| ELSEe; | LETREC f] = €)... [= emINeg

It is an applied A-calculus whose terms may be either constants or primitive function
symbols (denoted as c), variables (denoted as x), n-ary A-abstractions!, applications
of terms e in function position to n argument terms ey,...,e,, IF_ THEN_ELSE clauses,
or sets of some m mutually recursive function definitions followed by body terms
ep, respectively. Note that all applications are given in prefix notation, and that the
parentheses may be dropped if no ambiguities can occur.

The semantics of MINIRED demands that all programs be reduced, under a strict
(applicative order) regime, to normal forms (provided they exist), i.e. to MINIRED
terms which contain no more redices. To do so, n-ary applications (ege; ... e,) are
by n-rED* reduced as follows:

First the component terms ey, ey, ... , e, are reduced to their normal forms in the
order from right to left. This order has been chosen with respect to a convenient
compilation, otherwise it is of no relevance: the terms could be reduced in any order.
As long as there are other redices within the program, A-abstractions emerging in
any of the components remain in weak normal form, i.e. no reductions are being
performed in their body terms. In either case, the resulting terms are denoted as

e),el, ..., el respectively.

! Whenever appropriate, we will also use the equivalent curried version 1x,1x;...Ax,.e.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

728 D. Gartner and W. E. Kluge

If eg is, or evaluates to, an abstraction AXx;...x,.e, then the application (1x;...
xr.eel ... eN) reduces in one more conceptual step comprising, in general, the

equivalent of several f-reductions to

o the body e of the abstraction, instantiated with e’l" ,...,eN for free occurrences

of the variables x,,... , x,, respectively, if r = n;
e a new abstraction A Xx(,41)... X,.€/, with &’ emerging from e by instantiation of
free occurrences of the variables xy, ..., x, with the terms e’l",...e,’,", respec-

tively, if r > n;
e an application (e° ef\,'H) ... eY), where ¢° is the result of reducing (1x;...

x,.e el ... eN) to (weak) normal form, if r < n.

If e is, or evaluates to, a LETREC-bound identifier, it must simply be replaced by a
copy of the respective A-abstraction, in the body of which all free occurrences of the
identifier are substituted by copies of the entire LETREC-construct under which it is
defined.

Applications of primitive functions are handled in a similar way: full applications
reduce to basic values, partial applications reduce to partially instantiated functions
of lesser arities, and applications whose arities exceed those of the functions reduce
to applications of lesser arities.

Following these reduction rules, an n-ary application specified in curried form, say
as (... ((Axy... x,.eey)er)... e,), first gets its argument terms reduced to (weak)
normal forms from outermost to innermost (or again from right to left), and then gets
the nested applications reduced from innermost to outermost by (the equivalent of)
up to n individual S-reduction steps. The resulting (weak) normal form is invariant
against nesting levels; what differs is merely the number of reduction steps to reach it.

A-abstractions are reduced to normal forms if and only if nothing else is left to
do. This is primarily the case whenever a program reduces to an abstraction, but
also whenever abstractions occur in argument positions of applications which have
terms other than abstractions in function positions. These terms could be primitive
functions which are not type-compatible with, and therefore are not applicable to,
abstractions, or constant terms other than functions which cannot be applied to
anything (such applications are perfectly legitimate if the language is untyped).
n-RED™ leaves these applications as they are, except that it reduces to normal forms
all left-over abstractions in argument positions (which up to this point are only in
weak normal form).

MINIRED program transformations as they can be made visible step-by-step at the
user interface of n-RED* follow exactly these reduction rules.

To explain some basic operating principles of n-RED*, compilation to code of
the underlying abstract machine, and code execution, the following small MINIRED
program will be used as a running example throughout the remainder of the paper.

LETREC
f = Auv.LETREC
g=/ WZIFGTUWTHENEg (— lu)zEsEfv(+1w)
INgOVU
wf1l2

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-RED™ : an interactive compiling graph reduction system 729

This program consists of two mutually recursive functions f and g, of which the
latter is local to the former, using u and v as non-local parameters. It is free
of naming conflicts as all formal parameters are unique and all function calls are
supplied with full argument sets®. Since f calls g, and g calls either f or g, depending
on the actual values substituted for w and u, the program never terminates and thus
is semantically meaningless. However, it allows us to expose in a nutshell some
essential implementation features of n-RED™.

One of these features concerns the treatment of non-terminating recursions. Rather
than simply aborting them by time-out conditions, z-RED* deals with this problem
in a more orderly form. It provides a special counting mechanism for reduction steps.
Prior to starting the execution of a program, this mechanism must be initialized with
some integer value which defines an upper bound on the number of reductions to be
performed. Each reduction step decrements this value by one. Program execution is
halted either after the count value is down to zero or after having reached a normal
form, whichever occurs first. The program term computed at the halting point is
returned as the result. If the program is prematurely terminated by exhaustion of the
count value,.it is left to the user to decide whether or not to re-submit it for another
such sequence of reduction steps, to which we will also refer as a shift of reductions.
If the program is guaranteed to terminate, the count value must for production runs
simply be chosen large enough to allow for reductions to proceed to normal forms.

The very same mechanism may also be employed to set breakpoints, say, for
debugging or validation purposes. The programs returned at such breakpoints may
not only be inspected but also modified, say, to introduce specific argument terms
for function calls, and the focus of control may be moved to other than top-level
redices.

Figure 1 shows the first three reduction steps of the above program, as it can
be followed up on the user interface of n-RED. The counting mechanism is set up
to count (or set breakpoints at) calls of LETREC-defined functions, and is each time
initialized with the value one.

Each reduction step yields a new program which results from expanding the
function application in the body term of the outermost LETREC by the instantiated
right-hand side of the respective function definition, and by reducing this term to the
point where another LETREC becomes the top-level term. As said before, instantiating
a function body includes both the substitution of formal by actual parameters and the
expansion of free occurrences of the LETREC-bound function identifier by the entire
LETREC-construct under which the function is actually defined, which is equivalent
to reducing applications of Y-combinators.

Note that this program has the interesting property of reproducing itself after three
function calls with the parameters of the outermost application of f interchanged.
Another two reduction steps restore the original program.

Stepwise execution generally creates a practical problem with recursive programs.
Intermediate program terms may easily expand to the extent that they cannot be

2 Another example program will be introduced later on to illustrate how partial applications
and name clashes are handled by n-RED™.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

730 D. Gdrtner and W. E. Kluge

LETREC
f = Auv.LETREC
g =AwzIF GTuw THEN g(—1u)z
ELSE fo(+1w)

IN gou
IN f12
|
LETREC
g=AwzIF GTlw THEN g(—11)z
ELSE LETREC
f=..
IN f2(+1w)
IN g21
|
LETREC

g=AwzlIF GT1lw THEN g(—11)z
ELSE LETREC
IN f2(+1w)
IN g01

LETREC
f = Auv.LETREC
g=AwWzIF GTuw THEN g(—1u)z
ELSE fuv(+1w)
IN gvu
IN f21

Fig. 1. Stepwise program execution in n-RED™.

fully displayed on a screen. To deal with this problem, n-RED*

provides various

means to abbreviate or suppress program parts which are either not of interest or
do not belong to the actual focus of control (Kluge, 1994). We forgo discussing
these display techniques as they are outside the scope of this paper.

3 Program execution phases of 7-RED™

n-RED™T performs high-level program transformations as described in the preceding

section by

e compiling MINIRED programs to code of an abstract stack machine ASM which
constructs and reduces graph representations of program terms;

e de-compiling the graphs returned by the abstract machine after some pre-
specified number of reduction steps (or after having evaluated all redices) into

high-level programs.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-REDY : an interactive compiling graph reduction system 731

Compiled graph reduction is subject to two constraints which call for a
supercombinator-based parameter-passing mechanism. On the one hand, it derives
its efficiency in large parts from substituting formal function parameters (4-bound
variables) by graph pointers rather than by the full argument terms they represent.
As these substitutions are in fact naive, they must be kept free of name clashes.
On the other hand, compiled function code must be supplied with full sets of argu-
ments to execute correctly. Both constraints can only be satisfied by systematically
closing all Z-abstractions and by treating all partial applications as irreducible, i.e.
by turning them into closures.

It takes only a fairly simple extension of a supercombinator-based reduction
machine to make it appear as a fully-fledged A-calculus machine. All there is
to be done is to add an interpreter stage which, whenever necessary, n-extends
to full applications left-over partial supercombinator applications wrapped up in
closures, and returns them to the machine for another sequence of code-controlled
reductions®. The rules for n-extensions in fact coincide with those given in the
preceding section for reducing weak normal forms of A-abstractions to normal
forms: y-extensions are called for if and only if programs reduce to (closures made
up from) partial supercombinator applications or to (closures made up from) other
irreducible applications which include argument terms in weak normal form. These
rules ensure that partial applications are n-extended if and only if everything else is
done, i.e. no other applications are left to reduce in the particular state of program
exccution. They also ensure that the resulting new abstractions, in the program term
or subterm in which reductions are actually taking place, do never occur in function
positions of applications, i.e. they are never applied to anything and need therefore
not be compiled, during the actual shift of reductions, to executable machine code.
The overhead inflicted by #-extensions is thus kept at the minimum of what is
absolutely essential to compute normal forms.

Sequences of code-controlled reductions followed by n-extensions may have to be
repeated several times until program terms are reduced to normal forms (provided
they exist). Name clashes among n-extended variables can be resolved by a simple
enumeration scheme which avoids the complexity of full -reductions and maintains
the original variable names.

Conversion to supercombinators, or alternatively, the allocation of closures for
open functions instantiated in given contexts (environments), are standard techniques
of closing Z-terms for compiled graph reduction (Hughes, 1982; Johnsson, 1984;
Johnson, 1985; Hudak and Goldberg, 1985; Peyton Jones, 1987, 1992). However,
both approaches inflict some degree of redundancy, though much of it can be
eliminated by subsequent compiler optimizations. Supercombinators repeatedly copy
the same instantiations of what originally were free variables into function calls.
Closures must be formed individually for all functions defined in local contexts, even
if they share the same (sub)sets of free variables, i.e. the same variable instantiations
may have to be copied several times.

3 As a matter of convenience, we assume here that partial supercombinator applications
include as special cases O-ary applications, i.e. supercombinators as they are.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

732 D. Giirtner and W, E. Kluge

input output
L—\ MINIRED terms —%T
pre-processing post-processing

I

compiling to AsM

ASM code I_t

=

MINIRED graphs

bl

processing ASM code

< n-extension <

Fig. 2. The program execution cycle of n-RED™.

n-RED* uses a less rigorous concept of closing A-terms which avoids this redun-
dancy altogether. Free variables are abstracted (lifted) out of the larger contexts
of LETREC-terms which define sets of mutually recursive functions. Exceptions are
anonymous functions (4-abstractions) which may occur anywhere within a program
term and must therefore be closed individually. Lifted variables are in either case dis-
tinguished by special tags from those that are 2-bound in (or local to) the respective
(sets of) functions.

These tags relate to two different run-time stacks which the underlying ab-
stract machine ASM employs to accommodate instantiations of either kind of
variables. Frames for variables that are locally bound in individual functions are,
upon each function call, created on (and eventually released from) one of the
stacks, whereas frames for the lifted variables are, in the other stack, set up only
once when entering closed contexts (and released upon leaving them), but are
never copied when (recursively) calling functions that are locally defined in these
contexts.

To accept from and return to the user interface programs in high-level nota-
tion, and to run compiled code in between, program execution in n-RED' is a
four phase process, as depicted in figure 2: pre-processing MINIRED terms, com-
piling them to ASM code, processing the compiled code, and post-processing the
resulting graphs to obtain new MINIRED terms as output. The ASM processor may
repeatedly call for n-extensions to set up partial applications for further reduc-
tions.

The pre-processor prepares MINIRED programs for compilation to ASM code by
first A-lifting free variables out of LETREC-terms and out of anonymous abstractions
to form closed contexts.

If e denotes the term to be closed, and { wy, ... , w, } denotes the set of free
variables in e, then A-lifting turns e into:

~

CAw...owgewp ...owg)

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-REDY : an interactive compiling graph reduction system 733

The tilde annotations ~ distinguish the applications and abstractions introduced
due to A-lifting from those specified in the original MINIRED program. They will
henceforth be referred to as tilde-applications and tilde-abstractions, respectively.

It is important to note that tilde annotations do not belong to the syntax in which
MINIRED programs are written, and consequently must also not occur in programs
displayed at the user interface of m-RED™after shifts of reductions. They can only
be introduced by the pre-processor as specified above, and left-over annotations
must be removed by the post-processor before returning programs as output. A-
lifting implies that tilde-abstractions can only occur in function positions of tilde
applications, and that no other terms can occur in these positions.

This property is essential for the correct usage of two different stacks for variable
instantiations. It enables the ASM compiler to generate code which is guaranteed

to access argument terms to be substituted for occurrences of A-bound variables on
the one hand, and for occurrences of A-bound variables on the other hand from
the same stacks into which they are being pushed upon reducing the respective
applications.

When applying A-lifting to the example program introduced in section 2, we
get
LETREC -

f = Auwv.(” 2 uv.LETREC

g=AwzireruwTtHENg (—lu)zEese fo(+ 1w)
INgVU
uv)

wf12
This program includes an obvious opportunity for optimization which can be directly
taken care of by the pre-processor. Since the inner LETREC in this particular case
forms the entire body term of the function f, and f is defined at top level, the formal
parameters of f are the same as those that need to be lifted. This does nothing but
introduce an additional parameter passing step with no action in between. It can be
immediately eliminated, yielding:
LETREC _

f = A uv.LETREC

g=wzIFGTUuwTHEN g (— lu)zese (" fo(+1w))
INgVU

N(Tf12) .
Since f has thus changed from a A-abstraction to a A-abstraction, applications of f
must be changed to tilde-applications as well. This is to remain consistent with the
constraints on the syntactical positions in which tilde-abstractions may legitimately
occur to ensure correct ASM code generation. Note that this optimization is possible
if and only if, as in this particular case, all occurrences of f are in function positions
of full applications. However, if f occurs in function position of a partial application
or is passed along as a function parameter, the non-optimized version of f must
be used since it cannot generally be decided statically whether and where f will be
applied to a full set of argument terms.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

734 D. Giirtner and W. E. Kluge

Another pre-processing step converts all - and 2-bound variable occurrences into
differently tagged reversed de Bruijn indices (or de Bruijn levels) (deBruijn, 1972).
This conversion is defined on A-abstractions as

AX{Axy ... Axpe = Ay Ay, ... Axn.e#

where Ay, A, ... A, denotes a sequence of n nameless binders®, and ef derives
from e by replacing, for all i € {1 ... n}, free occurrences of x, by the index #(i — 1),
i.e. the variable bound by the outermost A receives the lowest index, and the variable
bound by the innermost 4 receives the highest index. We will refer to indices prefixed
(or tagged) with a # as A-indices for short.

An equivalent conversion applies to A-abstractions. It replaces binders 1 x; by

nameless binders Ay, and occurrences of x, by indices prefixed (tagged) as ~ (i — 1),
to which we will refer as T-indices. These conversions simplify the subsequent
compilation to ASM code insofar as the indices directly translate into offsets relative
to the respective stack frame bases.

When applying these conversions to our example program, we get:

LETREC _ _

f = AuA, .LETREC
g=AuAIFGT ~0#0 THEN g (— 1 ~0) #1
ELSE (T f ~1(+1#0))
INg ~1~0

wN{(~f12)

All occurrences of the A-bound (lifted) variables u and v are now replaced by the
T-indices ~0 and ~1, and all occurences of the A-bound variables w and z are now
replaced by the A-indices #0 and #1, respectively.

Suffice it to say that these pre-processing steps can actually be performed in one
pass through the original MINIRED program.

The ASM compiler translates pre-processed MINIRED terms into abstract machine
code. This code controls the graph reductions performed by the ASM processor.
It always reduces the actual top-level application of a program term (or of the
subterm that constitutes the actual focus of control). Top-level partial applications
are n-extended to full applications for further code-controlled reductions.

The post-processor transforms the graphs obtained from the processor into equiv-
alent high-level MINIRED programs, with all function definitions still referenced and
all variable names restored as in the original program, and with all left-over tilde-
applications undone.

When reducing programs step by step and without modifying intermediate pro-
grams or changing the focus of control, further shifts of reductions may be resumed
by saving and directly restoring the respective intermediate machine states, as is

4 The variable names attached to the A-binders as subscripts are to enable the compiler to
prepare a graph node from which the post-processor can re-construct the original function
in the output program where needed.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-REDY : an interactive compiling graph reduction system 735

indicated by the arrow labelled fbl in figure 2. Otherwise the programs must pass
through a full execution cycle, as depicted by the path labelled fb2.

4 Abstract Stack Machine

The Abstract Stack Machine (ASM), of which an earlier version based on supercom-
binator reduction is described in Gaertner et al. (1992), defines an intermediate level
of code generation. It allows for a simple compilation scheme which produces fairly
efficient code and facilitates the re-conversion of intermediate states of program
execution back into high-level programs. An ASM implementation on a particular
hardware platform, either by interpretation or by compilation to host machine code,
need not necessarily correspond one-to-one to its abstract structure.

The ASM is defined by a quadruple (C,(4, W, T,R),H,r) whose components
denote (from left to right)

the code C to be executed;

a system of four run-time stacks 4, W, T, R;

a heap H which accommodates graph structures;

a counter value r which specifies an upper bound on the number of reduction
steps to be performed on the current program.

o o o o

Using four stacks rather than just one allows for some rather straightforward
high-level optimizations, including some house-keeping operations which minimize
the demand for stack and heap space. It also liberates the ASM compiler from
calculating addresses relative to changing stack tops which may have to be re-done
when generating target machine code.

The stacks serve the following purposes’:

e stack W accommodates the workspace frames for function calls in which
temporaries are held and the argument frames for further function calls are
set up;

e stack A holds the argument frames for instantiations of local function param-
eters (occurrences of 4-indices) which result from reducing full applications of
A-abstractions;

e stack T holds the frames for instantiations of non-local parameters (occur-
rences of T-indices) which result from the reduction of tilde-applications;

o stack R holds the return addresses of function calls, of branches to conditionals,
and of tilde-applications; it is also used to set up argument frames for tilde-
applications.

The argument stack A and the workspace stack W are interchanged upon each
function call. Thus, the arguments set up by the calling function on its workspace
stack become directly available on the argument stack of the called function. The
function value is always computed on the actual workspace stack. When returning

5 In the sequel, the term ‘function’ generally refers to user-defined functions (or 2-
abstractions), not to primitive functions, conditionals, etc.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

736 D. Girtner and W, E. Kluge

from a function call, (the pointer to) this value is moved from stack W to A,
whereupon another stack switch restores the original stack configuration. The value
computed by the called function thus ends up on top of the workspace stack of the
calling function. Stack switches are also performed between the stacks T and R when
reducing tilde-applications, i.e. when calling and returning from closed contexts.

The important point here is that the complete environment for executing a piece
of code is thus available in what are actually the topmost stack frames. Accesses
to the frames on stacks A and T can be specified as fixed displacements relative to
the frame bases, which directly derive from the A- and T-indices generated by the
pre-processor; accesses to stacks W and R affect at most as many of the topmost
consecutive entries as are actually in the frames.

Switching the stacks also enables the ASM compiler to generate code which
releases as early as possible, and right from the top of either stack A or T, (pointers
to) argument graphs that are no longer needed, thus minimizing the consumption
of stack and heap space.

Of course, the same ends can also be achieved with one stack on which all
frames build up on top of each other. However, this solution generally requires a
compilation scheme which keeps track of dynamically changing offsets relative to
actual stack-top positions. Moreover, releasing arguments as soon as possible then
entails re-arranging the stack by costly MOVE instructions: argument entries usually
have to be pulled out from underneath workspace entries and return addresses, and
the ensuing gaps must be closed unless stack space is to be wasted (Johnsson, 1984;
Peyton Jones, 1987).

The very basic instructions of ASM are the following:

PUSH.W ¢ pushes the item c (which may be a constant value, a primitive function
symbol or a graph pointer) into the workspace stack W.

PUSH_AW i reads the i-th entry relative to the top of the argument stack A and
pushes it into the workspace stack W.

PUSH_TW i reads the i-th entry relative to the top of stack T and pushes it into the
workspace stack W.

Variants of these instructions are PUSH.R c, PUSH_AR i, PUSH_TR i, which use the
return stack R rather than the workspace stack W as a destination.

MOVE_WR moves the topmost entry of stack W to the top of stack R.

AP n is the most complex instruction of the machine. It attempts to apply the top
element of the workspace stack W to the n elements underneath. If the top
element is a primitive function or a pointer to function code whose arity is
less than or equal to n, then the application is actually reduced; otherwise a
closure is constructed in the heap. In either case, the function and at most
as many arguments as are required by it are eventually popped off the stack,
and (a pointer to) the result is pushed instead. If the function consumes less
than n arguments, then another attempt is made to apply the resulting term
to the remaining arguments. Reducible applications of user-defined functions
(A-abstractions), before branching to the respective codes, flip the stacks 4

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-RED* : an interactive compiling graph reduction system 737

and W and push the actual instruction counter values as return addresses into
stack R.

BRA_T p_f branches to the code of a tilde-abstraction the arguments for which are
set up on the return stack R. Upon entry into the code at label p_f, the stacks
R and T are flipped, and the actual instruction counter value is pushed into
the new stack R. Since tilde-applications, by definition, are full applications,
the code always finds the correct number of arguments on what after the stack
switch has become stack T.

BRA_C p_c branches to code for a conditional and pushes the actual instruction
counter value into stack R.

JFALSE p.m is generated as the first instruction of a conditional. It continues code
execution at label p_m if the top element of the workspace stack is FALSE, and
at the next instruction in sequence if it is TRUE. In either case, the top element
is subsequently popped. If the top element is not a boolean value (which may
happen with untyped languages), then a closure including this element and
the pointer p_m is constructed in the heap.

FREE_A n pops n elements off the argument stack A.

FREE_T n pops n elements off the tilde stack T.

RTF is to return, by means of the address held on top of stack R, from a function
call. Before doing so, the instruction moves the result from stack W to stack
A, pops the return address off stack R, and subsequently flips both stacks to
restore the situation as before the function call.

RTT is to return from the reduction of a tilde-application. It works as RTF, except
that it flips the stacks T and R and that nothing is moved between stacks.

RTC is to return from a conditional, again by means of an address held on top of
stack R, but without switching any stacks.

EXIT terminates the program execution.

5 Basic compilation scheme

When compiling MINIRED programs to ASM code, information must be preserved
about the nesting of function definitions and about formal parameter names (4-
bound variables). This information may be required by the post-processor to re-
construct high-level programs from the graphs that emerge from partial or complete
code execution. To include this information into the code, the ASM-compiler gen-
erates for each LETREC-construct of the form LeTReCc ... f, = A, ... A, .6 ... INgg
a graph structure as shown in figure 3. It is composed of a LETREC-descriptor node
which for each function f; contains a pointer p_f; to a function descriptor node.
This descriptor, in turn, includes a pointer each to the code that reduces the instanti-
ated function body e;, to a list of the formal parameter names of f;, and back to the
LETREC-descriptor node. The parameter list is preceded by two integer values r and
s which respectively specify the number of local and non-local (lifted) parameters
of fi. The code for f, may be referenced from somewhere else by the pointer p_£;.
Anonymous A-abstractions compile to just the lower part of this structure, with a
nil pointer as the last entry of the function descriptor.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

738 D. Girtner and W. E. Kluge

N ST S T LETREC-descriptor node

P{i_l_.'—r—|—_|_ function descriptor node

L < ISl U >

L, codele]
Fig. 3. The compiled graph for a function defined under a LETREC.

The basic compilation scheme for MINIRED programs may be defined by means
of a function ¥ as follows:

Gle : es,(m,n)] => codele] ; €les,(m,n)] ; .

It partitions the actual compiler input e : es into some syntactically complete head
term e, followed by a tail es which represents the remainder of the program to be
compiled. The tail may be empty, denoted as €.6 The parameters m and n respectively
denote the sizes of the frames on stacks A and T which make up the environment
in which e : es must be reduced. The symbol ‘;’ catenates two pieces of code, with
code[e] denoting the code for the head term e.

ASM code uses only branch instructions, e.g. to function code or to code for (the
components of) conditionals, which are complemented by return instructions. Code
referenced by branch labels from within the code for e can thus be placed into the
free space immediately following the code for es (and possibly other pieces of code
that have already been placed there).

A typical example is the compilation of a LETREC-construct embedded in other
program parts. It splits up into first compiling its body term, then compiling the
remainder of the program text that follows, and finally compiling the function
definitions. While compiling the LETREC body and the body terms of the individual
functions, occurrences of LETREC-bound identifiers f, are replaced by symbolic labels
p-fi. They remain undefined until the respective functions are compiled as well.

To abstract from unnecessary details, we specify the compilation of a function
definition f; = Ay, ... A,,. e; simply as

p-fj — codele].

It defines the symbolic label p_f; as a pointer to the heap location into which the
code codele;] is being placed. However, this notation implies that the compilation
includes the creation of a function descriptor, as depicted in figure 3, to which p_f;
is pointing, and through which the function code can only be accessed indirectly.
The complete compiler function %, which employs two subfunctions & and & to
compile abstractions and tilde-applications, respectively, is specified in figure 4.

6 Splitting the compiler input recursively into head and tail merely reflects the serialization
of the entire compilation process.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-REDY : an interactive compiling graph reduction system

(1) €lc : es,(m,n)] =>
(2) Gl#i:es,(mn)] =>
3) G[~i:es,(mn)] =>
(4) €[1F eo THEN ¢; ELSE e; ©

PUSH Wc ; €les,(m,n)} ;
PUSH_AWi; @[es,(m,n)} ;
PUSH_TW1i; €les,(m, n)] ;
es, (m,n)] =>
%leo,(m,n)] ; BRACp.c ; ¥les,(m,n)] ;

p-c — JFALSE p_m ; €[e),(m,n)] ; RTC ; pom — €[ey,(m,n)] ; RTC ;

(5) €l(e---ep—1ye) :es,(m
Eler,(m,n)] ;

,n)] =>

Glep—1y) 1 - e 1ap” es,(mn)] ;

(6) €lap” : es,(m,n)] => APr; @les,(m,n)] ;

(7) €Ay, ... Ay € 2 es,(m,n)]

=> PUSHMp_f ; €[es,(m,n)] ;

p-f — €J[e,(r,0)] ;FREE_A r ; RTF ;

(8) €[LETRECf; =¢; - f, =

p£1 = Fle,(0,0)] ;-
) ZlAy, ... A ,0,5)]

e, IN ¢ : es,(m,n)] =>
@leo,(m,n)] ; €les,(m,n)] ;
; pfr = Fle, (0,0)] ;
=> %le,(r,s)] ; FREE.AAT ; RTF ;

(10) F[Ay, ... Ay, LETRECS| = €1 -~ f, = &, IN e : €5, (m, n)] =>

%leo,(0,s)] ; FREE.T s ; RTT ;

p-f1 = Fle,(0,9) ; -+ ; pfr = Fle,, (0,5)] ;
(11) (6[(~ €0 er~1) €r) . es, (man)] =>
Lle,(mn)l; Llep—ry - - e : tap” 1 es,(m,n)] ;

(12) Fic :es,(mn)] =>
(13) Z[#i :es,(m,n)] =>
(14) .9’[: i:es,(mn)] =>

(15) P[Ay, ... Ag, Ay ... Ay.e

PUSHR ¢ ; &[es, (m,n)] ;

PUSH_AR i; #[es, (m,n)] ;

PUSH_TRi; &[es,(m,n)} ;

:tap® : es,(m,n)] =>
BRA_Tp.f ; €[es,(m,n)] ;

p-f — €l[e,(r,s)] ;FREEAr ; FREET s ; RTF ;
(16) L[A, ... Ay, LETRECS| =e;- " f, = e, INey : tap’ : es,(m,n)]

BRA_Tp.f ; @les,(m,n)] ;

p-f — €leo,(0,s)]; FREE.T s ; RTT ;
p-f1 = Flei,(0,5)] ; -+ ;p-fr —» Fle, (0,5)] ;
(17) LS :tap® : es,(m,n)} => BRA.Tp.f; ¥les,(mn)];

(18) FLle :es,(m,n)] => €[e,(mn)] ; MOVEWR ; Fles,(m,n)] ;

(19) €[e,(m,n)] => €

Fig. 4. ASM compilation rules.

=>

739

The following explanations may help to understand the various compilation rules

and the codes they generate:

e A constant value or a primitive function symbol is directly pushed into the
workspace stack W. For every occurrence of a LETREC-bound variable f; a

symbolic label p_f; is pushed (%-rule 1).

e An occurrence of an A-index #i requires that an argument (pointer) be copied
from the position i relative to the top of stack 4 and be pushed into stack W
(%-rule 2); likewise, an occurrence of a T-index ~ i requires that an argument
be copied from the position i relative to the top of stack T and, again, be

pushed into stack W (%-rule 3).

e A conditional compiles to code which first computes the predicate term ey,
and then branches, via the label p_c, to code for the component terms e¢; and

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

740 D. Gdrtner and W. E. Kluge

e> which are compiled separately into the heap locations referenced by p_c
(€-rule 4).

e An application is compiled to code which first reduces the argument terms
er, - -,e; in this sequence and then the term ¢y in function position. This code
pushes r + 1 entries into stack W. The instruction AP r that follows attempts
to interpret the topmost entry as a function and to apply it to the r entries
underneath (%-rules 5 and 6).

e An anonymous A-abstraction without A-lifted variables compiles to code which
pushes a label p_f to a heap location into which the code for the body term
is subsequently placed (%-rule 7).

e A LETREC-construct compiles to code for its body term ey, followed by the code
for the rest of the program. The codes for the individual function definitions
are compiled separately into the heap locations labeled p_£q,..., p-fr. If no
variables need to be lifted, the compilation of the function definitions by the
rule & takes place with the parameters r and s set to zero since no accesses
need to be performed on stack T, and the frame sizes r are determined in the
course of compiling the functions by means of the & -rule (¢-rule §).

e A function defined under a LETREC is compiled to code for its body term,
with the parameter r stepped up from zero to its arity as it needs to access
an argument frame of that size on stack A4, with the parameter s specifying
the size of the frame that may have to be accessed on stack T (%-rule 9). If,
due to the optimization described in section 3, such a function is turned into a
tilde-abstraction (whose body term is another LETREC), then &% -rule 10 applies.

e A tilde-application requires a slightly different compilation scheme & as its
components need to be pushed into the return stack R rather than into the
workspace stack W. Moreover, since a tilde-application, by definition, is always
a full application, & generates a branch instruction BRA_T p_f which transfers
control directly to the code of the respective tilde-abstraction. Anonymous
A-abstractions and LETRECs transformed into tilde-abstractions compile to
codes which differ from those generated by the respective ¥-rules in that the
instructions FREE_T s; RTT are added at the end (& -rules 11 to 17).

e The -rule 18 covers all cases to which none of the &-rules 11 to 17 applies.

e An empty MINIRED term (denoted as €) trivially compiles to empty code (%-rule
19).

Yet another compilation rule generates an entry label p_e for and an EXIT
instruction following the topmost level of program code (which usually is the code
for the body term of some outermost LETREC construct).

6 Code optimizations

When adding a few special instructions, the ASM codes generated by the compi-
lation scheme ¥ may be improved by some rather straightforward optimizations.
However, to maintain the one-to-one correspondence between machine-level graph
reductions and high-level program transformations that is necessary to support

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-REDY : an interactive compiling graph reduction system 741

stepwise program execution in n-RED*, the opportunities for code optimizations are
limited.
Prime targets for optimizations are instruction sequences of the form

... PUSHWc ; APn ;...

Whenever ¢ is a primitive function symbol sf of arity k or a pointer p_f to an
abstraction of arity k, and k = n, the following replacements may be made:

e ...PUSH.Wsf; APn ;... => ...DELTAsf ;...
e ...PUSHWp_f; APn;...—>...BRAFp.f ;...

These dedicated instructions execute directly, without first pushing a function symbol
or a code pointer into stack W:

e DELTAsf stands for one of the primitive instruction symbols ADD*, MULTx.,...,
GT*, etc.”. It is directly applied to the appropriate number of entries in stack
W, pops them, and pushes the result instead;

e BRA_F p_f flips the stacks 4 and W, pushes the instruction counter into stack
R, and then branches to the code referenced by p_£;

Another important target for code optimizations are occurrences of the instruc-
tions FREE_An and FREE.T n. They may be moved ahead of all instructions that
neither change the stack configuration nor access the stacks A and T, respectively.

Good examples in kind are tail-recursive functions as in:

LETRECf = Ay ... Ay, 8a1 ... Gy 5....8 = Ay, ... Ay, . f b1 ... bpINg,
By application of this optimization they would compile to:
p-f — ... FREEAn; BRAFpg; RTF; p.g — ... FREE.LAm; BRAF p_f ; RTF ;

with the FREE_A instructions possibly being moved even further to the left. This code
executes in constant stack space as argument frames are being released before the
subsequent tail calls are executed.

Tail recursions allow for yet another optimization which replaces tail calls by tail
jumps, yielding the instruction sequences

p-f — ... FREE An; JTAILApg ;, p-g — ... FREE Am; JTAIL Ap_f ;.

The instruction JTAIL_A p_f switches the stacks A and W and then jumps directly
back to the code for the function f, without storing a return address on stack R
(and likewise for tail jumps to the code for g).

Tail jumps cause a small problem though since the stack switches effected by these
instructions are not complemented by equivalent numbers of RTF instructions. To
restore the correct stack configuration upon returning from a sequence of tail jumps,
each return address stacked up on R must include a single tail flag which is flipped
upon each tail jump, starting with the tail flag set to zero when pushing the address

7 The * following the instruction symbols are to indicate that these instructions are different
from those that must be used in conjunction with AP instructions.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

742 D. Girtner and W. E. Kluge

p.e — PUSHR 2;PUSHR 1;BRAT p_f; EXIT
pf — PUSH.TW O; PUSH.TW 1; BRAF p_g; FREE.T 2; RTT;

p-g — PUSH_AW O; PUSH.TW O; GT*;
JFALSE p_m; PUSH_AW 1; FREEA 2;
PUSH_TW O; PUSH.W 1; MINUS*; JTAIL_A p_g;

p-m — PUSH_AW O; FREE_A 2; PUSH_W 1; PLUS*;
MOVE_WR; PUSH_TR 1; BRAT p_f; RTF;

Fig. 5. Optimized ASM code for the program shown in figure 1.

by a BRA_F p_f instruction. When set to one upon executing the complementary RTF
instruction, the stacks remain as they are, otherwise they must be flipped to restore
the original constellation®.

Whenever a conditional makes up the entire body term of an abstraction, as in

h = A, ...Ay,,. IF €o THEN €| ELSE €3,
the code can be flattened to:

%leo, (m,n)} ; JFALSE p_q ;€[e1, (m,n)] ;FREE_A m ;RTF;
p-q — %les,(m,n)] ; FREE_A m ;RTF

saving the branch instruction and the complementary return instruction. This rule
can be recursively applied to nested conditionals.

Compilation of the pre-processed version of our example program as given in
section 3 produces the ASM-code shown in figure5, which forms a cyclic graph. The
first line to which p_e is pointing computes the body term of the entire program,
which is the application (~ f 1 2). Its third instruction branches, via the pointer
p-f, to the code of the function f which is shown in the second line. This code,
in turn, branches, via the pointer p_g, to the code for the function g which follows
in the third line. It first computes the predicate of the conditional and, depending
upon its value, either branches, via the pointer p_m, to the code for the ELsE-term or
continues with to the code for the THEN-term.

7 Code execution

Code execution starts with empty ASM stacks and with nothing but the initial
program graph in the heap. The orderly termination of the code upon executing the
EXIT-instruction leaves the stacks A4, T, R empty and a single entry representing

8 We forgo optimizing in a similar way tail recursions that involve closed contexts (or
tilde-abstractions) since replacing FREE_ T n ; BRAT p_c ; RTT with FREE_Tn ; JTAIL.Tp_c
causes problems with the flag bit. JTAIL.T would have to flip the stacks T and R, as a
consequence of which the return address into which the flag bit is included would be
temporarily buried under T-frames and thus could not be easily accessed.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-RED* : an interactive compiling graph reduction system 743

the normal form of the program on the workspace stack W. This entry is either a
pointer to a coherent program graph or a basic value.

Intermediate states of code execution generally have all stacks filled to the extend
to which closed contexts and function calls therein are actually nested. Some of the
entries on stacks A, T, W may be basic values, others may be pointers to graph
fragments set up in the heap, say closures, which as yet need not necessarily form a
coherent structure, i.c. they are not fully contained in each other. Entries on stack R
are primarily return addresses, but also (pointers to) arguments of tilde-applications.

If the reduction counter decrements to zero upon arriving at some intermediate
state of code execution, no more applications must be reduced. Instead, the ASM
must assemble, from the actual stack contents and from the structures referenced
in the heap, a coherent graph, which the post-processor may subsequently convert
into high-level output. This can be accomplished in an orderly way by means of the
code not yet executed. It specifies, in the form of RTx and FREE_x instructions, the
complete return path to the terminal state, in which a pointer to the resulting graph
is left on stack W and all other stacks are cleared. All there is to be done when
executing the remaining code is to treat all function applications encountered along
this path as irreducible and, following standard procedure in such cases, to convert
them into closures.

The most general of the instructions which must create closures upon exhaustion
of the reduction counter is AP r. It first inspects the topmost entry on stack W. If
it is a pointer p_f to a function (4-abstraction), then it takes the parameter r from
AP r and retrieves from the function descriptor the frame parameter s to create a
closure of the general form

p-clos —» (" (p-fai...a)by... bs),

where p_f and ay, ... a, are the topmost r + 1 entries of stack W, which must be
popped, and by, ..., b, are the topmost s entries of stack T, which must be copied
without destruction.

If the topmost entry on W is some item h other than a pointer to function code,
e.g. a primitive function symbol or a constant, then the closure simply takes the
form

p-clos — (ha...q),

where h and qy, ... , a, are the entries that need to be cleared off stack W.

The instruction BRA_F p_f creates closures of the same form as AP r, except that
only r items must be popped off stack W.

The instruction BRA_T p_f inspects the descriptor of the closed context referenced
by p_f for the value of the parameter s, and creates a closure

pclos = (Tpfby ... bs),

where by, ..., bs are the topmost s entries on stack R, which must be popped.

The pointers p_clos must in all cases be pushed into stack W after the components
of the respective closures have been popped. As with all other graph structures set
up in the heap, the construction of closures includes the construction of descriptors

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

744 D. Gartner and W. E. Kluge

which are directly referenced by the pointers p_clos and, in turn, contain references
to the closures themselves. As before, these descriptors have been omitted in the
above specifications.

All other ASM instructions must be executed as defined in section 4 to push stack
entries (which subsequently become components of closures), to return from closed
contexts and from function calls, and to remove the respective stack frames.

ASM code execution is illustrated in figure 6. It shows a sequence of machine
states as it develops when running the code given in figure 5. Since this program
does not terminate by itself, termination is enforced by initializing the reduction
counter with the value 4, which sets a breakpoint after as many function calls. Upon
completing these calls, the machine is left in some intermediate state from where it
must execute the remaining code as just described.

The first column of figure 6 enumerates the sequence of instructions shown in the
second column. The next four columns depict memory segments S1, S2, S3 and S4
about which the ASM stacks 4, W, T and R are permuted, as is indicated by the
respective annotations. The rows depict stack permutations and stack entries after
having executed the instructions in the second column.

Code execution sets out with the instruction sequence that computes the outermost
function application (~ f 1 2), and continues with two calls of the function g,
followed by another call of f.

The instructions that are of interest in this sequence are those in steps 3, 6, 16, 27.
They realize the function calls and thus effect stack switches, push return addresses
into stack R (with the exception of the JTAIL_A instruction in step 16), and also
decrement the reduction counter r.°

Once this counter is down to zero, which in the particular example happens in
step 27, the ASM completes the remaining code as described above. The creation of
closures for left-over applications is exemplified by the instruction BRA_F p_g of step
30. It inspects the descriptor referenced by the pointer p_g to determine the number
of local and non-local parameters of the function g, and accordingly removes the
topmost two entries from stack W (the argument values 2 and 1), copies the topmost
two entries of stack T (the values 1 and 2), and creates from these components a
closure

pclos — (T (pgl2)21),
the pointer p_clos to which is pushed into stack W.

The remaining instructions simply clear the stacks, complete the function calls
performed so far, and restore the initial stack configuration, with the pointer to the
dlosure returned on stack W as the result of the computation. The return instructions
RTT in lines 32 and 35 find the flag bits in the topmost addresses on stack R set to
zero and thus switch the stacks T and R, whereas the return instruction RTF in line
33 finds its flag bit set to one and therefore leaves the stacks as they are.

? The return addresses are given as references to the instructions immediately following the
respective call instructions, and are denoted as &EX° (as abbreviation for &EXIT), &FT° (as
abbreviation for &FREE_T), etc., with the superscripts denoting the flag bits that distinguish
even and odd numbers of stack switches.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-REDY : an interactive compiling graph reduction system 745

STEP INSTR S1 S2 s3 S4 r
1 PUSHR 2 W: A: T: R: 2 4
2 PUSHR 1 W: A: T: R: 21 4
3 BRAT p_f W: A: R: &EX° T: 21 3
4 PUSH.TW 0 W: 1 A: R: &EX° T: 21 3
5 PUSH.TW 1 W: 12 A: R: &EX° T: 21 3
6 BRAF pg A: 12 W: R: &EX° &FT® T: 21 2
7 PUSH_AW © A: 12 W: 2 R: &EX? &FT° T: 21 2
8 PUSH_TW © A: 12 W: 21 R: &EX° &FT° T: 21 2
9 GT* A: 12 W: TRUE R: &EX? &FT? T: 21 2
10 JFALSE pm A: 1 2 W: R: &EX? &FT0 T: 21 2
11 PUSH_AW 1 A: 12 W: o1 R: &EXO &FT° T: 2 1 2
12 FREE_A 2 A: W: 1 R: &EX9 &FTO T: 2 1 2
13 PUSH_TW 0 A: W: 11 R: &EX® &FT? T: 2 1 2
14 PUSH.W 1 A: W: 111 R: &EX° &FT° T: 21 2
15 MINUS* A: W: 10 R: &EX° &FTY T: 21 2
16 JTAILA p.g W: A: 10 R: &EX° &FT! T: 21 1
17 PUSH_AW 0 W: 0 A: 10 R: &EX° &FT! T: 21 1
18 PUSH_TW 0 W: 01 A: 10 R: &EX° &FT! T: 21 1
19 GT* W: FALSE A: 10 R: &EX° &FT! T: 21 1
20 JFALSE p.m W: A: 10 R: &EX° &FT! T: 21 1
21 PUSH_AW 0 W: 0 A: 10 R: &EX° &FT! T: 21 1
22 FREE_A 2 W: 0 A: R: &EX° &FT! T: 21 1
23 PUSH.W 1 W: 01 A: R: &EX° g&FT! T: 21 1
24 PLUS* W: 1 A: R: &EX° &FT! T: 21 1
25 MOVE_WR W: A: R: &EX° &FT' 1 T: 21 1
26 PUSH.TR 1 W: A: R: &EX® &FT' 1 2 T: 21 1
27 BRAT p_f W: A: T: &EX° &FT' 1 2 R: 2 1 &RFT® O
28 PUSH.TW 0 W: 2 A: T: &EX° &FT' 1 2 R: 2 1 &RTF? ©
29 PUSH.TW 1 W: 21 A: T: &EX° &FT' 1 2 R: 2 1 &RTF? ©
30 BRAF p_g W: pclos A: T: &EX° &FT' 1 2 R: 2 1 &RTF® 0
31 FREET 2 W: p.clos A: T: %EX® &FT! R: 2 1 &RTF® 0
32 RTT W: p.clos A: R: &EX° &FT! T: 21 0
33 RTF W: pclos A: R: &EX° T: 2 1 0
34 FREE.T 2 W: p.clos A: R: &EX° T: 0
35 RTT W: p-clos A: T: R: 0
36 EXIT W: pclos A: T: R: 0

Fig. 6. ASM code execution of the example program.

The post-processor transforms the above closure into the high-level program

LETREC
g=AwzJF gt2w THEN g(—12)z
ELSE LETREC
f=...
N f1(+1w)
N gl2

by undoing the tilde-application and by re-constructing, from the descriptor to which
p-g is pointing, the nesting of LETRECs as it defines the function g. !¢

1% Note that this program is the same as the second one in figure 1, except that the instanti-
ations of the parameters u and v are interchanged.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

746 D. Girtner and W. E. Kluge

8 Reduction to normal forms

ASM code reduces only full function applications. Partial applications are treated
as irreducible (or as being in weak normal form) and converted into closures. In
subsequent reduction steps, these closures may or may not pick up the missing
arguments to become full applications and thus reducible. Other closures may
originate from applications of primitive functions to type-incompatible arguments
or from applications which have terms other than functions in function positions.
Both are irreducible and remain so irrespective of the contexts in which they may
occur and of reduction steps which may substitute them somewhere else.

Partial applications of A-abstractions which, in the form of closures, survive code
execution could simply be left as they are and, in the post-processed program,
show up in high-level notation, possibly marked as being irreducible. As most other
compiled graph reducers, the system would then realize a supercombinator-based
reduction semantics, i.e. it would compute weak normal forms.

However, it takes only a simple extension of the code execution (processing)
phase to implement a fully-fledged A-calculus under which partial applications of
A-abstractions, and thus the programs in which they occur, can be reduced to
normal forms (if they exist). All there is to do conceptually is to n-extend a partial
application of the general form

(Ax1...xp.€ ay ... a¢) (k<n)
to a new (n — k)-ary function (A-abstraction)
AXpr1) - X (A X1 ... Xpo € Q1«0 Gk X(g1) -+ Xn)y

in the body of which the partial is turned into a full application, with Xg41),..., X»
filling in for the missing argument terms. Reducing this application yields the
abstraction Ax(11)...x,.€ , where ¢ emerges from e by naive substitution of all free
occurrences of xy,..., x; by the argument terms ay,. .., a;, respectively, and of all free
occurrences of Xk41),..., X, by themselves. Subsequent reduction steps performed in
¢ may involve more n-extensions until eventually its normal form is reached.

n-REDTcan be made to accomplish this largely by executing ASM code as it is.
A partial application as above may be encountered when executing an instruction
sequence

.. ;PUSH.Wp_f;AP k;

As depicted in figure 3, p_f points to a descriptor which, in turn, contains a reference
each to the list of formal parameters < n, s; Xi,...,X, > of the function and to the
function code. The instruction AP k accesses this descriptor to inspect the arity n
and, failing to match it with its own arity parameter k, removes the components of
the application from the stack and creates in its place a closure

p-clos = (T (p-fay...a)bi...bs),

with ay,...,a, and by,..., b denoting the entries retrieved from the stacks A and T,
respectively.
Whenever such a closure must be reduced to normal form, it is for further

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-RED™ : an interactive compiling graph reduction system 747

processing turned over to an n-extension unit, as indicated in figure 2. This unit

requires another stack P which keeps track of nested n-extensions. Both the ASM

processor and the n-extension unit have access to the ASM stacks and to stack P.
By interpretation of the components of a closure as above, the n-extension unit

e sets up a full argument frame by pushing into the actual workspace stack W
the variables x,...,xx+1) retrieved from the formal parameter list hung up
under the function descriptor, followed by the argument terms a,...,a), in
this order;

e pushes the variables X4t1),..., X, in this order into stack P, from where the
binders that need to be inserted into the resulting program are constructed
later on (which requires another brief interception of code execution by the
n-extension unit);

e sets up a tilde frame on stack T by pushing the entries bs,...,b; in this order;

e returns control back to the ASM processor by executing a BRA_F p_f instruc-
tion to enter and execute the function code in the environment composed
of what, after the stack switch effected by this instruction, has become the
topmost frame of the argument stack 4 and of the topmost frame on stack T.

These n-extensions may be recursively called for to reduce nested partial applications
until a term in normal form is reached.

The variables which in a particular s-extension step are pushed into stack P must
be popped again upon returning from the respective function call. They are, in the
order in which they are popped, used to construct binders in front of the term
returned as the normal form (if it exists) of the n-extended function application. The
resulting A-abstraction is subsequently placed into the heap.

Controlling stack P accordingly necessitates another execution mode for BRA_F
and RTF instructions iff reductions are being performed in the body terms of #-
extended A-abstractions, i.c. iff stack P contains at least one set of variables. A branch
instructions BRA_F, whether executed by the ASM processor or under the control of
the n-extension unit, must push a separator symbol | into stack P. Conversely, an
RTF instruction (which may only be executed by the ASM processor) must pop a
separator |. If variables are stacked up underneath, the n-extension unit must take
over to pop them and to construct binders. Upon arriving at another separator | or
at an empty stack, control returns to code execution by the ASM processor.

Pushing and popping separator symbols as described ensures that correct nesting
levels of n-extensions are maintained on the stack. Variables pushed by the g-
extension unit prior to executing a BRA_F instruction are popped again immediately
following the complementary RTF instruction, i.e. upon completing the computation
of the term in front of which binders for these variables need to be constructed.

To avoid name clashes when n-extending partial applications in this naive form, the
n-extension unit routinely assigns in ascending order so-called n-levels. All variables
added in the same 5-extension step receive the same n-level. Thus, while repeatedly
cycling through #n-extensions and subsequent code execution phases, the system
need never engages in full f-reductions to maintain correct binding levels among
identically named variable occurrences that are bound in different contexts (scopes).

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

748 D. Girtner and W. E. Kluge

As a simple example, we consider again a non-terminating program,
LETREC [= Auwv. (+(fu)v)iwfo,

which contains two partial applications of the binary function f. After one f-
reduction step (which in compliance with the classical definition renames to v! the
bound variable v that may get involved in a naming conflict), it transforms to

' (4 (Letrec f = dw(+(fu)v)wfo)o'),
and, after another two steps, to
W (4 W (+ (A3 (+ (etrec f = ... nfo)v®)o?)ol).

n-REDTcomputes this A-term by executing the compiled ASM code of the original
program, which is

p.e — PUSH.Wv ; PUSHW p_f ; AP 1 ; EXIT
p-f — PUSH.AW 1 ; PUSH.AW O ; FREE_A 2 ; PUSH.W p_f ; AP 1 ; ADD* ; RTF.

When initializing the reduction counter with the value r = 3, which sets a breakpoint
after three function calls, this code produces the sequence of machine states shown
in figure 7. The layout of the figure is essentially the same as in figure 6, except that
the stacks R and P remain permanently assigned to the memory segments S3 and
S4, respectively. Stack T is not shown at all since the particular program does not
contain nested function definitions; hence there are no free variables that need to
be A-lifted.

Code execution includes three n-extensions to deal with the partial applications
encountered by the instructions AP 1 in steps 3,9 and 15. They need to be completed,
when returning from the respective function calls, by means of the RTF instructions
in steps 27, 25 and 23, respectively.

The following explains the interaction between code execution by the ASM
processor and y-extensions, which require interpretation, in more detail.

The AP 1 instruction, say, of step 3 creates a closure

p-clos — (p-fv)

from the topmost two entries of stack W since the arity of the function referenced
by p_f exceeds by one the arity of the application. With nothing else left to do, the
n-extension unit is called to turn the partial into a full application. The necessary
n-extension
(p-fv) =, Ww'(pfoo')

is realized by pushing the argument terms »! and v of the full application into stack
W, and the variable v! bound by the added 2 into stack P. The n-extension unit then
executes a BRA_F p_f instruction to branch to the code of the function f, thereby
returning control to the ASM processor. This instruction also swaps the stacks A
and W and pushes a separator symbol into stack P.

The same n-extensions are carried out in steps 9 and 15, except that the n-levels
assigned to the variables v, as they are pushed into the stacks W and P, are routinely
incremented as a safeguard against potential name clashes.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-RED™ : an interactive compiling graph reduction system 749

STEP INSTR S1 52 s3 sS4 r
1 PUSHW v W: v A: R: P: 3
2 PUSH.W p_f W: v pf A: R: P: 3
3 AP 1 W: pclos A: R: P: 3

n-extension of the closure p_clos — (pf v)
new stack configuration :

w:ovl v A: R: P: v 2
branching to the function code:
4 (BRAF p_f) A: vy W: R: EXO p: vli 2
5 PUSHAW 1 A: vl v W vl R: EX0 P: vl 2
6 PUSHAW 0 A: vl v w: vl v R: EXO p: vl 2
7 FREE.A 2 A: w:vl v R: EX0 P: vl| 2
8 PUSHW pf A w: vl v pf R: EXO P: vl 2
9 AP 1 A W: v! p_clos R: EX0 P: vl 2
n-extension of the closure p_clos — (p_f v)
new stack configuration :
A: w: vl w2y R: EX0 p: vl v? 1
branching to the function code:
10 (BRAF pf) W: A vl v2 v R: EX? apD#0 p: vl w3y 1
1 PUSHAW 1 W: v2 A vl vy R: EXO aDD40 p: vl v2) 1
15 AP 1 w: v2 pclos A: v! R: EXO apD+0 p: vl V2| 1
n-extension of the closure p_clos — (pf v)
new stack configuration :
w: vy A: vl R: EXO ADD#® P: vl 2| 3 0
branching to the function code.
16 (BRAF pf) A: v v3 v w:ovl R: EXO aDD#0 apD+0 p: vli ¥2| w3 o
20 PUSHW pf A: v2 W: vl w3 v pf R: EXO aDD#0 aDDa® p: !t v21 V3 o0
21 AP 1 A: V2 w: vl v3 pl R: EXO aDD+0 app+® p: vl) V2| 3 0
22 ADD* A: 2 w: vl pc? R: EXO aDD+0 apD#® p: v!| V2| VY 0o
23 RTF W: v2 p.c? A: vl R: EX® ADD+0 p: vlf 2] 3 0
completing n-extension of step 16:
p-c? o (+pc! v } ==, p.c? = i3+ p.c! v3)
24 ADD* Wi p.c? a: vl R: EXO apDA0 p: vl v2) 0
25 RTF A: w: vl pe3 R: EX0 P: vl 2 0
completing n-extension of step 10:
pcd o (+pc?v?) ==, pc® — wl(+pc? v2)
26 ADD* A: w: pct R: EXO P: vl 0
27 RTF W: p_c4 A: R: p: vl 0
completing n-extension of step 4:
pc? = (+pd vl)=, pct =il (+pcd v
28 EXIT w: pc? A: R: P: o

Fig. 7. ASM code execution with repeated n-extensions.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

750 D. Gértner and W. E. Kluge

pc* — . (+pcv!)
pc? = A (+pc?v?)
p.c? — W (+pcv?)
pc' = (pfv)

Fig. 8. The graph obtained from the code execution as in figure 7.

Steps 11-15 and steps 17-21 have been abbreviated since they merely repeat the
instructions of steps 5-9.

With the reduction counter down to zero in step 17, the applications that are
left in the remaining instruction sequence are turned into closures to construct a
complete graph and to clear the ASM stacks.

The return instructions RTF which occur in this sequence, as usual, swap the
stacks A and W and pop return addresses off stack R. Stack P not being empty
in either of the machine states, they also pop separation symbols and, before
continuing with code execution at the return addresses, call the n-extension unit. It
pops the variables found on top of stack P and constructs binders in front of the
terms referenced by the pointers that are actually on top of stack W, which are
the closures produced by the preceding ADD* instructions. Control returns to code
execution upon encountering another separator symbol or an empty stack P, which
in the particular cases happens after popping just one variable.

The construction of the resulting graph proceeds from innermost to outermost,
starting with the instruction AP 1 in step 21. It creates a closure

pc! — (pfo)

by removing p_f and v from stack W and by pushing the pointer p_c! instead. This
closure becomes a component of the closure

pc? — (+pclo?)

created by the ADD* instruction of step 22.

The RTF instruction of step 23 calls the #-extension unit. It pops the variable v3
off stack P, accesses the closure referenced by the pointer p_c?> found on top of
stack W, and converts it into the abstraction

p_c2 — A’ (-i-p_c1 v’)

which again is placed, as a piece of the resulting graph, into the heap. The pointer
p_c? remains the same since the representation of graph structures in n-REDY
merely requires changing descriptor entries when converting these closures into
abstractions. The remaining code produces in the same way another two nesting
levels of abstractions and returns the resulting graph as depicted in figure 8.

The post-processor constructs from this graph the term

WL+ (4 W+ (pfo)vd)vt) o),

In a last step, it de-references the graph pointer p_f to re-construct the full LETREC-
construct in place of the innermost application.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-REDY : an interactive compiling graph reduction system 751

9 Performance of n-REDT

With respect to an efficient implementation of the ASM on a host system we took
the pragmatic approach of compiling ASM code to C. It renders n-RED™ portable
and also takes advantage of the target code optimization techniques available in the
C compilers of the hosts.

A first version of this compiler has just been completed. It includes a type inference
system which, given the argument types of the outermost function applications,
generates for most programs fully typed code'!, thus closing the efficiency gap
between untyped and typed languages. However, as of now, some efficiency 1is
lost again by compiling ASM function codes to individual C functions in order
to maintain the one-to-one correspondence between code execution and high-level
program transformations that is necessary to support the stepwise execution mode
of n-rRED'. Moreover, the C code also includes instructions to update reference
counts and to release as early as possible heap space that is no longer needed. For
some applications, early garbage collection may create a considerable overhead, but
it keeps the total demand for heap space nearly minimal.

In this section we will present some comparative performance figures for 7-RED
implementations, particularly of ASM code interpretation versus compilation of
ASM code to C. To put these figures into perspective, we also compare them with
other implementations of functional systems. They include the two HASKELL com-
pilers ghc-0.26 of Glasgow University and hbc-0.999.7 of Chalmers University,
the Nijmegen CLEAN compiler 0.84, and the compiler version 0.93 for Standard ML
of New Jersey. HASKELL and CLEAN are based on a lazy evaluation regime, whereas
sML and 7-RED™ use a strict regime.

Depending on particularities of the application programs, the run-time perfor-
mance of ASM code interpretation is improved by factors ranging from 2 to 8 over
high-level interpretation of A-terms, as implemented in n-RED" (Schmittgen et al.,
1992), with both interpreters written in C. Compilation of ASM code to C enhances
the performance by another factor of 3 on average, and by a factor of about 10 at
the maximum.

To substantiate these claims, we consider as a first benchmark program a modified
version of the example program introduced in section 2, which looks like this:

LETREC
f=AnuwarLEl n THEN + uv
ELSE LETREC
g = AWZIFGTU W
THENg (—1w)z
ELSEf (—1n)uv
INgUv
N f 150000 91

" Programs that cannot be fully typed do the type-checking at runtime.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

752 D. Gdrtner and W. E. Kluge

func calls| ghce hbc Clean SML ASM ASM i-term
total comp comp comp comp comp interpr interpr

1.5 Mio 03 1.6 0.2 0.4 1.8 18.0 875
3.0 Mio 0.6 32 0.4 0.8 35 358 175.4
4.5 Mio 0.9 49 0.6 12 5.3 53.8 264.7

Fig. 9. Run-time comparison between three implementations of 7-RED, two HASKELL
implementations, CLEAN and SML based on the example program (all times in seconds).

Since none of the other system implementations can deal with non-terminating
recursions other than by time-out conditions, the equivalent to counting reduction
steps had to be explicitely specified as part of the program itself by adding a
monotonically decrementing parameter n to the function f. The program also allows
to specify varying ratios between calls of f and g by appropriate choice of argument
values for the parameters u and v of the function f (In the particular example this
ratio has been chosen as 1 : 9, which in combination with a parameter value of
n = 150 000 amounts to a total of 1 500 000 function calls before termination.).

Figure 9 shows the performance figures for all seven implementations, with the
total number of function calls stepped up from 1.5 Mio to 3.0 Mio to 4.5 Mio.

For this particular program which primarily tests parameter passing, and specifi-
cally the handling of non-local variables, there are ratios of about 5 : 1 between full
interpretation of A-terms and ASM code interpretation, and of about 10 : 1 between
ASM code interpretation and compilation of ASM code to C. Compiled ASM
code is only marginally slower than code produced by the hbc-0.999.7 HASKELL
compiler. The codes produced by the ghc-0.26 HASKELL, CLEAN and SML compilers
are faster by factors ranging from 4 to 9. This rather significant difference is due
to the fact that these compilers convert the two nested tail-recursive functions into
iteration loops which presumably execute completely within the same set of registers,
whereas compiled ASM code performs expensive function calls.

Comparative performance measurements with a variety of other small benchmark
programs look decidedly more favorable for compiled ASM code, and even for
ASM code interpretation (see figure 10). These programs include the Takeuchi
function and the Ackermann function which again stress the efficiency of recursive
function calls and of parameter passing. The remaining six programs deal with
sorting problems and with simple numerical applications. There are two versions
of a quicksort program, of which qusort 4000 sorts a list of 4000 integer values
by means of a straightforward divide-and-conquer algorithm, and qusortbin 4000
uses Augustsson’s algorithm of the HASKELL program library which does completely
without catenating sorted lists. The queens 10 program solves the ten queens
problem. Among the numerical applications are fractals 9 which computes fractals
with a recursion depth of 9, a relaxation program relax for PDEs which does 500
iterations on a 32 * 32 array of real numbers, and two programs which compute
the determinant of an 8 * 8 matrix, of which detlist uses nested lists to represent

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-RED” ; an interactive compiling graph reduction system 753

ghc hbc Clean SML ASM ASM
Program comp comp comp comp comp interpr
Takeuchi 24 16 8 0.7 4.1 0.8 11.5 35 33.2
Ackermann 3 7 0.2 1.1 0.2 0.8 1.1 11.0
qusort 4000 934 514 337 149 14.7 17.2
qusortbin 4000 03 0.6 0.2 0.5 1.5 3.17
queens 10 42 6.5 34 84 8.8 27.0
relax 32*32 500 37.6 * 2389 - 13.6 29 3.9
fractal 9 18.4 310 20.0 384 61.5 178.7
detlist 8*8 1.6 20 - 1.38 6.5 13.6
detarray 8*8 423 53.2 - 109 48 9.5

Fig. 10. Run-time comparison of n-RED, HASKELL, CLEAN and SML implementations based on
selected example programs (* the run-time of hbc code for the relax program, due to heap
space overflow, is based on only 200 relaxation steps).

the argument matrix, and detarray uses the array representations available in the
respective languages!2.

With respect to the Takeuchi and Ackermann programs, which produce recursive
function calls while computing very little in between, there is again a performance
gain of a factor 10 between ASM code interpretation and compilation to C. The
performance gaps relative to the Glasgow HaskELL and CLEAN implementations have
become marginally smaller, and to the Chalmers HASKELL and sML implementations
they have completely disappeared or even been reversed.

For all other programs there is only a factor of 3 or less left between ASM
code interpretation and ASM code compiled to C. This is due to the very efficient
implementation of list and array operations in the ASM interpreter, which in more or
less the same form are generated by the compiler as well. Relative to compiled ASM
code, there is quite some variation among the performance figures of the other
systems. For instance, the HASKELL and sML implementations lose considerable
ground with respect to programs operating on arrays (relax, detarray) (CLEAN
does not support arrays at all). HASKELL and CLEAN do poorly on the qusort
4000 program but do decidely better on the qusortbin 4000 and on the fractals
programs. Compiled sML code is about on equal terms with compiled ASM code
for qusort 4000, queens 10, and for Ackermann, is decidedly slower for all array
programs and for Takeuchi, and decidedly better for the qusortbin and detlist
programs. Except for the array programs and qusort 4000, not even SML shows
a run-time advantage of strict over lazy evaluation, presumably due to successful
strictness analysis by the lazy systems.

Representative for the consumption of memory space by compiled ASM code are
the following figures:

The queens 10 program needs to allocate 60 kBytes of heap space, including

12 Note that some of the language features used in these programs, such as pattern matching
and arrays, are not available in MINIRED but in the functional language KiR supported by
n-REDT (Kluge, 1994).

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

754 D. Girtner and W. E. Kluge

roughly 13 kBytes for descriptors, and 2 kBytes of stack space. The qusort 4000
program takes 90 kBytes of heap space (again including descriptors) and just 100
Bytes of stack space. In comparison, the Glasgow HASKELL implementation uses
400 kBytes of heap space and 7kByte of stack space for the queens program, and
450 kBytes heap space and 200k Bytes stack space for the quicksort program, ie.
it requires roughly an order of magnitude more space.

10 Conclusion

The machinery described in this paper is to support with reasonable efficiency the
reduction semantics of a fully-fledged A-calculus. Functions and variables are truly
treated as first class objects. New functions (1-abstractions) may be computed from
(partial) applications of defined functions, and programs may contain free variables
as naming conflicts can be correctly resolved.

Program execution is conceptually realized as a process of meaning-preserving
program transformations. The user may set breakpoints by specifying an upper limit
on the number of reduction steps to be performed in one shift. The intermediate
program reached at the breakpoint is returned to the user interface for inspection.
All programs may be reduced to normal forms of A-terms eventually, if they exist.
This may be done either in several shifts of reductions, between which the program
may also be modified and the focus of control may be moved to selected subterms
in which reductions are to be performed next, or in just one shift, provided the
number of reduction steps is chosen large enough. If intermediate programs remain
unchanged, the resulting program is guaranteed to be invariant against execution
orders since stepwise execution and production runs use the same code on the same
machinery.

Run-time efficiency is achieved by compiled graph reduction based on an abstract
stack machine ASM as intermediate level of code generation. While executing code,
the machine reduces only full function applications. Upon encountering partial
function applications at top level, it switches to an interpreter mode which n-extends
them to full applications in order to enable the machine to continue with further
code-controlled reductions. This cycle may be repeated until a normal form is
reached. Potential naming conflicts involving n-extended variables are avoided by a
simple enumeration scheme which by means of unique indices distinguishes variables
introduced in different n-extension steps.

Though not (yet) implemented in z-RED' breakpoints for debugging and valida-
tion purposes may be introduced by means other than just limiting reduction steps,
say, by specifying a particular (sequence of) function call(s) after which the machine
is to be halted. It is also possible to display just the immediate context of the func-
tion call rather than the complete intermediate program reached at the breakpoint
(which may have grown to considerable size). A minor problem arises insofar as
the modifications required to implement these features primarily concern pre- and
post-processing, but to some lesser extent also compilation and code execution, i.e.
the code used for debugging would then not exactly be the same as the one used for
production runs.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

n-REDT : an interactive compiling graph reduction system 755

Acknowledgements

We are indebted to two anonymous referees, to Thomas Johnsson and to Simon
Peyton Jones for their valuable comments on the paper. We also like to thank
Carsten Rathsack and Claus Reinke for doing the performance measurements.

References

Backus, J. (1978) Can programming be liberated from the von Neumann style? A functional
style and its algebra of programs, Comm. ACM 21(4): 613-643.

Berkling, K. J. (1974) Reduction languages for reduction machines, Proc. 2nd Int. Symp. on
Comp. Arch., pp. 133-140. ACM/IEEE.

deBruijn, N. G. (1972) Lambda-calculus notation with nameless dummies. A tool for auto-
matic formula manipulation with application to the Church—Rosser theorem, Indagationes
Mathematicae 34: 381-392.

Cardelli, L. and McQueen, D. (1983) The Functional Abstract Machine, The ML/LCF/HOPE
Newsletter, AT&T Bell Labs, Murray Hill, NJ.

Church, A. (1941) The Calculi of A-Conversion. Princeton University Press.

Cousineau, G., Curien, P.-L. and Mauny, M. (1987) The Categorial Abstract Machine, Science
of Computer Programming (8): 173-202.

Curry, H. B. (1936) Functionality in combinatory logic, Proc. Nat. Academy of Science USA
20: 584-590.

Fairbairn, J. and Wray, S. C. (1988) TIM: a simple lazy abstract machine to execute super-
combinators, Proc. Conf. on Functional Programming and Computer Architecture: Lecture
Notes in Computer Science 274, pp. 34-45. Springer-Verlag.

Gaertner, G., Kimms, A. and Kluge, W. (1992) n-Rep*— a compiling graph reduction system
for a full-fledged A-calculus, Proc. 4th Int. Workshop on the Parallel Implementation of
Functional Languages, Aachener Informatik Berichte Nr. 92-19.

Goldson, D. (1994) A symbolic calculator for non-strict functional programs, The Computer
Journal 37(3): 177-187.

Harper, E., MacQueen,D. and Milner, R. (1986) Standard ML, Laboratory for Foundations
of Computer Science, University of Edinburgh.

Hindley, J. R. and Seldin, J. P. (1986) Introduction to Combinators and A-Calculus, Cambridge
University Press (London Mathematical Society Student Texts).

Hudak, P, Peyton Jones, S., Wadler, P, Boutel, B., Fairbairn, J., Fasel, J, Hammond, K,
Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain, W. and Peterson, J. (1992)
Report on the Programming Language Haskell, ACM SIGPLAN Notices 27(5): 17-42.

Hudak, P. and Goldberg, B. (1985) Serial combinators: optimal grains for parallelism, Proc.
Conf. on Functional Programming and Computer Architecture: Lecture Notes in Computer
Science 201, pp. 382-399. Springer-Verlag.

Hughes, R. J. M. (1982) Super-combinators — a new implementation technique for applicative
languages, Proc. ACM Conf. on LISP and Functional Programming, pp. 1-19. Pittsburgh,
PA,

Johnson, T. (1985) Lambda lifting: transforming programs to recursive equations, Proc. Conf.
on Functional Programming and Computer Architecture: Lecture Notes in Computer Science
201, pp. 190-203. Springer-Verlag.

Johnsson, T. (1984) Efficient compilation of lazy evaluation, SIGPLAN Compiler Construction
Conference, Montreal, Quebec.

Kluge, W. (1994) Programming the Reduction System n-RED, Internal Report Nr. 94 19, Institut
fir Informatik und Praktische Mathematik, CAU Kiel/Germany.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

756 D. Gdrtner and W. E. Kluge

Peyton Jones, S. L. (1987) The Implementation of Functional Programming Languages, Prentice
Hall.

Peyton Jones, S. L. (1992) Implementing lazy functional languages on stock hardware: the
Spineless Tagless G-Machine, J. Functional Programming 2(2): 127-202.

Plasmeijer, R. and van Eekelen, M. (1993) Functional Programming and Parallel Graph Rewrit-
ing, Addison-Wesley.

Schmittgen, C., Bloedorn, H. and Kluge, W. (1992) n-RED’ — a graph reducer for a full-fledged
A-calculus, New Generation Computing 10(2): 173-195.

Turner, D. A. (1976) A new implementation technique for applicative languages, Software-
Practice and Experience 9(1): 31-49.

Turner, D. A. (1986) An overview of Miranda, SIGPLAN Notices 21(12): 158-166.
Allegro CL User Guide (1992) Vol. 1, Version 4.1, Franz Inc.
Sun Common LISP 4.0 User’s Guide (1990) SUN Microsystems Inc.

https://doi.org/10.1017/50956796800001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001957

