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EXTENSIONS OF CERTAIN RESULTS IN WALSH-TYPE
EQUICONVERGENCE

M.A. BOKHARI

Two sequences of rational functions are constructed from different expansions of
(tqn — l)~l and extensions of certain known results in the theory of Walsh-type
equiconvergence are sought.

1. INTRODUCTION

Let 7T, denote the class of all polynomials of degree ^ a over the field of complex
numbers. For a given <r > 1 and a fixed integer m ^ — 1, let 1Zn+m denote the class
of all rational functions of the form p(z)/(zn — an), p(z) G 7rn+m. We denote by Ap

p > 1, the class of all functions analytic in \z\ < p but not in \z\ ^ p, and consider the
following minimisation problems:

(PI) [61 min / \f(z)-r(z)\2\dz\

(P2) [2] min ' £ ' |/(«*) - r(vk)\2

where q ̂  2 and w = exp (27ri9n).
It is known that for any / 6 Ap, the elements rn+m,n(z, f) and Rn+m,n(2> f)

7ln+m which respectively solves (PI) and (P2) are given by ((4.1) - (4.4), [2])

and

-2) *W./> - h I
where F is the circle \t\ = R, 1 < R < p and

-m+l ?m+l|jn-m-l ^n—tn—11

(1.3) <
t, 2) = zn(<m+1 - zm + 1)/<m + 1(tn -
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and

{ Bx(tt a) = <r-<«-2>nB(<, a) - f"Vn,

B2(t, a) = (t"n - *

B3(t, a) = (fn - *

with
tn(t(,-l)n _

a ) =

It has been shown in [2] that

(1.5) J \z\ < p1+i if a- ^ p 1 + 9

' \ \z\ £ a if a < p1+q

and that (1.5) extends the following theorem due to Rivilin [5]:
oo n —1

THEOREM A . Let f(z) := £ a.jz' e Ap, p>\ and 5 n _ j ( z , f)= Y aizi • Let

j=o i=o

Pn-i,q{zt f)> 9 ^ 2 , denote the polynomial of degree n — 1 of least squares approxima-
tion to f on the (nq)-th roots of unity. Then

(1.6) Km {?„-!,,(*, / ) - $„_,(*, /)} = 0, V |*| < p1+".

Another generalisation of (1.6) is that for any positive integer I ^ 1 and f £ Ap,
we have

l-i

(1.7) lim {pn_i,,(z, /) - Y' 5n_1|4(*, /)} = 0, V |*| < p1+/«,

k=0

n-1

where 5n_i,jfc(z, / ) = X) aj+kqz
j, k — 0, 1, . . . , £ - 1.

j=o
It may be noted that a classical theorem of Walsh ([9] p.153) which deals with

equiconvergence of certain sequences of polynomials is a special case for each of the
results (1.5) - (1.7). For further information on this topic we refer the interested reader
to [1, 3, 7].

Our object in this paper is to extend (1.5) in the spirit of (1.7). For this, we
construct two different sequences of help rational functions which lead us to obtain
a larger region of equiconvergence. These extensions are obtained from two different
expansions of (<«n - I ) " 1 .
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2. EXTENSION I

Our first extension is based on the foUowing identity:

(2.1)

where

- I ) " 1 = [*«" - 1 = £ Fv{t, a)

(I- O--9")""1

FJt, a) = -. —rjr, v = \,2, ... .
y ' (f?« — a~ «n)

We define the rational functions

= 1, 2, 3, . .
i=o

f 2 ^ / r ^ ^ ^ C * , <r)f{t)dt,

Yin Jr <m-»lj+>/«i_' —

(2.2) rn+m

where

(2.3) e» := *

with ([2], (4.6))

A",(<, a) = Bj{t, a) - (<«" - l ) ( t" - a") , j = 1, 2, 3

where -B;(<, <r) are given in (1.4). For v = 0, we let

(2.4) » r
n + m i n(z , / , 0) := r n + m , n ( z , / ) .

REMARK 1. From (2.1) we can rewrite

n —1 n+m

[y = 1, 2, 3, . . . ) , so that using (1.3) we have

7n+mA*, f,»)=± I {J}T;})(t
a! z) t M*>

If we define

(2-6)
«/=0

we have the first extension of (1.5) (see [2], Theorem 2.1) given by:
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THEOREM 1 . Let m ^ — 1, q ^ 2 and £ ^ 1 be three fixed integers and let
a > 1. If f e Ap, 1 < p < oo, then

~ r \z\ < P
i"+i

(2.7) Urn {*;+m,n(*, / ) - WB+m,»(«, / ,£)} = O J ' ^
n—"x> [ \z\ ?: a if a

the convergence being uniform and geometric on any compact subset of the regions

defined above. Moreover, the result is sharp in the sense that for each \z\ = p1+lq,

there is an / € Ap for which (2.7) does not hold.

PROOF: The difference in (2.7) can be written as

t-i

= -ftn+m n(2> / ) ~ ^n+m n(«, / , 0) - V* Fn+m n(z, J

Applying (1.1), (1.2), (2.4) and (2.5) to the above relation we obtain

Since £ Fv(t, a) = (1 - a~qn)1 I ((t«n - (r-in)i~\tin - 1)\ , we conclude (2.7) from

(2.8) after some computation. As usual, the function f(z) = (z — pel°) , 0 ^ 0 ^ 2n,

shows that the result is sharp. D

3. EXTENSION II

Here we rearrange a double series in order to construct another sequence of help
oo oo

rational functions. First, note that for an absolutely convergent series JZ X) s(s> ^)

and a fixed integer q ^ 1, we have
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oo oo

the last expression follows on writing the series ^ ^3 ?(•*» (i ~ 1)9 + A), f°r e a c n fixed

A, as shown below, and then on adding the terms along transverse diagonals as shown
below

5 (1 , A) + (/(I, g + A) + 5 (1 , 2g + A) + s ( l , Zq + A) + . . .

S / /
+5(2, A) + 5(2, q + A) + 5(2, 2q + A) + 5(2, 3q + A) + . . .

+5(3, A) + 5(3, q + A) + 5(3,2q + A) + 5(3, 3q + X) + ...

/
+5(4, A) + 5(4, q + A) + 5(4, 2q + A) + 5(4, 3g + A) + . . .

+ ... .

With this obervation, we have

LEMMA 1. For \t\ > 1 and a > 1 tie following identity holds:

where

(3.3) = v - A * - J ) 9 2 + A 9 + j

;tt v J -1

PROOF: It is easy to see the validity of the following expansion:

(34) or ir1r1 Yr(x«+a-2

If we let 5(3, A) = (A«+_T2) ( ( - ^ - n ) ' " 1 ) / ( ( t ' t " ^" n ) A ' + '~ 1 ) i° equation (3.1),

then (3.2) follows immediately from (3.4) on observing that

D
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Now we define another sequence of help functions. Let

m+n
(3-5) r;+m,n(z, / , u) := £ c)iy)z*/(zn - an), v = 1, 2, 3, . . .

i=o

with

f 5S /r ttfltPW*, *)f(t)dt, O^j^m,

(3 .6) : = <
1 r *^3\*i ^)^v \ »"/ •£{-i\ J j J*** * ^

For i/ = 0, we set

be

(3-7)

K+m,ni
z, f, 0) = rn+m>n(z, f).

On using (1.3), an integral representation of r* + m n ( z , / , u), u ^ 1, is found to

.n(*, /, „) = JL ^y g Mt, ,mt,g
For a fixed integer £ ̂  1, we set

(3-8)
t-i

i/=0

With the above notation, we can now prove

THEOREM 2 . Let m ^ — 1 , j ^ 2 , and £^ 1 be three fixed integers and a > 1.
If f E Ap, Kp< oo, then

(3.9) lim K + m , n ( ^ , / ) " WB-+fBiB(z, /, /)} = 0, '
[ \z\ ̂  <r if<r<

the convergence being uniform and geometric on any compact subset of the regions
defined above. Moreover, the result is sharp.

PROOF: AS in (2.8), we use the relations (3.2), (3.7) and (3.8) to obtain

(3.10)
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where jt(t, a) := £ £ F*+X(i, cr) - £ F^t, a) and T is the circle \t\ = px with
»=0 A = l A = l

1 < pi < p. If we write £ — 1 := aq + b with o ^ O , 0 < 6 < g — 1 , then we have

oo q

«=0 A=l
oo q

i = o + l X=l

00 9

tha t is,

« = 1 A = l

Substituting the value of i ^

E ^:,+A('.
A=6+l

a—1 9 6

, )̂ - E E 1?A+*('.ff) - E
j = 0 A = l A = l

.^)+ E :̂,+*('.')-
A=&+1

A=6+l

from (3.3), we can write

If <r ^ / « + 1 and |t| = pi, it is easy to see that

E ^:,+A(<.

_,n

for all n sufficiently large. Since aq + b + 1 —: £, we obtain

(3.12) E W.-)^("'"1'
A=6+l

It remains to estimate the double summation on the right side of (3.11). For this
purpose, we set

(3.13)
(tn - a~n)
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It remains to estimate the double summation on the right side of (3.11). For this
purpose, we set

(3i3) hb-u\

(3.13) h{u, /x)

Then using (3.3), we can rewrite

(3-14)

where

«=i \=i

«=ix=ii=i

oo oo l+q+\
7 * : = EE E Mi,

i=n=ij=i+i

Recalling the identity (3.1), we obtain

(a - 2

A = l
X 7

so that

(3.15) h = f-(»+1)"«2(f«" - I)"1 = 0(/ ,1- ( o + 1 ) n«J-«n).

Further, we notice that

oo q 9+1

(3.16)

where in view of (3.13)

I2 :=

= A-J9 + A)g + (a +
V (-J0+A)g + (
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q a-f-1 . 2

Since d(s) := j ^ J3 ( 7j[_*~) +"/ +1\
t"»^J~J) *s a P0^11011"3^ m 3 °f degree at most

(a + l)q2 — 1, it follows that for all n sufficiently large, the function

£ d(s)(tn - a~n)~' is analytic for \t\ > 1 ([4], Lemma 2). Thus, there is a constant

Co independent of n such that
oo

(3.17) ^2d(3)(tn -<r~n)~' ^ c 0 .
J=I

Since a ^ plq+1 and \t\ = p\, it follows from (3.16) and (3.17) after some elementary
algebra that for sufficiently large n

(3.18) \l2\<c0p

Recall that Iq := (aq + b + l)q ^ (a + l)q2 . Therefore, combining (3.11), (3.12), (3.14)
and (3.18), we observe that

c*
(3.19) |7*(*> <?)] ^ ~^f > f°r sJl sufficiently large n,

Pi

where c* is a constant independent of n. Using (3.10) and (3.19), an analysis of the
kernels Aj(t, z)Kj(t, a), j = 1, 2, 3, shows that

; + m , n ( z , / ) - WZ+m>n{z, f,

When a < ptq+1, a similar analysis of Jt[t, a) and Aj(t, z) • Kj(t, a) gives us

iim {K+m,n(*, f) - w;+m>n(z, f, i)} = o,

for all z with \z\ ^ a.

The sharpness of the result can be seen by considering

/(z) = (z - pe'6)'1 where 0 ^ 6 < 2TT.

D
REMARK 2. Theorems 1 and 2 are also valid when q = 1 and m = — 1 (see [2],
Remark 3.1). Therefore, a result of SafF-Sharma ([6], Theorem 3.1), under the condition
m = — 1, is a special case of Theorem 1.

REMARK 3. If we fix m = — 1 and let a —» oo in either of Theorems 1 and 2, we get
an extension of Rivlin's result given in (1.7). This follows from the fact that (see (2.1),
(3.5)) for all integers n > 1, v > 0,

lim rn-1<n(z, f, v) = lim K_x (z, f, v) = 5n_i,1/(z, / ) ,

where 5n_i |V(z, / ) is described in (1.7).
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