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Abstract  Let 6 be an irrational number in (0, 1) and f a real-valued continuous function on the 1-torus
T. Let ¢y, ; be a Furstenberg transformation on the 2-torus T2 defined by ¢;’}(t, s) = (t+6,s+pt+ f(t))
for any (¢, s) € T2, where p is a non-zero integer, and we identify a function on T or T? with a function
on R or R? with period 1, respectively. Let Apg,s be the crossed product associated with ¢y s. In this
paper we will compute the positive cone of the Ko-group of Ag y.
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1. Introduction

Let 6 be an irrational number in (0,1) and f a real-valued continuous function on
the 1-torus T. Let ¢ s be a Furstenberg transformation on the 2-torus T? defined by
¢;’}(t, s) = (t+80,s5+ pt+ f(t)) for any (¢, s) € T?, where p is a non-zero integer, and we
identify a function on T or T? with a function on R or R? with period 1, respectively.
Let C(T?) be the C*-algebra of all complex-valued continuous functions on T2 and let
o5 be the automorphism of C(T?) defined by do.f(F)=Fo d);,} for any F € C(T?).
We also denote ¢g 5 by ¢g ;. Let Ag s be the crossed product associated with ¢y ; and
K the C*-algebra of all compact operators on a countably infinite-dimensional Hilbert
space.

First we will apply results of Packer [10,11] in order to construct automorphisms of
Ap,s®K in the same way as in [6,8,9]. And, using these automorphisms, we will compute
the positive cone of Ko{Ag,¢), the Ko-group of Ag s.

Let B be a C*-algebra and M(B) the multiplier algebra of B and Aut(B) the group of
all automorphisms of B. Let Ko(B) be the Ky-group of B and Aut(Ky(B)) the group of
all automorphisms of Ko(B). Let Tg be the homomorphism of Aut(B) to Aut(Ko(B))
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defined by Tg(a) = o for any o € Aut(B), where a. is the automorphism of Ky(B)
induced by «. Let range T be the image of Aut(B) by T5.

For each n € N, let M,, be the nxn-matrix algebra over C and M,,(B) the nXn-matrix
algebra over B. We identify M, (B) with B® M,,. Furthermore, we regard Unen M, (B)
as a dense *-subalgebra of B ® K.

2. Automorphisms of crossed products Ag ¢

Let u and v be the unitary elements in C(T'?) defined by u(t, s) = e2™¢, y(t,s) = e?™'s
for any (t,s) € T?. Let w be a unitary element in Ag s such that ¢g ; = Ad(w). Then
Ag s is generated by u, v and w. Let C*(u,w) be the C*-subalgebra of Ay s generated
by u,w. Then C*(u,w) = Ag, the irrational rotation C*-algebra corresponding to 6.

Let 7 be a tracial state on Ag y induced by the Lebesgue measure on T2 in the usual
way. By Ji [4, Theorem 2.23}, 7, = tr, on Ky(Ag ) for any tracial state on Ay s, where
7. and tr, are the homomorphisms of Ko(Ay ¢) to R induced by 7 and tr.

Let p(1,1) be a projection M>(C(T?)) having trace 1 and twist —1, which is defined
in [5,11,16]. Let pp be a Rieffel projection in C*(u, w) with 7(pg) = 6 defined in Rieffel
[15]. By the Pimsner—Voiculescu exact sequence, we see that

Ko(As,) = Zlpe) ® Z[1} @ Z([1] - [p(1,1)))-

We express an automorphism of Kq(Ag ;) as an element in GL(3, Z) using the above
basis, where GL(3, Z) is the group of 3 x 3-matrices over Z with determinant +1.

Lemma 2.1. With the above notation,

1 00
rangeTa,, C S [0 1 O||neZ, e==15.
n 0 e

Proof. Let a € Aut(Ay,s). Since a(1) = 1, we can suppose that
o ([pe)) = anpe] + a2 [1] + as1([1] ~ [p(1,1)]),  a.([1]) = [1},
a([1] = [p(1,1))) = aiz[pe] + a23[1] + aza([1} ~ [p(1,1)]),

where a;; € Z (i = 1,2,3, j = 1, 3) represent the matrix coefficients of a, corresponding
to the basis described earlier. Since 7, = 7, o o, on Ko(Ag,s) and @ is irrational, by a
routine calculation: a11 = 1, az1 = a13 = agz = 0. Since a, € GL(3, Z), we obtain the
conclusion. O

Let o be the automorphism of Ag ; defined by o(u) = u, o(v) = v and o(w) = wv.

Lemma 2.2. Let o be as above. Then

1 00
o.=10 1 0
1 01

https://doi.org/10.1017/50013091500020782 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500020782

The positive cones of Ko-groups of crossed products 169

on Ko(Ao’f).

Proof. In the same way as in the proof of Packer [11, Proposition 2.3], we can prove
this lemma. 0

3. Preliminaries on equivalence bimodules and crossed products

In this section we assume the reader to be familiar with equivalence bimodules and
unitarily covariant systems (see [2,10,14,15]).

We consider the following situation: let A be a unital C*-algebra and p a full projection
in some My (A). We denote My (A) by E. Let {di;}5_; be matrix units of My and regard
(1 ® d11)Ep as an A-pEp-equivalence bimodule in the usual way. Let (A, Z,a) be a
unitarily covariant system with respect to (1 ® dy1)Ep. Let U be an automorphism of

(1 ® dy1)Ep chosen so that for any z,y € E, c € A4,

(1) (UL ®di1)zp, U1 ® di1)yp)a = a({(1 ® d1)zp, (1 ® di1)yp) 4),
(2) UcU™! = a(c).

We note that there is an automorphism 8 of pEp such that for any b € pEp, 5(b) =
UbU~! by Packer [11, Theorem 1.2]. Let W be the unitary element in M} such that
dij = W™ Wi~ for 4,5 = 1,2, ..., k, and U the automorphism of Ep defined by

U(1®@dj)zp=(1@W U1 @ W) (1 ® dj;)zp
foranyz € Fand j =1,2,...,k. Let @ be the automorphism of E defined by & = o ®id
where id is the identity map of Mj.

Lemma 3.1. With the above notation we regard Ep as an E-pEp-equivalence bi-
module in the usual way. Then we have the following:

(1) (Uzp,Uyp)r = &((zp,yp)E) for any z,y € E; and
(2) UcU~! = &(c) for any c € E.
Proof. This can be proved by routine calculations. O

Let lgd\u and p be the E-valued functions on Z defined by

—— 1®d11, 1fn=0, n b, ifn=0,
1®d = n) =
( n)(n) {0, elsewhere, p(n) {0, elsewhere.

Let A = K(Z,A) and B = K(Z,pEp) be the x-algebras of functions with compact
support from Z to A and pEp, respectively. Let X = K(Z,(1 @ d11)Ep) be the set of
functions with compact support from Z to (1 ® dy1)Ep. We define the left and right
actions of A and B and the A-and B-valued inner products on X in the same way as
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in Combes (2] and Packer [10]. Upon suitably completing X we obtain the equivalence
bimodule, which shows that A x, Z and pEp xg Z are strongly Morita equivalent by
Packer [10, Theorem 2.6]. We denote their equivalence bimodule by (1®dn)Epxy Z.
We will show that (1® d;1)Ep xy Z is isomorphic to (1 ® d11)(E X4 Z)p as left Hilbert
A X, Z-modules.

Let K(Z,FE) be the x-algebra of functions with compact support from Z to E and
we identify K(Z, E) with the *-algebra of k x k-matrices over A, which is denoted by
M (A). Since for any z € My (A) and any n € Z,

(@ di)zp)(n) = (1 ® di1)(zh)(n) = (1® du1)z(n)T™p0 ™,
we see that for any n € Z,
(1® di1)zp)(n)U"p = (1® d11)z(n)0™p € (1 ® d11)Ep.
Let & be the map of (1 ® di1)Mi(A)j to X defined by
B((I'® di1)zp)(n) = (1@ di1)zp)(n)T™p

fo% T € My, (A)/B\y an easy computation, & is a left .A-module map, where we identify
(1®d11)Mi(A){1 ® dy1) with A.

Proposition 3.2. With the above notation, ¢ is an isomorphism of (1@1)(E X &
Z)p onto (1 ® d11)Ep Xy Z as left Hilbert A x, Z-modules.

Proof. Using Lemma 3.1, by a routine calculation we see that for any n € Z:
(B((1 ® d11)xp), D((1 ® d11)yp)).a(n) = (1 ® di1)zp, (1 ® di1)yd) (izan) Mi(4)p(1)-
Hence we obtain the conclusion, that is:

(1®du)(E x5 Z)p = (1®du)Ep xu Z.

4. Automorphisms of stable algebras of crossed products A,

Let {ei;}ijez be matrix units of K. We know that
Ko(Ap s @K)=Z[pg Qe DZ[1 Q@ eoo] @ Z([1 ® eno] — [p(1,1) ® eno))-

We express an automorphism of Ko(Ag ;s ® K) as an element in GL(3, Z) using the above
basis.

In this section we will construct an automorphism of Ag ; ® K from an equivalence
Ay, s—Ag,s-bimodule. In the same way as in Packer [10, Example 2.8] we construct an
equivalence Ag s—Asp, s-bimodule.
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Lemma 4.1. Let ¢ and v be relatively prime integers with q,v > 0 and a,b integers
with ar +bq = 1. Let X(q,a) be a left C(T?)-module defined in Rieffel [16, Notation 3.7].
Then (C(T?), Z, ¢o,5) is a unitarily covariant system with respect to X(q,a).

Proof. Let g be the continuous function on R defined by, for any ¢t € R,

a 5 a
t) = —pt? + Lapt + —tf ().
9(8) = 5. pt"+ zopt+ (t)

Let @ be the linear map of X(q, a) defined by, for any h € X (g, a),
(QR)(t, ) = 29O R(t + 8,5 + pt + £(1)).

Then @ € Aut(X(g,a)) and the necessary calculations to prove Lemma 4.1 are similar
to those in Packer [10,11]. We leave it to the reader. 0

By the above lemma we can apply Packer [10, Theorem 2.6] and [11, Theorem 1.2]
to the equivalence bimodule X(g,a). By Rieffel (16, Theorem 3.1 and Proposition 3.8],
End¢(12)(X(g,a)) = A, the rational rotation C*-algebra corresponding to 1 = (r/q).
Hence, Ag s and A, x, Z are strongly Morita equivalent, where « is the automor-
phism of A, defined by, for any b€ A,, v(b) = QbQ~!. We denote by X(q,a) xo Z
the Ag s—A, X, Z-equivalence bimodule obtained by Packer [10, Theorem 2.6].

Lemma 4.2. With the above notation, let V and W be unitary generators in A,
with WV = 2™ VW. Then (V) = &*"0/DV (W) = ke (VDS VIVPW  where
K= e27ri(pr/2q)(aq—ar+2)'

Proof. Since the proof is easy calculations, it is left to the reader. a

Proposition 4.3. With the above notation let v be the automorphism of A, defined
by v(V) = "0/ V (W) = ke2(/DF(VIVPW  where k = e?7i(pr/20)(aq—ar+2) Thep
Ay, is strongly Morita equivalent to A, x., Z.

Proof. This is immediate by Lemmas 4.1 and 4.2. O

Since X(q,a) is a finitely generated projective left C(T'?)-module, there is a pro-
jection p(g,a) in some My (C(T?)) such that (1 ® d11)Mx(C(T?))p(q,a) = X(q,a) as
left Hilbert C(T?)-modules, where {d;;}5_, are matrix units of M. Hence, A, =
p(g,a) M (C(T?))p(q, a). If we identify X (q,a) with (1 ® d11)Mk(C(T?))p(q,a), we can
regard Q and vy as an automorphism of (1®d;;)Mx(C(T?))p(g, a) and an automorphism
of p(q, a)Mr(C(T?))p(q, a), respectively. Therefore, by Proposition 4.3, Ag, s is strongly
Morita equivalent to p(g, a)Mi(C(T?))p(g,a) X4 Z and (1®d11)M(C(T?))p(g,a) xo Z
is their equivalence bimodule. By Proposition 3.2,

(1® d11)Mi(C(T?))p(g,0) xq Z = (1@ di1) Mk(As,1)p(g, a),
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as left Hilbert Ag s-modules. Thus we obtain that p(q,a)My(As, z)p(g,a) = A, %, Z.
Put g=r=1. Then a+b=1 and n=(r/g) =1 and k= 1. Thus 4, = C(T?) and
(V) =0V, y(W) = e2"/(VIVPW. Hence, A, x4 Z = C(T?) x4, , Z. Therefore,
p(1,a) M (Ag,5)p(1,a) = Ag, s, where a is any integer and b =1 — a.

In the same way as in [6,8,9], we construct an automorphism of Ag s ® K from the
projection p(1, a). Since p(1, a) is a full projection in My(Ag,f), by Brown [1, Lemma 2.5],
there is a partial isometry w € M(Mi(Ag,s) ® K) with w*w = p(1,a) ® 1, ww* =
1® Ik ® 1, where I is the unit element in M),. Then Ad{w) is an isomorphism of
(p(1,a) ®1)(My(As,5) @ K)(p(1,a) ®1) onto My (Ag,5) ® K. Let 1/ be an isomorphism of
M} (As,5) @ K onto Ag,; ® K with ¢, = id of Ko(My(As,s)® K) onto Ko(Ag ;@ K). Let
x be an isomorphism of Ag s onto p(1,a)My(Ag,¢)p(1,a). Let B, be an automorphism of
Ag ;s ® K defined by 8, = ¢ o Ad(w) o x ® id, where id is the identity map of K.

Theorem 4.4. With the above notation,

1 0 O
Bax=10 1 0
n —a €

on Ko(Ags,; ® K), wheren€ Z, e =1 or —1.
Proof. We suppose that 8,. = [ai;] € GL(3, Z). By the definition of §,, in Ko(As,f)

Bax([1 ® eq0]) = Yu(fw(x(1) ® eco)w™]) = [p(1, a) @ eoo]-

By the definition of X (1,a), we see that [p(1,a)] = [1] — a([1] — [p(1,1)]) in Ko(C(T?)).
Since Ko(C(T?)) is embedded injectively in Ko(Ag,f), in Ko(Ag,f)

Bax([1 ® eoo]) = [1 ® eoo] — a([1 ® eqo) — [p(1,1) ® eqo))-

Thus, 12 = 0, azs = 1 and a3z = —a. In the same way as in the proof of [6, Theorem 2],
we see that 7, = (7 ® TI). 0 Bax on Ko(Ayg,¢), where Tr is the canonical trace on K. Since
T«([po]) = (T ® Tr). o Bax([ps]), 6 = @110 + a21. Hence a;; = 1 and ay; = 0. Similarly,
since 7, ([1] — [p(1,1)]) = (= ® Tr). 0 Bux([1] — [p(1,1)]), @13 = az3 = 0. Thus,

1 0 0
ﬂa* = O 1 0 .
a3y —a ass

Since B,« € GL(3, Z), azs = £1. Therefore, we obtain the conclusion. O

Remark 4.5. By the definition of p(1,a), we see that we can choose any integer a.
Hence, by Theorem 4.4, for any a € Z, there is a 8, € Aut(Ag, s ® K) such that

1 00
Bor=10 1 0
n oa €

on Ko(Ag,s ® K), where n € Z depends on the integer a and € = 1 or —1.
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5. The positive cones of Ko-groups of Ag ¢
In this section, we will compute the positive cone of Ko(Ag,f).

Lemma 5.1. With the same notation as in § 4, for any x,y € Z, there is a B(z,y) €
Aut(Ag s ® K) such that
0

o O

10
ﬂ(xyy)* = |:0 1
Ty

on Ko(Ag,s ® K) and that e = 1 or —1.

Proof. By Remark 4.5. for any y € Z, there is a 8, € Aut(Ag, s ® K) such that

1 00
Bu=1[0 10
n y €

on Ko(Ag s ® K), where n € Z depends on the integer y and € = 1 or —1. And, by
Lemma 2.2, there is an o, € Aut(Ag ¢) such that

1 0 0
Qs = 0 1 0
T

-n 0 1

on Ko(Aqg,z). Let B(z,y) = 0z—n ® id 0B, where id is the identity map of K. Then

1 00
ﬁ(m,y)~=[0 1 0}
T Yy €

on Ko(Ag,s ® K). Therefore we obtain the conclusion. a

Theorem 5.2. With the above notation let a[pe]+b[1]+c([1]—[p(1,1)]) be any element
in Ko(Ag,s) where a,b,c € Z. Then there are an r € N and a non-zero projection
q € M, (Ay,y) such that [q) = a[pe] + b[1] + ¢([1] — [p(1,1)]) if and only if a8 + b > 0.

Proof. One direction is obvious, so we concentrate on the reverse implication. We
suppose that af + b > 0. First we follow the method of Packer [11, Lemma 2.9]. Let d
be the greatest (positive) common divisor of a, b and ¢ and write (a,b,c) = d(l,m,n),
where [, m,n have no common factor. Let j be the greatest (positive) common divisor of
l and m, and write (a, b, c) = d(jg,jh,n), where (g, h) = 1. We note that gf + h > 0 since
af +b = djgé + djh > 0, and that (j,n) = 1. Since Ko{C*(u,w)) is embedded injectively
in Ko(Ag,s) and g6 + h > 0, there is a non-zero projection g(g,h,0) € Ag s ® K such
that [g(g, h,0)}] = g[pe @ ego] + h[1 ® ego] in Ko(Ag,y ® K). Since (g,h) = 1, there are
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z,y € Z such that zg + yh = 1. By Lemma 5.1, there is a B(kz, ky) € Aut(A4s,; ® K)

such that
1 0 0
Blkz,ky)» =10 1 0
kx ky e

on Ko(Ag,r ® K), where e = 1 or —1. Let ¢(g, h, k) = B(kz, ky)(q(g, h,0)) for any k € Z.
Then ¢(g, h, k) is a non-zero projection in Ag y ® K and in Ko(As,r @ K) [g(g,h, k)] =
B(kx, ky).((a(g, h,0))) = Tlg, h, k] since zg + yh = 1. If j = 1, let § = ©%q(g, h,n). Then
d is a non-zero projection in Mg(Ag s ® K) and {g] = a[py ® ego] + b1 ® ego] + ¢([1 ®
eoo] — [p(1,1) ® eg)) since (a,b,c) = d(g, h,n). Thus, there are an r € N and a non-zero
projection ¢ € M,(Ag s) such that in Ko(Ae s), [g] = alpe] + b[1] + ¢([1] — [p(1,1)]).
We suppose that j > 2. Then (a,b,c) = d{((j — 1)g,(j — 1)h,0) + (g,h,n)}. Since
(—1)g6+(j—1)h > 0, there is a non-zero projection g((j—1)g, (j—1)k,0) € Ag s®K such
that in Ko(Ae, s K), [g((7—1)g, ( —1)h,0)] = (—1)g[pe®eqo] + (j —1)h[1®eqo). Let § =
©H{q((F -1)g, (j — 1)h,0)®q(g, h,n)}. Then 7 is a non-zero projection in Maq(Ag ; ® K)
and [§] = a[pe ® ego] + b[1 ® epo] + ¢([1 ® ego] — [p(1, 1) ® epo}). Thus, there are an r € N
and a non-zero projection g € M, (Ag,s) such that [g] = a[pg] + b[1] + ¢([1] — [p(1,1)]) in
Ko(Ag,f). Therefore we obtain the conclusion. O
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