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Abstract Let 9 be an irrational number in (0,1) and / a real-valued continuous function on the 1-torus
T. Let </>gj be a Furstenberg transformation on the 2-torus T 2 defined by 4>^^(t, s) = (t+6,s+pt + f(t))
for any (t, s) 6 T2, where p is a non-zero integer, and we identify a function on T or T2 with a function
on i t or / t 2 with period 1, respectively. Let Ag j be the crossed product associated with 4>6,f- In this
paper we will compute the positive cone of the /Co-group of AQJ.

Keywords: crossed product; equivalence bimodule; full projection; Furstenberg transformation;
Kb-group; positive cone

AMS 1991 Mathematics subject classification: Primary 46L80

1. Introduction

Let 9 be an irrational number in (0,1) and / a real-valued continuous function on
the 1-torus T. Let <pgj be a Furstenberg transformation on the 2-torus T2 defined by
<f>0j{t, s) = (t + 6,s + pt + f(t)) for any (t, s) 6 T2, where p is a non-zero integer, and we
identify a function on T or T2 with a function on R or R2 with period 1, respectively.
Let C(T2) be the C*-algebra of all complex-valued continuous functions on T2 and let
<pej be the automorphism of C{T2) defined by 4>ej(F) =Fo ^ for any F € C(T2).
We also denote <j>ej by <j)gj. Let Agj be the crossed product associated with <pej and
K the C*-algebra of all compact operators on a countably infinite-dimensional Hilbert
space.

First we will apply results of Packer [10,11] in order to construct automorphisms of
Aej®K in the same way as in [6,8,9]. And, using these automorphisms, we will compute
the positive cone of Ko(A$j), the Ko-group of Agj.

Let B be a C*-algebra and M{B) the multiplier algebra of B and Aut(B) the group of
all automorphisms of B. Let KQ{B) be the ifo-group of B and k\xt{K0{B)) the group of
all automorphisms of KQ{B). Let TB be the homomorphism of Aut(B) to Aut(.Ko(j3))
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denned by Ts(a) = a* for any a e Aut(B), where a» is the automorphism of KQ{B)
induced by a. Let range TB be the image of Aut(B) by TB-

For each n e N, let Mn be the n x n-matrix algebra over C and Mn(B) the nxn-matrix
algebra over B. We identify Mn(B) with B <g> Mn. Furthermore, we regard \Jn€I^Mn{B)
as a dense *-subalgebra of B ® K.

2. Automorphisms of crossed products Aej

Let u and v be the unitary elements in C(T2) defined by u(t, s) = e27rit, v(t,s) = e2n'3

for any (f, s) € T2. Let t u b e a unitary element in Agj such that (foj = Ad(w). Then
>4ej is generated by u, v and w. Let C*(ii, u;) be the C*-subalgebra of Agj generated
by u,w. Then C*(u, w) = AQ, the irrational rotation C*-algebra corresponding to 6.

Let r be a tracial state on Agj induced by the Lebesgue measure on T2 in the usual
way. By Ji [4, Theorem 2.23], T* = tr» on KQ(AQJ) for any tracial state on Aej, where
r* and tr* are the homomorphisms of Ko{Aej) to R induced by r and tr.

Let p(l,l) be a projection M2(C(T2)) having trace 1 and twist —1, which is denned
in [5,11,16]. Let pe be a Rieffel projection in C*(u, w) with r(pg) = 9 defined in Rieffel
[15]. By the Pimsner-Voiculescu exact sequence, we see that

Ko(Agj) = Z]p0} 6 Z[l] © Z([l] - b(l , I)])-

We express an automorphism of KQ(AQJ) as an element in GL(3, Z) using the above
basis, where GL(3, Z) is the group of 3 x 3-matrices over Z with determinant ±1.

Lemma 2.1. With the above notation,

1
0
n

0
1
0

0'
0
e

range T,iei/ C < 0 1 0 \n e Z, e = ±1
{[n 0 ej

Proof. Let a £ Aut(Agj). Since a(l) = 1, we can suppose that

Mbfl]) = aubfl] +«2i[l] + a31([l] - b(l , !)])>

, 1)]) = aiabfll + O23[l] + a33([l] - b(l , 1)]).

where ajj € Z (i = 1,2,3, j = 1,3) represent the matrix coefficients of a* corresponding
to the basis described earlier. Since r* = T, O a» on /i'oC^e,/) and 6 is irrational, by a
routine calculation: an = 1, 021 = a^ = 023 = 0. Since a, G GL(3, Z), we obtain the
conclusion. •

Let a be the automorphism of Ae.j defined by a(u) = u, CT(Z;) = v and cr(u;) = wv.

Lemma 2.2. Let a be as above. Then

o* =

I
0
.1

0
1
0

0
0
1.
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on K0(Agj).

Proof. In the same way as in the proof of Packer [11, Proposition 2.3], we can prove
this lemma. •

3. Preliminaries on equivalence bimodules and crossed products

In this section we assume the reader to be familiar with equivalence bimodules and
unitarily covariant systems (see [2,10,14,15]).

We consider the following situation: let A be a unital C*-algebra and p a full projection
in some Mk{A). We denote Mk{A) by E. Let {dij}fj=1 be matrix units of Mk and regard
(1 <g> du)Ep as an ^4-p.Ep-equivalence bimodule in the usual way. Let (A, Z,a) be a
unitarily covariant system with respect to (1 <g> d\\)Ep. Let U be an automorphism of
(1 <8> d\\)Ep chosen so that for any x,y 6 E, c € A,

(1) (17(1 ® dn)xp, 17(1 ® dn)yp)A = a(((l ® dn)xp, (1 ® du)yp)A),

(2) UcU-1 = a(c).

We note that there is an automorphism /? of pEp such that for any b € pEp, (3{b) =
UbU~l by Packer [11, Theorem 1.2]. Let W be the unitary element in Mk such that
dij = W-%+ldiiWi-1 for i,j = l,2,...,k, and £/ the automorphism of Ep defined by

for any x € E and j = l,2,...,k. Let a be the automorphism of E defined by a = a®id
where id is the identity map of Mk-

Lemma 3.1. With the above notation we regard Ep as an E-pEp-equivalence bi-
module in the usual way. Then we have the following:

(1) (Uxp, Uyp)E = a{(xp, yp)B) for any x, y € E; and

(2) UcU-1 = a(c) for any ceE.

Proof. This can be proved by routine calculations. D

Let 1 ® dn and p be the E-valued functions on Z defined by

if n = 0, <»»»{o:elsewhere, r v [0, elsewhere.

Let A = K(Z,A) and B = K(Z,pEp) be the *-algebras of functions with compact
support from Z to A and pEp, respectively. Let X = K(Z, (1 <8> d\\)Ep) be the set of
functions with compact support from Z to (1 <g> dn)Ep. We define the left and right
actions of A and B and the .4-and B-valued inner products on X in the same way as
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in Combes [2] and Packer [10]. Upon suitably completing X we obtain the equivalence
bimodule, which shows that A xa Z and pEp Xp Z are strongly Morita equivalent by
Packer [10, Theorem 2.6]. We denote their equivalence bimodule by (1 ® dn)Ep xv Z.
We will show that (1 ® dn)Ep x y Z is isomorphic to (1 <g> dn)(E x& Z)p as left Hilbert
A xa Z-modules.

Let K{Z,E) be the *-algebra of functions with compact support from Z to E and
we identify K(Z, E) with the *-algebra of k x fc-matrices over A, which is denoted by
Mk{A). Since for any x € Mk{A) and any n £ Z,

n) = (1 ® dn)(xp)(n) = (1 ® du)x(n)UnpU-n,

we see that for any n 6 Z,

{{l®d\{)xp){n)Unp = (1 ®dn)x{n)Unp 6 (1 ®dn)Ep.

Let <? be the map of (1 <g> dn)Mk(A)p to A" defined by

for any x 6 Mfc(.A). By an easy computation, # is a left .4-module map, where we identify
(1 <g> du)Mfe(X)(l <g> dn) with A

Proposition 3.2. With the above notation, <P is an isomorphism of (1 <g> dn)(E x a

onto (1 ® dn)Ep Xy Z as left Hilbert A xQ Z-moduIes.

Proof. Using Lemma 3.1, by a routine calculation we see that for any n £ Z:

(£((1 <g> dn)zp),<2>((l ® du)yp))A(n) = ((1 ® rfn)xp, (l^d^i)yp)(igdrl)Mk(A)p(n).

Hence we obtain the conclusion, that is:

(1 <g> dn)(E x a Z)p S (1 ® rfu)^P xy Z.

D

4. Automorphisms of stable algebras of crossed products Ae,f

Let {etj}ij£z be matrix units of K. We know that

®K) = Z\pe ® e00] 8 Z[l ® e00] 0 Z([l ® e00] - [p(l, 1) ® e00]).

We express an automorphism of Ko(Aoj ®K) as an element in GL(3, Z) using the above
basis.

In this section we will construct an automorphism of Agj ® K from an equivalence
Agj-Ag j-bimodule. In the same way as in Packer [10, Example 2.8] we construct an
equivalence .Aej-.Ae
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Lemma 4.1. Let q and r be relatively prime integers with q,r > 0 and a,b integers
with ar + bq = l. Let X(q, a) be a left C{T2)-module defined in Rieffel [16, Notation 3.7].
Then (C(T2), Z,<f>gj) is a unitarily covariant system with respect to X(q,a).

Proof. Let g be the continuous function on R defined by, for any t S R,

Let Q be the linear map of X(q, a) denned by, for any h e X(q, a),

(Qh)(t, s) = eMs^h(t + 6, s + pt + f(t)).

Then Q € Aut(X(q, a)) and the necessary calculations to prove Lemma 4.1 are similar
to those in Packer [10,11]. We leave it to the reader. D

By the above lemma we can apply Packer [10, Theorem 2.6] and [11, Theorem 1.2]
to the equivalence bimodule X(q, a). By Rieffel [16, Theorem 3.1 and Proposition 3.8],
Endc(T2)(^(<7ia)) = Av, the rational rotation C*-algebra corresponding to r) = (r/q).
Hence, Agj and An x 7 Z are strongly Morita equivalent, where 7 is the automor-
phism of Av defined by, for any b G Av, 7(6) = QbQ~x. We denote by X(q, a) XQ Z
the Agj-Aj, x7 Z-equivalence bimodule obtained by Packer [10, Theorem 2.6].

Lemma 4.2. With the above notation, let V and W be unitary generators in Av

with WV = e2"iT>VW. Then 7(V) = e
2nil-e/<l)V, j{W) = ra^^W/C'lVW, where

K — e2m(pr/2q)(aq-ar+2) _

Proof. Since the proof is easy calculations, it is left to the reader. •

Proposition 4.3. With the above notation let 7 be the automorphism of Av defined
byj(V) = e

27ri(0/g)y, 7(W) = Ke2ni(-l/^fl-v'')VpW, where K = e^i(pr/2q)(.aq-ar+2)_ TheQ

Agj is strongly Morita equivalent to Av x7 Z.

Proof. This is immediate by Lemmas 4.1 and 4.2. D

Since X(q,d) is a finitely generated projective left C(T2)-module, there is a pro-
jection p(q,o) in some Mk{C{T2)) such that (1 <g> dn)Mk(C(T2))p(q,a) 3* X(q,a) as
left Hilbert C(T2)-modules, where {<4,}£,=i are matrix units of Mk. Hence, An =
p{q,a)Mk(C{T2))p(q,a). If we identify X(q,a) with (1 <g> dn)Mk{C{T2))p(q,a), we can
regard Q and 7 as an automorphism of (1 ® du)Mk(C(T2))p(q, a) and an automorphism
of p(q, a)Mk{C(T2))p(q,a), respectively. Therefore, by Proposition 4.3, Agj is strongly
Morita equivalent to p(q,a)Mk(C(T2))p(q, a) x 7 Z and (l®du)Mk(C(T2))p(q,a) xQZ
is their equivalence bimodule. By Proposition 3.2,

(l®du)Mk(C(T2))p(q,a)xQZ^(l®du)Mk(A0j)p(q,a),
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x7 Z.as left Hilbert Agj-modules. Thus we obtain that p(q, a)Mk(Agj)p(q, a) =
Put q = r = 1. Then a + b = 1 and r\ = {r/q) = 1 and K = 1. Thus Av = C{T2) and
7(V) =e

2ni9V, j(W) = e2nif(~v)VpW. Hence, Av x7 Z 2* C(T2) x 0 e / Z. Therefore,
p(l,a)Mfc(J4ej)p(l,a) = Agj, where a is any integer and b = 1 — a.

In the same way as in [6,8,9], we construct an automorphism of Ag j ® K from the
projection p(l, a). Since p(l, a) is a full projection in Mk(Agj), by Brown [1, Lemma 2.5],
there is a partial isometry w 6 M(Mk(Agj) <g> K) with w*u; = p(l,a) <S> 1, u;ty* =
1 <8> /fc ® 1, where /fe is the unit element in Mfe. Then Ad(xt;) is an isomorphism of
(p(l,a)<8>l)(Mfe(Ae,/)®-K')(p(l,a)®l) onto Mk(Agj)®K. Let ̂  be an isomorphism of
Mk(Aej)®K onto Agj®K with f/'* = id of ifo(-W*:(^0,/)®-^) onto Ko{Aej®K). Let
X be an isomorphism of Agj onto p(l, o)Mfc(j4ej/)p(l, a). Let /3a be an automorphism of
Agj <8> K defined by /3a = ip o j4d(it;) o ^ <g> id, where id is the identity map of i t .

Theorem 4.4. With the above notation,

"1
0
n

0
1

- a

0
0
e_

on ® -K"), where n € Z, e = 1 or —1.

Proof. We suppose that /?a, = [a^] 6 GL(3, Z). By the definition of /3a, in Ko(A$j)

/3a*([l ® eoo]) = V*([^(x(l) ® eoo)*o*]) = [p(l, a) ® e00].

By the definition of X(l ,a) , we see that \p(l,a)} = [1] - a([l) - [p(l, 1)]) in K0(C(r2)).
Since Ji'oCCCT'2)) is embedded injectively in K0(Agj), in ^ ( ^ e , / )

&•([! <S> e00]) = [1 ® eoo] - o([l ® e00] - [p(!» !) ® eoo])-

Thus, ai2 = 0, a22 = 1 and 032 = —a. In the same way as in the proof of [6, Theorem 2],
we see that r* = (r®Tr)» o/?a» on Ko(Agj), where Tr is the canonical trace on K. Since
T*i\pe\) = (T ® Tr), o Pa*(\pe]), 0 = an# + a2i. Hence a n = 1 and a2i = 0. Similarly,
since T,([1] - [p(l, 1)]) = (T ® Tr), o /?o,([l] - [p(l, 1)]), ai3 = a23 = 0. Thus,

1 0 0
0 1 0

CL31 —a O3

Since 0a* € GL(3, Z), a33 = ±1. Therefore, we obtain the conclusion. •

Remark 4.5. By the definition of p(l,a), we see that we can choose any integer a.
Hence, by Theorem 4.4, for any a £ Z, there is a 0a 6 Aut(Ag j <g> K) such that

Pa* =

on Ko(Agj ® -K"), where n £ Z depends on the integer a and e = 1 or —1.

'1
0
n

0
1
a

0
0
e
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5. The positive cones of ifcrgroups of Agtj

In this section, we will compute the positive cone of

173

Lemma 5.1. With the same notation as in § 4, for any x,y G Z, there is a (3(x, y) E
Aut(Agj ® K) such that

P(x,y)* =
'1
0
X

0
1

y

0
0
e

'1
0
_n

0
1

y

0"
0
e

on Ko(Aej ® K) and that e = 1 or —1.

Proof. By Remark 4.5. for any y € Z, there is a @y G Aut(Agj <g) K) such that

0v* =

on KQ(A$J ® K), where n G Z depends on the integer y and e = 1 or —1. And, by
Lemma 2.2, there is an otx-n € K\it(Agj) such that

' 1 0 0'
0 1 0

x-n 0 1

on Ko(A$j). Let /3(x, y) = ax_n ® id o(3y where id is the identity map of K. Then

0{x,y).=
1
0
X

0
1

y

0
0
e_

on K0(Agj ® K). Therefore we obtain the conclusion. D

Theorem 5.2. With tiieabovenotationieta[pe]+6[l]+c([l] — [p(l, 1)]) beanyeiement
in /^oC^e,/) where a, 6, c € Z. Then there are an r G N and a non-zero projection
q € Mr(Aej) such that [q] = a\pe] + b[l] + c([l] - [p(l, 1)]) if and only if ad + b > 0.

Proof. One direction is obvious, so we concentrate on the reverse implication. We
suppose that aO + b > 0. First we follow the method of Packer [11, Lemma 2.9]. Let d
be the greatest (positive) common divisor of a, b and c and write {a,b,c) = d(l,m,n),
where l,m,n have no common factor. Let j be the greatest (positive) common divisor of
/ and TO, and write (a,b,c) = d(jg,jh,n), where (g,h) = 1. We note that g0 + h > 0 since
ad + b = djgO + djh > 0, and that (j, n) = 1. Since Ko(C*(u, w)) is embedded injectively
in K0(Agj) and g0 + h > 0, there is a non-zero projection q(g,h,0) G Agj ® K such
that [q(g, h,0)] = g\pg ® eOo] + ^[1 <8> eOo] in K0{Agj <g> K). Since {g,h) = 1, there are
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x,y 6 Z such that xg + yh = 1. By Lemma 5.1, there is a f3(kx, ky) e Aut(Agj <g> K)
such that

'1 0 0]
0(kx,ky)t = 0 1 0

kx ky e]

on A'o(-^e,/<8>-K^), where e = 1 or —1. Let q(g,h,k) = /3(kx,ky)(q(g,h,0)) for any k E Z.
Then q(g, h, k) is a non-zero projection in Agj <2> K and in ifoC^g,/ <8> -K") [g(p, ft, fc)] =
0{kx, ky)t{[q(g, h, 0)]) = T [ s , ft, fc] since xg + yh = 1. If j = 1, let 9 = ©frfa, ft, n). Then
g is a non-zero projection in Md{Agj <g> X ) and [q] = a\pg ® eoo] + b[l <B> eoo] + c([l <g)
eoo] — [p(l> 1) ® eoo]) since (a, 6, c) = d(p, ft,n). Thus, there are an r G N and a non-zero
projection q € M r ( A 0 j ) such that in K0{Aej), [q] = a\pe] + b[l] + c([l] - [p(l, 1)]).
We suppose that j > 2. Then (a,b,c) = d{((j — l)g,(j — l)A,0) + (g,h,n)}. Since

j—l)h > 0, there is a non-zero projection q{(j—l)g, (j — l)h,Q) e AQJ®K such

ffii{9((j -1)9> (J ~ I) '1! 0) ®q(g, h, n)}. Then g is a non-zero projection in M2d(Aoj ®K)
and [q] = a\pe ® eOo] + ^[1 ® eOo] + c([l ® eOo] - [p(l, 1) <8> eoo]). Thus, there are an r e AT
and a non-zero projection q e M r ^ j , / ) such that [q] = a[pe] + 6[1] + c([l] — [p(l, 1)]) in

)- Therefore we obtain the conclusion. D
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