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Abstract. In this paper, we study the existence and concentration phenomena of
solutions for the following non-local regional Schrödinger equation{

ε2α(−�)αρu + Q(x)u = K(x)|u|p−1u, in �n,

u ∈ Hα(�n)

where ε is a positive parameter, 0 < α < 1, 1 < p < n+2α
n−2α

, n > 2α; (−�)αρ is a variational
version of the regional fractional Laplacian, whose range of scope is a ball with radius
ρ(x) > 0, ρ, Q, K are competing functions.

1. Introduction. The aim of this paper is to study the existence of ground state
solution for a non-linear Schrödinger equation with non-local regional diffusion and
competing potentials of the type

(P)

{
ε2α(−�)αρu + Q(x)u = K(x)|u|p−1u, in �n,

u ∈ Hα(�n),

where 0 < α < 1, ε > 0, n > 2α, Q, K ∈ C(�n, �+) are bounded and the operator
(−�)αρ is a variational version of the non-local regional fractional Laplacian, with
range of scope determined by a positive function ρ ∈ C(�n, �+), which is defined as∫

�n
(−�)αρu(x)ϕ(x)dx =

∫
�n

∫
B(0,ρ(x))

[u(x + z) − u(z)][ϕ(x + z) − ϕ(x)]
|z|n+2α

dzdx.

Recently, the study of problems involving fractional Schrödinger equations has
attracted much attention from many mathematicians. For example, when (−�)αρ is
replaced by (−�)α and ε = 1, Cheng [1] studied the existence of ground state solution
of non-linear fractional Schrödinger equation

(−�)αu + V (x)u = |u|p−1u in �n, (1)
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with unbounded potential. The existence of a ground state of (1) was obtained by
using Lagrange multiplier theorem on Nehari manifold. If V (x) = 1, Dipierro et al.
[4] proved existence and symmetry of ground state solutions of (1). Felmer et al. [5],
studied the same equation with a more general non-linearity f (x, u), they obtained the
existence, regularity and qualitative properties of ground states. Secchi [11] obtained
positive solutions of a more general fractional Schrödinger equation by critical point
theory and variational method. When ε �= 1, Chen and Zheng [2] showed that when n =
1, 2, 3, ε is sufficiently small, max{ 1

2 , n
4 } < α < 1 and Q satisfies some smoothness and

boundedness assumptions, the equation (P) has a non-trivial solution uε concentrated
to some single point as ε → 0. In [3], Dávila, del Pino and Wei generalized various
existence results of (P) with α = 1 to the fractional Laplacian. Moreover, we also
mention the works by Shang and Zhang [12, 13], where it was considered the non-
linear fractional Schrödinger equation with competing potentials

ε2α(−�)αu + V (x)u = K(x)|u|p−2u + Q(x)|u|q−2u, x ∈ �n, (2)

where 2 < q < p < 2∗
α. By using perturbative variational method, mountain pass

arguments and Nehari manifold method, they analyzed the existence, multiplicity
and concentration phenomena of solutions of the equation (2).

On the other hand, research has been done in recent years regarding regional
fractional Laplacian, where the scope of the operator is restricted to a variable region
near each point. We mention the work by Guan [8] and Guan and Ma [9] where they
studied these operators, their relation with stochastic processes, and the work by Ishii
and Nakamura [10], where the authors considered the Dirichlet problem for regional
fractional Laplacian modelled on the p-Laplacian.

Recently, Felmer and Torres [6, 7] established the existence of positive solution for
the non-linear Schrödinger equation with non-local regional diffusion

ε2α(−�)αρu + u = f (u), u ∈ Hα(�n), (3)

where the operator (−�)αρ is defined as above. Under suitable assumptions on the
non-linearity f and the range of scope ρ, they obtained the existence of a ground
state solution by mountain pass argument and a comparison method. Furthermore,
they analyzed symmetry properties and concentration phenomena of these solutions.
These regional operators present various interesting characteristics that make them
very attractive from the point of view of mathematical theory of non-local operators.
We also mention the recent works by Torres [14–16], where existence, multiplicity and
symmetry results were considered for related problems.

Motivated by these previous works, in the present paper, we intend to study the
existence and concentration behaviour of solutions for (P). We will prove the existence
of solutions that concentrate around a global minimum point of the ground state
energy function ξ �→ C(ξ ), where C(ξ ) is defined as being the mountain pass level of
the energy functional associated with the problem

(−�)αu + Q(ξ )u = K(ξ )|u|p−1u, x ∈ �n,

where ξ ∈ �n is regard as a parameter instead of an independent variable. Here, the
functions ρ, Q and K satisfy the following conditions:
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(H0) There are positive real numbers Q∞, K∞ such that

Q∞ = lim
|ξ |→+∞

Q(ξ ) and K∞ = lim
|ξ |→+∞

K(ξ ).

(H1) There are numbers 0 < ρ0 < ρ∞ ≤ ∞ such that

ρ0 ≤ ρ(ξ ) < ρ∞, ∀ξ ∈ �n and lim
|ξ |→∞

ρ(ξ ) = ρ∞.

(H2) Q, K : �n → � are continuous functions satisfying

0 < a1 ≤ Q(ξ ), K(ξ ) ≤ a2 ∀ξ ∈ �n,

for some positive constants a1, a2.
Before stating our main result, let us introduce more some notations. By

considering the change of variable x → εx, the problem (P) is equivalent to

(P′) (−�)αρε
v + Q(εx)v = K(εx)|v|p−1v, x ∈ �n,

where ρε = 1
ε
ρ(εx). Associated with (P′) we have the energy functional Iρε

: Hα(�n) →
� defined by

Iρε
(v) = 1

2

(∫
�n

∫
B(0, 1

ε
ρ(εx))

|v(x + z) − v(x)|2
|z|n+2α

+
∫

�n
Q(εx)|v(x)|2dx

)
−

1
p + 1

∫
�n

K(εx)|v(x)|p+1dx,

Hereafter, we say that v ∈ Hα(�n) is a weak solution of (P′) if v is a critical point of
Iρε

. Moreover, we say that v is a ground state solution of (P′) if

I ′
ρε

(v) = 0 and Iρε
(v) = Cρε

,

where Cρε
denotes the mountain pass level associated with Iρε

.

Now, we are ready to state the main result of this paper:

THEOREM 1.1. Assume (H0) − (H2). Then, if

(C) inf
ξ∈�n

C(ξ ) < lim inf
|ξ |→+∞

C(ξ ),

problem (P′) has a ground state solution uε ∈ Hα(�n) for ε small enough. Moreover, for
each sequence εm → 0, there is a subsequence such that for each m ∈ �, the solution uεm

concentrates around a minimum point ξ ∗ of the function C(ξ ), in the following sense:
given δ > 0, there are ε0, R > 0 such that∫

Bc(ξ∗,εmR)
|uεm |2 dx ≤ εn

mδ and
∫

B(ξ∗,εmR)
|uεm |2 dx ≥ εn

mC, ∀εm ≤ ε0,

where C is a constant independent of δ and m.
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We would like to point out that the condition (C) is not empty, because it holds
by supposing that there is ξ0 ∈ �n such that

(H3)
Q(ξ0)

p+1
p−1 − n

2α

K(ξ0)
2

p−1

<
Q

p+1
p−1 − n

2α

∞

K
2

p−1
∞

.

For more details, see Corollary 2.1 in Section 3.

2. Preliminary results. The main goal of this section is to study some properties
involving the function ξ �→ C(ξ ), which is the mountain pass level of the functional
Jξ : Hα(�n) → � given by

Jξ (u) = 1
2

(∫
�n

∫
�n

|u(x + z) − u(x)|2
|z|n+2α

dzdx +
∫

�n
Q(ξ )|u(x)|2dx

)

− 1
p + 1

∫
�n

K(ξ )|u(x)|p+1dx.

(4)

By using well-known arguments, Jξ ∈ C1(Hα(�n), �) and

J ′
ξ (u)v = 〈u, v〉ξ −

∫
�n

K(ξ )|u(x)|p−1u(x)v(x)dx, ∀ v ∈ Hα(�n),

where

〈u, v〉ξ =
∫

�n

∫
B(0,ρ(x))

[u(x + z) − u(x)][v(x + z) − v(x)]
|z|n+2α

dzdx +
∫

�n
Q(ξ )uvdx.

From this, it is clear that critical points of Jξ are weak solutions of

(−�)αu + Q(ξ )u = K(ξ )|u|p−1u, x ∈ �n. (5)

The same arguments explored in Willem [17, Chapter 4] work to prove that

0 < C(ξ ) = inf
u∈Nξ

Jξ (u),

where Nξ is the Nehari manifold defined by

Nξ = {u ∈ Hα(�n) \ {0} : J ′
ξ (u)u = 0}.

Moreover, the characterization below also occur

C(ξ ) = inf
v∈Hα (�n)\{0}

max
t>0

Jξ (tv) = inf
γ∈
ξ

max
t∈[0,1]

Jξ (γ (t)),

where


ξ = {γ ∈ C([0, 1], Hα(�n)) : γ (0) = 0, Jξ (γ (1)) < 0}.
By [5], we know that (5) has a non-trivial non-negative ground state solution, that

is, C(ξ ) is the least critical value of Jξ . Next, we will study the continuity of C(ξ ).
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LEMMA 2.1. The function ξ → C(ξ ) is continuous.

Proof. Let {ξr} ⊂ �n and ξ0 ∈ �n verifying

ξr → ξ0 in �n.

By using the conditions (H0) and (H2), we know that there are A1, B1 > 0 such that

0 < A1 ≤ C(ξ ) ≤ B1, ∀ξ ∈ �N,

showing that {C(ξr)} is a bounded sequence. Next, let vr ∈ Hα(�n) be a function that
satisfies

Jξr (vr) = C(ξr) and J ′
ξr

(vr) = 0.

In the sequel, we will consider two sequences {ξrj } and {ξrk} such that

C(ξrj ) ≥ C(ξ0), ∀rj (I)

and

C(ξrk ) ≤ C(ξ0), ∀rk. (II)

Analysis of (I): Using the fact that {C(ξrj )} is bounded, there are {ξrj i
} ⊂ {ξrj } and C0 > 0

such that

C(ξrj i
) → C0.

By using the notations

vi = vrj i
and ξi = ξrj i

,

it follows that

ξi → ξ0 and C(ξi) → C0.

Claim A: C0 = C(ξ0).
From (I),

lim
i

C(ξi) ≥ C(ξ0),

and so,

C0 ≥ C(ξ0). (6)

Now, we are going to prove that C0 ≤ C(ξ0). To this end, let w0 ∈ Hα(�n) be a function
satisfying

Jξ0 (w0) = C(ξ0) and J ′
ξ0

(w0) = 0

and ti > 0 be a real number satisfying

Jξi (tiw0) = max
t≥0

Jξi (tw0).
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From definition of C(ξi),

C(ξi) ≤ Jξi (tiw0).

We claim that {ti} is a bounded sequence. In fact, by definition of ti we have

t2
i ‖w0‖2

ξi
= tp+1

i

∫
�n

K(ξi)|w0(x)|p+1dx. (7)

Now for each i ∈ �, two things can be happen

0 < ti ≤ 1 or ti > 1.

We suppose that there is i0 > 0 such that

ti > 1, ∀ i ≥ i0,

otherwise {ti} would be limited. Fixing μ ∈ (2, p + 1), we derive that∫
�n

tp+1
i K(ξi)|w0(x)|p+1dx ≥ μ

p + 1

∫
�n

tp+1
i K(ξi)|w0(x)|p+1dx

≥ μ

p + 1

∫
�n

tμi K(ξi)|w0(x)|p+1dx.

Consequently,

t2
i ‖w0‖2

ξi
= tp+1

i

∫
�n

K(ξi)|w0(x)|p+1dx ≥ μ

p + 1

∫
�n

tμi K(ξi)|w0(x)|p+1dx,

or yet

tμ−2
i ≤ (p + 1)‖w0‖2

ξi

μ
∫

�n K(ξi)|w0(x)|p+1dx
→ (p + 1)‖w0‖2

ξ0

μ
∫

�n K(ξ0)|w0(x)|p+1dx
as i → ∞,

which is absurd, because tμ−2
i → +∞. Therefore, {ti} be a bounded sequence. Then

without loss of generality, we can assume that ti → t0. This limit combined with the
Lebesgue’s Theorem provides

lim
i

Jξi (tiw0) = Jξ0 (t0w0) ≤ Jξ0 (w0) = C(ξ0),

leading to

C0 ≤ C(ξ0). (8)

From (6)–(8),

C(ξ0) = C0.

The above study implies that

lim
i

C(ξrj i
) = C(ξ0).
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Analysis of (II): By the definition of {vr},(
1
2

− 1
p + 1

)
‖vr‖2

ξr
= Jξr (vr) − 1

p + 1
J ′

ξr
(vr)vr ≤ C(ξr) + C‖vr‖ξr ,

from where it follows that {vr} is a bounded sequence in Hα(�n). Consequently, there
is v0 ∈ Hα(�n) such that

vr ⇀ v0 in Hα(�n).

By using [6, Lemma 2.1], we can assume that v0 �= 0, because for any sequence of the
type ṽr(x) = vr(x + yr) also satisfies

Jξr (ṽr) = C(ξr) and J ′
ξr

(ṽr) = 0.

The above information permits to conclude that v0 is a non-trivial solution of the
problem

(−�)αu + Q(ξ0)u = K(ξ0)|u|p−1u in �n. (9)

By Fatous’ lemma, it is possible to prove that

lim inf
r

Jξr (vr) ≥ Jξ0 (v0). (10)

On the other hand, there is sr > 0 such that

C(ξr) ≤ Jξr (srv0), ∀r.

Thus,

lim sup
r

Jξr (vr) = lim sup
r

C(ξr) ≤ lim sup
r

Jξr (srv0) = Jξ0 (v0). (11)

From (10)–(11), we get the limit below

lim
r

Jξr (vr) = Jξ0 (v0),

which leads to∫
�n

∫
�n

|vr(x + z) − vr(x)|2
|z|n+2α

dzdx →
∫

�n

∫
�n

|v0(x + z) − v0(x)|2
|z|n+2α

dzdx

and ∫
�n

Q(ξr)|vr(x)|2dx →
∫

�n
Q(ξr0 )|v0(x)|2dx.

Since vr ⇀ v0 in Hα(�n), the above limits ensure that

vr → v0 in Hα(�n).

On the other hand, as {C(ξrj )} is bounded, there are a subsequence {ξrj k
} ⊂ {ξrj } and

C∗ > 0 such that

C(ξrj k
) → C∗.
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Setting the notations

vk = vrj k
and ξk = ξrj k

,

we have

vk → v0, ξk → ξ0 and C(ξk) → C∗.

In what follows, we denote by tk > 0 the real number that verifies

Jξ0 (tkvk) = max
t≥0

Jξ0 (tvk).

Thus, by definition of C(ξ0),

C(ξ0) ≤ Jξ0 (tkvk).

It is possible to prove that {tk} is a bounded sequence, then without loss of generality,
we can assume that tk → t∗. This limit together with the Lebesgue’s Theorem gives

lim
k

Jξ0 (tkvk) = Jξ0 (t∗v0) = lim
k

Jξk (tkvk) ≤ lim
k

C(ξk) = C∗,

implying that

C(ξ0) ≤ C∗. (12)

On the other hand, from (II),

lim
k

C(ξk) ≤ C(ξ0),

leading to

C∗ ≥ C(ξ0). (13)

From (12)–(13),

C∗ = C(ξ0).

The above analyze guarantees that

lim
k

C(ξnj k
) = C(ξ0).

From (I) and (II),

lim
r

C(ξr) = C(ξ0),

showing the lemma. �
In the next lemma, D denotes the mountain level of the functional J : Hα(�n) → �

given by

J(u) = 1
2

(∫
�n

∫
�n

|u(x) − u(z)|2
|x − z|n+2α

dzdx +
∫

�n
|u(x)|2dx

)
− 1

p + 1

∫
�n

|u|p+1dx.
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LEMMA 2.2. The function C(ξ ) verifies the equality

C(ξ ) = Q(ξ )
p+1
p−1 − n

2α

K(ξ )
2

p−1

D, ∀ξ ∈ �n. (14)

Proof. Let u ∈ Hα(�n) be a function verifying

J(u) = D and J ′(u) = 0.

For each ξ ∈ �n fixed, let σ 2α = 1
Q(ξ ) and define

w(x) =
[

Q(ξ )
K(ξ )

] 1
p−1

u(
x
σ

).

A simple change of variable gives

Jξ (w) = Q(ξ )
2

(
σ 2α

∫
�n

∫
�n

|w(x + z) − w(x)|2
|z|n+2α

dzdx +
∫

�n
|w|2dx

)
− 1

p + 1

∫
�n

K(ξ )|w|p+1dx

= Q(ξ )
p+1
p−1

K(ξ )
2

p−1

[(
σ 2α

2

∫
�n

∫
�n

|u( x
σ

+ z
σ

) − u( x
σ

)|2
|z|n+2α

dzdx + 1
2

∫
�n

|u(
x
σ

)|2dx

)]

− Q(ξ )
p+1
p−1

K(ξ )
2

p−1

[
1

p + 1

∫
�n

|u(
x
σ

)|p+1dx
]

= Q(ξ )
p+1
p−1 − n

2α

K(ξ )
2

p−1

J(u).

The same type of argument yields J ′
ξ (w)(w) = 0, from where it follows

C(ξ ) ≤ Q(ξ )
p+1
p−1 − n

2α

K(ξ )
2

p−1

D, ∀ξ ∈ �n. (15)

On the other hand, taking w ∈ Hα(�n) such that

Jξ (w) = C(ξ ) and J ′
ξ (w) = 0.

and

u(x) =
[

K(ξ )
Q(ξ )

] 1
p−1

w(σx),

we can show that

J(u) ≤ K(ξ )
2

p−1

Q(ξ )
p+1
p−1 − n

2α

Jξ (w),
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that is,

Q(ξ )
p+1
p−1 − n

2α

K(ξ )
2

p−1

D ≤ C(ξ ) ∀ξ ∈ �n. (16)

By (15) and (16), we get (14)
�

As a byproduct of the last proof, we have the following corollary

COROLLARY 2.1. Assume (H3). Then,

inf
ξ∈�n

C(ξ ) < lim inf
|ξ |→+∞

C(ξ ) = C(∞),

where C(∞) is the mountain pass level of the functionals J∞ : Hα(�n) → � given by

J∞(u)= 1
2

(∫
�n

∫
�n

|u(x) − u(z)|2
|x − z|n+2α

dzdx +
∫

�n
Q∞|u|2dx

)
− 1

p + 1

∫
�n
K∞|u|p+1dx.

3. Ground state solution. By using the studies made in the previous section, we
are going to prove that Cρε

is a critical level for Iρε
for ε small enough, that is, there is

uε ∈ Hα(�n) satisfying

Iρε
(uε) = Cρε

and I ′
ρε

(uε) = 0.

The function uε that verifies the above equality is called a ground state solution of (P′).
From now on, we are considering in Hα(�n) the following norm

‖v‖ρε
=

(∫
�n

∫
B(0,ρε (x))

|v(x + z) − v(x)|2
|z|n+2α

dzdx +
∫

�n
Q(εx)|v(x)|2dx

) 1
2

,

which is equivalent the usual norm of Hα(�n), more precisely, there exists a constant
S > 0 independent of ε such that

‖u‖ρε
≤ ‖u‖ ≤ S‖u‖ρε

, ∀u ∈ Hα(�n). (17)

For more details about this subject see [6, Proposition 2.1]. This fact combined with
the embeddings given in [6, Theorem 2.1] ensures that Iρε

∈ C1(Hα(�n), �) with

I ′
ρε

(u)v = 〈u, v〉ρε
−

∫
�n

K(εx)|u(x)|p−1u(x)v(x)dx, ∀ v ∈ Hα(�n),

where

〈u, v〉ρε
=

∫
�n

∫
B(0,ρε (x))

[u(x + z) − u(x)][v(x + z) − v(x)]
|z|n+2α

dzdx +
∫

�n
Q(εx)uvdx.

Using well-known arguments, it is possible to show that Iρε
verifies the mountain

pass geometry. Then, there is a (PS)c sequence {uk} ⊂ Hα(�n) such that

Iρε
(uk) → Cρε

and I ′
ρε

(uk) → 0, (18)

450

https://doi.org/10.1017/S0017089518000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000289


EXISTENCE AND CONCENTRATION OF SOLUTION

where Cρε
is the mountain pass level given by

Cρε
= inf

γ∈
ρε

sup
t∈[0,1]

Iρε
(γ (t)) > 0,

with


ρε
= {γ ∈ C([0, 1], Hα(�n)) : γ (0) = 0, Iρε

(γ (1)) < 0}.

In the sequel, Nρε
denotes the Nehari manifold associated to the functional Iρε

, that is,

Nρε
= {u ∈ Hα(�n)\{0} : I ′

ρε
(u)u = 0}.

It is easy to see that all non-trivial solutions of (P′) belongs to Nρε
. Moreover, by

applying standard arguments, it is possible to prove the equality below

Cρε
= inf

u∈Nρε

Iρε
(u), (19)

and the existence of β > 0, which is independent of ε, such that

β ≤ ‖u‖2
ρε

, ∀u ∈ Hα(�n). (20)

From (19), if Cρε
is a critical value of Iρε

then it is the least energy critical value of
Iρε

.
The next lemma studies the behaviour of function Cρε

when ε goes to 0.

LEMMA 3.1. lim sup
ε→0

Cρε
≤ inf

ξ∈�n
C(ξ ). Hence, lim sup

ε→0
Cρε

< C(∞).

Proof. Fix ξ0 ∈ �N and w ∈ Hα(�n) with

Jξ0 (w) = max
t≥0

Jξ0 (tw) = C(ξ0) and J ′
ξ0

(w) = 0,

where

Jξ0 (u) = 1
2

(∫
�n

∫
�n

|u(x) − u(z)|2
|x − z|n+2α

dzdx +
∫

�n
Q(ξ0)|u(x)|2dx

)
− 1

p + 1

∫
�n

K(ξ0)|u|p+1dx.

Then, we set ŵε(x) = w(x − ξ0
ε

) and tε > 0 satisfying

Cρε
≤ Iρε

(tεŵε) = max
t≥0

Iρε
(tŵε).
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The change of variable x̃ = x − ξ0
ε

gives

Iρε
(tεŵε) = t2

ε

2

(∫
�n

∫
B(0, 1

ε
ρ(εx))

|ŵε(x + z) − ŵε(x)|2
|z|n+2α

dxdx +
∫

�n
Q(εx)ŵ2

ε (x)dx

)

− tp+1
ε

p + 1

∫
�n

K(εx)|ŵε |p+1(x)dx

= t2
ε

2

(∫
�n

∫
B(0, 1

ε
ρ(εx̃+ξ0))

|w(x̃ + z) − w(x̃)|2
|z|n+2α

dzdx̃ +
∫

�n
Q(εx̃ + ξ0)w2(x̃)dx̃

)

− tp+1
ε

p + 1

∫
�n

K(εx̃ + ξ0)|w|p+1(x̃)dx̃.

On the other hand, for any sequence εn → 0, the equality I ′
ρεn

(tεnŵεn )(tεnŵεn ) = 0 yields
{tεn} is bounded. Thus, we can assume that

tεn → t∗ > 0,

for some t∗ > 0. Thereby, taking the limit of n → +∞, we can infer that

J ′
ξ0

(t∗w)(t∗w) = 0.

On the other hand, we know that J ′
ξ0

(w)(w) = 0, then we must have

t∗ = 1.

From this,

Iρεn
(tεnŵεn ) → Jξ0 (w) = C(ξ0) as ε → 0.

As the point ξ0 ∈ �n is arbitrary, the lemma is proved. �

THEOREM 3.1. For ε > 0 small enough, the problem (P′) has a ground state solution.

Proof. In what follows, {uk} ⊂ Hα(�N) is a sequence satisfying

Iρε
(uk) → Cρε

and I ′
ρε

(uk) → 0.

If uk ⇀ 0 in Hα(�N), then

uk → 0 in Lp
loc(�

n) for p ∈ [2, 2∗
α). (21)

By (H0), we can take δ, R > 0 such that

Q∞ − δ ≤ Q(x) ≤ Q∞ + δ and K∞ − δ ≤ K(x) ≤ K∞ + δ, (22)
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for all |x| ≥ R. Then, for all t ≥ 0,

Iρε
(tuk) = Iδ

ε,∞(tuk) + t2

2

∫
�n

[Q(x) − Q∞ + δ]|uk(x)|2dx

+ tp+1

p + 1

∫
�n

[K∞ + δ − K(x)]|uk(x)|p+1dx

≥ Iδ
ε,∞(tuk) + t2

2

∫
B(0, R

ε
)
[Q(x) − Q∞ + δ]|uk(x)|2dx

+ tp+1

p + 1

∫
B(0, R

ε
)
[K∞ + δ − K(x)]|uk(x)|p+1dx,

where

Iδ
ε,∞(u) = 1

2

(∫
�n

∫
B(0, 1

ε
ρ(εx))

|u(x + z) − u(x)|2
|z|n+2α

dxdx +
∫

�n
(Q∞ − δ)|u(x)|2dx

)

− 1
p + 1

∫
�n

(K∞ + δ)|u(x)|p+1dx.

In the sequel, we fix τk > 0 satisfying

Iδ
ε,∞(τkuk) ≥ C(

ρ(εx)
ε

, Q∞ − δ, K∞ + δ),

where

C(
ρ(εx)

ε
, Q∞ − δ, K∞ + δ) = inf

v∈Hα (�n)\{0}
sup
t≥0

Iδ
ε,∞(tv).

Since Q(x) − Q∞ + δ, K∞ + δ − K(x) are continuous in B(0, R
ε

), then there exists
positive constants CQ, Ck, such that

Cρε
≥ C(

ρ(εx)
ε

, Q∞ − δ, K∞ + δ) + τ 2
k

2

∫
B(0, R

ε
)
[Q(x) − Q∞ + δ]|uk(x)|2dx

+ τ
p+1
k

p + 1

∫
B(0, R

ε
)
[K∞ + δ − K(x)]|uk(x)|p+1dx

≥ C(
ρ(εx)

ε
, Q∞ − δ, K∞ + δ) + τ 2

k CQ

2

∫
B(0, R

ε
)
|uk(x)|2

+ τ
p+1
k CK

p + 1

∫
B(0, R

ε
)
|uk(x)|p+1dx.

Then by (21), taking the limit as k → ∞, and after δ → 0, we find

Cρε
≥ C(

ρ(εx)
ε

, Q∞, K∞), (23)
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where C( ρ(εx)
ε

, Q∞, K∞) designates the mountain pass level of the functional

I0
ε,∞(u) = 1

2

(∫
�n

∫
B(0, 1

ε
ρ(εx))

|u(x + z) − u(x)|2
|z|n+2α

dzdx +
∫

�n
Q∞|u|2dx

)
−

1
p + 1

∫
�n

K∞|u|p+1dx.

Now note that

I0
ε,∞(tu) = J∞(tu) − 1

2

∫
�n

∫
�n\B(0, 1

ε
ρ(εx))

|tu(x + z) − tu(x)|2
|z|n+2α

dzdx,

for t ≥ 0, and we estimate the second term on the right. First, we see that for any ε > 0
and t̄, there exists R > 0 such that∫

Bc(0, R
ε

)

∫
Bc(0, 1

ε
ρ(εx))

|tu(x + z) − tu(x)|2
|z|n+2α

dzdx ≤ ε, (24)

for all t ∈ [0, t̄]. In fact, by our assumption, for any M > 0, exists R > 0 such that, for
|x| > R

ε
we have that ρ(εx) > M. From here, using Fubini’s theorem we have

∫
Bc(0, R

ε
)

∫
Bc(0, 1

ε
ρ(εx))

|tu(x + z) − tu(x)|2
|z|n+2α

dzdx

≤
∫

Bc(0, M
ε

)

∫
Bc(0, R

ε
)

|tu(x + z) − tu(x)|2
|z|n+2α

dxdz

≤
∫

Bc(0, M
ε

)

∫
�n

|tu(x + z) − tu(x)|2
|z|n+2α

dxdz

≤ 2t̄2|Sn−1|
αM2α

‖u‖2
L2(�n)ε

2α,

from were we conclude (24) choosing R > 0 large enough. From now on we fix R > 0
large enough. Next, we prove that

lim
ε→0

∫
B(0, R

ε
)

∫
Bc(0, 1

ε
ρ(εx))

|tu(x + z) − tu(x)|2
|z|n+2α

dzdx = 0, (25)

for all t ∈ [0, t̄]. In fact, by (H1) there exists ρ0 > 0 such that ρ(εx) ≥ ρ0 for all x ∈ �n,
so that∫

B(0, R
ε

)

∫
Bc(0, 1

ε
ρ(εx))

|tu(x + z) − tu(x)|2
|z|n+2α

dzdx

≤
∫

Bc(0,
ρ0
ε

)

∫
B(0, R

ε
)

|tu(x + z) − tu(x)|2
|z|n+2α

dxdz ≤ 2t̄2|Sn−1|
αρ2α

0

‖u‖2
L2(B(0, R

ε
))ε

2α,

(26)
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and we obtain (25) by (26). Thus, by (24) and (26)

I0
ε,∞(tu) ≥ J∞(tu) − ε −

∫
B(0, R

ε
)

∫
Bc(0, 1

ε
ρ(εx))

|tu(x + z) − tu(x)|2
|z|n+2α

dzdx.

Now let ũ ∈ Hα(�n) such that I0
ε,∞(ũ) = C( ρ(εx)

ε
, Q∞, K∞), then, if we choose t = t∗

such that J∞(t∗ũ) = maxt≥0 J∞(tũ) then we see that

C(
ρ(εx)

ε
, Q∞, K∞) ≥ C(∞) − ε,

then

lim inf
ε→0

C(
ρ(εx)

ε
, Q∞, K∞) ≥ C(∞).

Therefore, if there is sequence εn → 0 such that the (PS)Cρεn
sequence has weak limit

equal to zero, we must have

Cρεn
≥ C(

ρ(εnx)
εn

, Q∞, K∞), ∀n ∈ �,

leading to

lim inf
n→+∞ Cρεn

≥ C(∞),

which contradicts Lemma 3.1. This proves that the weak limit is non-trivial for ε > 0
small enough and standard arguments show that its energy is equal to Cρε

, showing
the desired result. �

4. Concentration of the solutions uε .

LEMMA 4.1. If uε is the ground state solution of (P′) obtained in the last section, then
there exists a family {yε} ⊂ �n and positive constants R and β1 such that

lim inf
ε→0+

∫
B(yε ,R)

|uε |2 dx ≥ β1 > 0. (27)

Proof. First of all, by (H1) and (H2),

Iρε
(v) ≥ I∗(v) = 1

2

(∫
�n

∫
B(0,ρ0)

|v(x + z) − v(x)|2
|z|n+2α

dzdx +
∫

�n
a1|v|2dx

)
− 1

p + 1

∫
�n

a2|u|p+1dx, ∀v ∈ Hα(�n).

Since there exists unique tε > 0 such that

tεuε ∈ N∗ = {v ∈ Hα(�n) \ {0} : I ′
∗(v)v = 0},

it follows that

0 < C(ρ0, a1, a2) = inf
v∈N∗

I∗(v) ≤ I∗(tεuε) ≤ Iρε
(tεuε) ≤ Iρε

(uε) = Cρε
. (28)
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Now, arguing by contradiction, if (27) does not hold, it would exist a sequence uk = uεk

such that

lim
k→∞

sup
y∈�n

∫
B(y,R)

|uk|2dx = 0.

By [6, Lemma 2.1], vk → 0 in Lq(�n) for any 2 < q < 2∗
α. However, this is impossible,

because by (28)

0 < C(ρ0, a1, a2) ≤ Cρε
= Iρε

(vε) − 1
2

I ′
ρε

(vε)vε

= p − 1
2(p + 1)

∫
�n

K(εx)|vε |p+1dx

≤ p − 1
2(p + 1)

∫
�n

a2|vε |p+1dx → 0, as k → ∞.

�
From now on, we set

wε(x) = uε(x + yε). (29)

Then, by (27),

lim inf
ε→0+

∫
B(0,R)

|wε |2dx ≥ β1 > 0. (30)

To continue, we consider the rescaled scope function ρε defined by

ρ̄ε(x) = 1
ε
ρ(εx + εyε).

Using this function, it follows that wε is a solution of the equation

(−�)αρε
wε(x) + Q(εx + εyε)wε(x) = K(εx + εyε)|wε(x)|p−1wε(x), in �n. (31)

LEMMA 4.2. The sequence {εyε} is bounded. Moreover, if εmyεm → ξ ∗, then

C(ξ ∗) = inf
ξ∈�n

C(ξ ).

Proof. Suppose by contradiction that |εmyεm | → ∞ and consider the function wεm

given in (29), which satisfies (31). Since {Cρεm
} is bounded, the sequence {wm} is also

bounded in Hα(�n). Then, wm ⇀ w in Hα(�n), and w �= 0 by Lemma 4.1. Now, by
(31), we have the equality∫

�n

∫
B(0, 1

εm
ρ(εmx+εmyεm ))

[wm(x + z) − wm(x)][w(x + z) − w(x)]
|z|n+2α

dzdx

+
∫

�n
Q(εmx + εmyεm )wmwdx =

∫
�n

K(εmx + εmyεm )|wm|p−1wmwdx.
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This equality combines with Fatou’s Lemma to give

∫
�n

∫
�n

|w(x + z) − w(x)|2
|z|n+2α

dzdx +
∫

�n
Q∞|w|2dx ≤

∫
�n

K∞|w|p+1dx. (32)

Let θ > 0 such that

J∞(θw) = max
t≥0

J∞(tw).

From (32), θ ∈ (0, 1]. Thus,

C(∞) ≤ J∞(θw) − 1
2

J ′
∞(θw)θw =

(
1
2

− 1
p + 1

)
θp+1

∫
�n

K∞|w(x)|p+1dx

≤
(

1
2

− 1
p + 1

) ∫
�n

K∞|w(x)|p+1dx

≤
(

1
2

− 1
p + 1

)
lim inf

m→∞

∫
�n

K(εmx + εmyεm )|wm(x)|p+1dx

= lim inf
m→∞ Cρεm

< C(∞),

which is a contradiction, showing that {εyε} is bounded. Hence, there exists a
subsequence of {εyε} such that εmyεm → ξ ∗.

Repeating the above arguments for the function

wm(x) = vεm (x + yεm ) = uεm (εmx + εmyεm ),

we have that this function satisfies the equation (31), and again {wm} is bounded in
Hα(�n). Then, wm ⇀ w in Hα(�n) and w satisfies the equation below

(−�)αw + Q(ξ ∗)w = K(ξ ∗)|w|p−1w, x ∈ �n, (33)

in the weak sense. Furthermore, associated with (33), we have the energy functional

Jξ∗ (u) = 1
2

(∫
�n

∫
�n

|u(x + z) − u(x)|2
|z|n+2α

dzdx +
∫

�n
Q(ξ ∗)|u(x)|2dx

)
− 1

p + 1

∫
�n

K(ξ ∗)|u(x)|p+1dx.

Using w as a test function in (31) and taking the limit of m → +∞, we get

∫
�n

∫
�n

|w(x + z) − w(x)|2
|z|n+2α

dzdx +
∫

�n
Q(ξ ∗)|w|2dx ≤

∫
�n

K(ξ ∗)|w|p+1dx,
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which implies that there exists θ ∈ (0, 1] such that Jξ∗ (θw) = maxt≥0 Jξ∗ (tw). So, by
Lemma 3.1,

C(ξ ∗) ≤ Jξ∗ (θw) =
(

1
2

− 1
p + 1

)
θp+1

∫
�n

K(ξ ∗)|w(x)|p+1dx

≤
(

1
2

− 1
p + 1

)
lim inf

m→∞

∫
�n

K(εmx + εmyεm )|wm(x)|p+1dx

= lim inf
m→∞ [Iρεm

(vεm ) − I ′
ρεm

(vεm )vεm ]

= lim inf
m→∞ Cρεm

≤ lim sup
m→∞

Cρεm
≤ inf

ξ∈�n
C(ξ ),

showing that C(ξ ∗) = inf
ξ∈�n

C(ξ ). �

Now we prove the convergence of wε as ε → 0.

LEMMA 4.3. For every sequence {εm} there is a subsequence, we keep calling the same,
so that wεm = wm → w in Hα(�n).

Proof. Since w is a solution of (33), from Lemma 3.1,

inf
ξ∈�n

C(ξ ) = C(ξ ∗) ≤ Jξ∗ (w) = Jξ∗ (w) − 1
2

J ′
ξ∗ (w)w

=
(

1
2

− 1
p + 1

)∫
�n

K(ξ ∗)|w|p+1dx

≤
(

1
2

− 1
p + 1

)
lim inf

m→∞

∫
�n

K(εmx + εmyεm )|wm|p+1dx

≤
(

1
2

− 1
p + 1

)
lim sup

m→∞

∫
�n

K(εmx + εmyεm )|wm|p+1dx

=
(

1
2

− 1
p + 1

)
lim sup

m→∞

∫
�n

K(εmx)|vm|p+1dx

≤ lim sup
m→∞

(
Iρεm

(vm) − 1
p + 1

I ′
ρεm

(vm)vm

)
= lim sup

m→∞
Cρεm

≤ inf
ξ∈�n

C(ξ ).

The above inequalities lead to

lim
m→∞

∫
�n

K(εmx + εmyεm )|wm|p+1dx =
∫

�n
K(ξ ∗)|w|p+1dx.

Consequently,

(a) lim
m→∞

∫
�n

∫
�n

|wm(x + z) − wm(x)|2
|z|n+2α

dzdx =
∫

�n

∫
�n

|w(x + z) − w(x)|2
|z|n+2α

dzdx

(b) lim
m→∞

∫
�n

Q(εmx + εmyεm )|wm(x)|2dx =
∫

�n
Q(ξ ∗)|w(x)|2dx.
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From (b), given δ > 0 there exists R > 0 such that∫
|x|≥R

Q(εmx + εmyεm )|wm(x)|2dx ≤ δ.

This together with (H2) gives ∫
|x|≥R

|wm(x)|2dx ≤ δ

a1
. (34)

On the other hand,

lim
m→∞

∫
|x|≤R

|wm(x)|2dx =
∫

|x|≤R
|w(x)|2dx. (35)

From (34) and (35), wm → w in L2(�n). From this, given δ > 0 there are ε0, R > 0 such
that ∫

Bc(x∗,εmR)
|uεm |2 dx ≤ εn

mδ and
∫

B(x∗,εmR)
|uεm |2 dx ≥ εn

mC, ∀εm ≤ ε0,

where C is a constant independent of δ and m, showing the concentration of the
solutions {uεn}. �
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