
Bull. Aust. Math. Soc. 107 (2023), 349–350
doi:10.1017/S0004972722001642

RATIONAL AND GENERALISED RATIONAL CHEBYSHEV
APPROXIMATION PROBLEMS AND THEIR APPLICATIONS

VINESHA PEIRIS

(Received 28 November 2022; first published online 13 January 2023)

2020 Mathematics subject classification: primary 65K10; secondary 65D15, 65K05, 68T07, 90C05,
90C47, 90C90.

Keywords and phrases: rational approximation, generalised rational approximation, quasiconvex
optimisation, Chebyshev approximation, data analysis, deep learning, neural networks.

In Chebyshev (uniform) approximation, the goal is to minimise the maximum devi-
ation of the approximation from the original function. Classical rational Chebyshev
approximation is formed as a ratio of two polynomials (monomial basis). It is a flexible
alternative to extensively studied uniform polynomial and piecewise polynomial
approximations. In particular, rational functions exhibit accurate approximations to
nonsmooth and non-Lipschitz functions, where the polynomial approximations are not
efficient.

Optimisation problems appearing in univariate rational Chebyshev approximations
are quasiconvex. Moreover, this property remains valid when the basis functions are
not restricted to monomials (generalised rational Chebyshev approximation) and also
in the case of multivariate settings.

In this research, we provide an extensive study of the optimisation problems, their
extensions and results of numerical experiments, and a comparison with existing
methods. We mainly use two methods to find the optimal solution: bisection method for
quasiconvex optimisation and the differential correction method. In both methods, the
auxiliary subproblems can be reduced to solving linear programming problems when
the domain is discrete. The differential correction method has better computational
properties in the case of univariate rational approximations with monomial basis
functions. At the same time, the bisection method is more attractive when one needs
to extend it to a broader class of approximations, including approximations with
nonmonomial basis functions and multivariate settings. Moreover, it can be extended
to approximations which are quasiaffine with respect to its parameters.
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This research has many potential applications, in particular, in the area of data
analysis, deep learning and some engineering applications. The flexibility of rational
approximation makes it attractive for matrix function tasks. Matrix functions prove
to be an efficient tool in applications such as solving ordinary differential equations
(ODEs), engineering models, image denoising and graph neural networks.

We also use rational and generalised rational approximation as a preprocessing
step to deep learning classifiers and demonstrate that the classification accuracy is
significantly improved compared to the classification of the raw signals.

We investigate the potential for using a uniform norm-based loss function in the
training of an artificial neural network. This leads to superior classification results
in some special cases where the training data are reliable but limited in size or
if the dataset contains under-represented classes. We also investigate the use of a
uniform norm-based loss function from the quasidifferential standpoint. Furthermore,
we incorporate rational functions as activation functions in a neural network.

Some of this research has been published in [1–6].
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