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Over a decade of intense research in the field of obesity has led to the knowledge that chronic,
excessive adipose tissue expansion leads to an increase in the risk for CVD, type 2 diabetes
mellitus and cancer. This is primarily thought to stem from the low-grade, systemic inflam-
matory response syndrome that characterises adipose tissue in obesity, and this itself is thought
to arise from the complex interplay of factors including metabolic endotoxaemia, increased
plasma NEFA, hypertrophic adipocytes and localised hypoxia. Plasma concentrations of
vitamins and antioxidants are lower in obese individuals than in the non-obese, which is
hypothesised to negatively affect the development of inflammation and disease in obesity. This
paper provides a review of the current literature investigating the potential of nutraceuticals to
ameliorate the development of oxidative stress and inflammation in obesity, thereby limiting
the onset of obesity complications. Research has found nutraceuticals able to positively
modulate the activity of adipocyte cell lines and further positive effects have been found
in other aspects of pathogenic obesity. While their ability to affect weight loss is still
controversial, it is clear that they have a great potential to reverse the development of over-
weight and obesity-related comorbidities; this, however, still requires much research especially
that utilising well-structured randomised controlled trials.

Nutraceuticals: Polyphenols: Obesity: Inflammation: Adipose tissue

Obesity is considered the epidemic of the 21st century
and worldwide in 2008 approximately 1.5 billion adults
were classed as overweight, with a third of these classed
as obese, numbers which are expected to increase over
the next 5–10 years(1). Having significant associations with
CVD, type 2 diabetes mellitus (T2DM) and cancer(2),
obese individuals have been found to have a substantially
higher use of healthcare services than the non-obese(3);
therefore, as prevalence increases, so will the burden
on healthcare systems. It is now widely recognised that
obesity is characterised by a chronic, low-grade, systemic
inflammatory response stemming from enlarged adipose
tissue (AT) depots, and this is thought to be involved in the
development of obesity-related pathologies(4). Further-
more, plasma levels of vitamins and antioxidants are lower
in the obese(5,6) and an inverse relationship has been shown

between serum total antioxidant capacity and waist
circumference(7), research also indicates the modulatory
effects of vitamins and antioxidants on the immune sys-
tem(8) and it may be that reduced levels have a role in the
development of inflammation and ultimately disease, in
obesity.

Current pharmacotherapy for obesity primarily involves
Orlistat and Sibutramine; however, their side effects,
combined with the uncertain long-term effects associated
with their use, have prompted research into alternatives.
The term ‘nutraceuticals’ was originally defined as ‘a food
(or part of a food) that provides medical or health benefits,
including the prevention and/or treatment of disease’(9).
This term encompasses substances that are not traditionally
recognised nutrients (e.g. vitamins and minerals), but that
have been found to have positive physiological effects on
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the body(10) and includes plant phytochemicals and
phenolics. There is currently no coherent, international
definition of a nutraceutical; however, over the last decade,
there has been a surge in their marketing, sales and
research and as a result there is a requirement for govern-
ing bodies to define this area in order to uphold regulatory
laws. It is generally regarded that a nutraceutical is a food
component consumed in a unit dose form such as tablets,
capsules or liquids and includes those from botanical
sources(10). Polyphenols are now known to act as signalling
molecules and have been found to affect cellular function
and modulate gene expression in relation to cancer(11) and
neurodegenerative disease(12). However, research into the
potential use of nutraceuticals in the treatment of chronic
inflammatory diseases such as obesity has only recently
been undertaken and as such there is still much to be
investigated.

Adipose tissue in obesity

AT comprises mature adipocytes and non-fat stromo-
vascular cells including fibroblasts, endothelial cells, pre-
adipocytes and tissue resident macrophages(13). Originally
thought of as connective tissue where excess energies were
stored as TAG, in the last decade, the endocrine function
of AT has been demonstrated and it is now known to
produce numerous products collectively called ‘adipo-
kines’ involved in energy metabolism, inflammatory
response and cardiovascular activity(14,15). The two major
adipokines secreted are leptin and adiponectin.
Leptin is a protein product of the ob gene initially

known for its role in regulating appetite(16). In obesity,
circulating levels are increased in proportion to fat
mass(17,18), possibly due to increased expression of the
ob gene and elevated leptin secretion(19,20). Women
have higher-serum leptin concentrations than men regard-
less of percent body fat or fat mass(21,22), gender differ-
ences also seen in obese children(23). Leptin shares
homology with some pro-inflammatory cytokines and is
indeed regarded as such; the leptin receptor is expressed by
immune cells(24,25) and in human subjects circulating levels

of leptin are positively associated with those of C-reactive
protein, a marker of inflammation(26). Adiponectin is
regarded as anti-inflammatory and also regulates insulin
sensitivity(14). Normal-weight individuals have high circu-
lating levels of adiponectin; however, this decreases as
adiposity increases(27) and levels also negatively correlate
with insulin resistance, T2DM and CVD(28). Adiponectin
synthesis is increased by weight loss and thiazolidine-
diones, used in the treatment of T2DM, conversely TNFa
and IL-6 reduce adiponectin synthesis(29,30). In human
subjects, there is an inverse correlation between plasma
C-reactive protein levels and adiponectin(26,31,32). Further-
more, in mice, adiponectin gene knockdown results in
diet-induced insulin resistance(33) and an increased inflam-
matory response to dextran sulfate sodium-induced col-
itis(34) and tissue ischaemia(35).

Chronic excessive energy intake leads to AT expansion
through both hypertrophy and hyperplasia, and in adults
hypertrophy seems to dominate(36,37). In some adults,
however, hyperplasia can be predominate, which is thought
to result in the development of a metabolically benign
form of obesity(38). Dysregulated secretion of adipokines
occurs as obesity develops and there is a general shift
in adipokine and cytokine production towards a pro-
inflammatory composition. This is thought to be mediated
by the activation of tissue-resident macrophages in addi-
tion to a significant infiltration of other immunocytes,
predominantly macrophages(39) although the triggering
factors for this are, as yet, unclear. However, the main
factors implicated in the initiation of inflammation and
oxidative stress in obesity are thought to be metabolic
endotoxaemia, increased plasma NEFA, hypertrophic
adipocytes and increased AT hypoxia(13) (Fig. 1). These
factors do not develop in isolation and there are most likely
mechanisms involved which act to feed-forward these
processes.

Metabolic endotoxaemia

It is now well known that there is a post-prandial inflam-
matory response, especially following meals high in fat

Fig. 1. (Colour online) The development of pathogenic adipose tissue in obesity is a com-

plex interplay of many factors. LPS, lipopolysaccharide; ER, endoplasmic reticulum; TLR,

Toll-like receptors.
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and carbohydrate(40). Macronutrient intake has also been
shown to induce pro-inflammatory changes in the im-
munocytes of normal-weight subjects, a response that is
greater and more prolonged in the obese(41), and which is
not seen following consumption of a meal rich in fruit and
fibre(42). Recent research suggests that this may be due to
the presence of Toll-like receptor (TLR) stimulants, such
as bacterial lipopeptides and lipopolysaccharides (LPS),
which have been found primarily in meat and processed
food products even though they are fit for consumption(43).
Microbiota of the gut has recently been identified as a
triggering factor of inflammation in obesity, and indeed for
the development of obesity itself. Germ-free mice, which
contain no gut microbiota, have 42% less total body fat
than conventionally raised mice; however, re-colonisation
with microbiota from normal mice, increased their total
body fat content by 57%(44). It is thought that microbiota
aid the absorption of monosaccharides and induce hepatic
lipogenesis, promoting energy storage with a subsequent
increase in adiposity(44).
In trying to further identify the causative factors for

post-prandial inflammation, research indicates that it may
be absorption of the endotoxin LPS, released during the
death of Gram-negative bacteria within the gut; this is also
proposed to have a role in the development of obesity and
inflammation(45). In mice, a high-fat or high-carbohydrate
meal increases plasma endotoxin levels(45). Similarly,
in human subjects, consumption of a high-fat meal has
been found to increase plasma levels of endotoxin(42,46)

and positive correlations have been found between energy
or fat intake and plasma endotoxin levels in healthy
men(47). One study has further shown there to be a differ-
ence between fatty acids in increasing plasma LPS con-
centrations. Genetically obese JCR:LA-cp (James C
Russell corpulent) rat fed a diet containing either 5% or
10% PUFA had significantly lower levels of LPS-binding
protein than those on the isoenergetic, lipid-balanced con-
trol diets(48). It would be interesting to elucidate if PUFA
have similar properties in human subjects.
This significant increase in plasma LPS in response to

diet composition has been termed as ‘metabolic endo-
toxaemia’(45). Plasma levels of LPS-binding protein, a
marker of endotoxaemia, are significantly higher in obese
human subjects and are associated with metabolic syn-
drome and T2DM(49). Research in mice has found that a
high-fat or high-carbohydrate diet increases the Gram-
negative bacteria population of the gut along with in-
creasing plasma levels of LPS(45). Conversely, modulation
of gut flora by antibiotics reduced metabolic endotoxaemia
in diet-induced and the genetically obese ob/ob mice(50).
The binding of LPS to TLR4 on enterocytes triggers its
phagocytosis and it is subsequently translocated across the
intestinal barrier and into the lymph; from there LPS is
packaged into chylomicrons along with dietary lipids and
transported around the body(51). Indeed, one study con-
ducted in fasting normal-weight, healthy individuals has
found that while intake of water, orange juice or a glucose
drink has no effect on plasma endotoxin concentrations,
consumption of cream increased plasma LPS levels(52).
It has also been shown in the genetically obese mouse
models, ob/ob and db/db, that high-fat feeding and LPS

can increase intestinal wall permeability, elevating endo-
toxin levels in the portal circulation(50,53). Recent research
suggests that it is gut microbiota that mediate this effect,
by modulating the intestinal endocannabinoid system(54).
In obese mice, blockade of the endocannabinoid receptor,
CB1 led to a reduction in gut permeability with a con-
comitant reduction in plasma LPS, which was also seen
following prebiotic administration(54).

Although it has recently been shown that tea catechins
such as epigallocatechin-3-O-gallate (EGCG)(55), antho-
cyanins and anthocyanidins(56) have a moderate affinity
for endocannabinoid receptors at concentrations <50mM,
there is, as yet, no research into their ability to modulate
gut permeability and thereby reduce plasma LPS levels.
Furthermore, limited research has been conducted investi-
gating their ability to limit the increases in LPS found
following a high-energy meal. A small study using normal-
weight, healthy subjects investigated plasma changes in
endotoxin levels, inflammation and oxidative stress fol-
lowing consumption of a high-fat, high-carbohydrate meal
with water, a glucose drink or orange juice(57). Consump-
tion of orange juice abrogated the increase in plasma
endotoxin, inflammation and oxidative stress which was
seen with glucose drink and water intake(57). In a similar
study, healthy, normal-weight individuals were given a
nutritional supplement containing resveratrol (major poly-
phenol of red-wine grapes) and muscadine grape poly-
phenols along with a high-fat, high-carbohydrate meal.
The supplement ameliorated the increase in plasma LPS-
binding protein and endotoxin concentrations associated
with intake of such a meal, along with reducing monocytic
expression of TLR4(58). The results of these studies indi-
cate the merit of further research into this area and due to
the extended post-prandial inflammatory response seen in
obesity, should be extended to include this population.

TLR are transmembrane proteins that recognise micro-
bial components such as bacterial LPS and flagellin and
also possibly endogenous ligands released during inflam-
mation(59). TLR4 is thought to mediate cellular response to
LPS, and TLR2 is regarded as the main receptor for Gram-
positive bacterial and fungal cell well components(60);
however, LPS activation of TLR4 on 3T3-L1 murine adi-
pocytes has been found to induce the expression of TLR2,
leading to an increase in IL-6 gene expression(60). TLR
expression has been observed in AT and adipocytes from
normal-weight and obese human subjects and these are
responsive to LPS, resulting in the activation of NF-kB
signalling, which regulates immune and inflammatory
responses, and subsequent cytokine release(61–63). In mice
fed a high-fat diet, knockdown of TLR ameliorated the
increase in adiposity, reducing serum insulin concentra-
tions and circulating markers of inflammation, although the
mechanisms behind this are not fully understood(64).

The bioactive xanthones of the mangosteen fruit, a- and
g-mangostin, have recently been found to abrogate the
activation of NF-kB signalling following incubation with
LPS, with a concomitant reduction in pro-inflammatory
gene expression in human adipocytes, ex vivo(65). Further-
more, a-tocopherol treatment of 3T3-L1 cells stimulated
with LPS abrogated production of the cytokine, IL-6(66).
Plant compounds have also been found to reduce
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LPS-activation of immunocytes. Stimulation of the human
acute monocytic leukemia cell line THP-1 with LPS in-
creased the expression and secretion of TNFa and IL-6,
which was significantly reduced by treatment with the
common polyphenol, cyanidin 3-O-b-glucoside(67). EGCG
is also known to be anti-inflammatory and abrogates the
macrophage inflammatory response to LPS. Recent re-
search suggests that this is mediated by its ability to inhibit
TLR signalling by down-regulating TLR4 expression(68).

NEFA

Elevated plasma NEFA are a feature of obesity thought to
result from increased AT basal lipolytic activity(69), which
is in turn due to increased adipocyte size(70) and cellular
hypoxia(71). Historically, increased plasma NEFA have
been connected with obesity(72) and T2DM(73) although
further investigations have failed to find any significant
associations(74). Regardless, there is much research to
indicate the ability of NEFA to impair the insulin respon-
siveness of tissues including the muscle and liver, which is
thought to result from the inhibition of GLUT translocation
caused by the intracellular accumulation of fatty acid
metabolites(75). The polyphenolic compounds, EGCG(76)

and naringenin(77), have been shown to increase GLUT
translocation in rat L6 skeletal muscle cells, thereby
enhancing glucose uptake; this has also been found in
3T3-L1 adipocytes treated with the phenolic acid, gallic
acid, derived from seabuckthorn(78). Conversely, in iso-
lated rat adipocytes, the polyphenols catechin-gallate,
myricetin and quercetin, widely present in fruits and
vegetables, have been shown to directly interact with
GLUT4, reducing glucose transport(79); however, this has
not been replicated in vivo. In a fructose-fed rat model of
insulin resistance, AT concentrations of GLUT4 were
reduced by 58% compared to the control group; however,
in those supplemented with green-tea powder, GLUT4
levels were not significantly different from the controls
(19%) thereby increasing insulin sensitivity(80). Further
to this, the induction of insulin resistance in rats by
48 h intravenous infusion of a TAG emulsion, inhibited
the translocation of GLUT4 in both adipose and skeletal
muscle tissue. However, this was abrogated in both tissues
with the co-injection of 10mg/kg EGCG; additionally
there was a concomitant improvement in insulin-induced
glucose uptake(81).
Recently it has been found that normal fasting NEFA

levels are maintained in abdominally obese men through a
reduction in lipolytic enzyme expression and therefore
reduced fasting state NEFA release(82). However, it was
further found that post-prandial fatty acid uptake by AT
was significantly reduced, which is attributed to a down-
regulation of fat storage mechanisms and resulted in a
substantial increase in plasma NEFA following a meal(82).
This is proposed to lead to an increase in ectopic fat
deposition; however, this requires further research(82).
Phytochemicals such as luteolin, a flavonoid found in olive
oil and carrots(83), resveratrol(84) and theaflavins found in
black tea(85) have been found to limit lipid accumulation in
human liver HepG2 cells. This has also been found with
curcumin treatment of human Hep3B cells(86) and EGCG

treatment of primary mouse hepatocytes(87). The proposed
mechanism of action is thought to be activation of
AMP-activated protein kinase a signalling pathway, which
subsequently inhibits fatty acid and cholesterol synthesis
and up-regulates fatty acid oxidation and glycolysis,
thereby regulating cellular energy balance(88).

There are a number of animal studies indicating the
benefits of phyotchemicals in reducing liver lipotoxicity.
Supplementation of the genetically obese KK/Ay mice
with rhaponticin, extracted from rhubarb, reduced plasma
NEFA and TAG levels in addition to preventing the de-
velopment of liver steatosis(89). Theaflavin treatment of rats
fed a high-fat diet ameliorated the development of liver
steatosis with a concomitant reduction in plasma NEFA
and TAG, which was shown to be mediated through acti-
vation of AMP-activated protein kinase signalling(85). In
a rat model of liver steatosis, where treatment with carbon
tetrachloride induces liver fat accumulation and hepatic cell
death, prior feeding with an apricot extract significantly
attenuated this(90). Olive leaf extract has also been shown to
attenuate the development of liver steatosis in a high-fat fed
rat model of obesity, with a concomitant reduction in
plasma TAG; however, circulating NEFA levels were not
affected(91). Resveratrol supplementation of rats with diet-
induced liver steatosis significantly reduced fat deposition in
the liver(92). None of these studies investigated alterations in
adipose or muscle tissue gene expression of lipid-processing
mechanisms, which given the recent findings in obese
human subjects(82) would be pertinent. Furthermore, there
are, as yet, few studies investigating their effects in human
subjects.

Characterisation of fasting plasma NEFA in healthy,
normal-weight individuals has found that SFA comprise
just over half (56%) of the total NEFA concentration, and
of this fraction palmitate predominates(93). Further research
has found that consumption of a saturated NEFA (sNEFA)-
rich diet by abdominally obese participants for 8 weeks
resulted in an increase in AT inflammatory gene expression
compared to those on a MUFA-rich diet(94). In cell
culture, sNEFA have been shown to induce release of pro-
inflammatory cytokines from macrophages(95,96) and in
adipocytes, increase reactive oxygen species generation
and TNFa, IL-6 and monocyte chemotactic protein-1 gene
expression along with reducing adiponectin gene ex-
pression(97–99). TNFa has been found to decrease adi-
pocyte insulin sensitivity, which increases lipolysis and
therefore plasma levels of NEFA(100,101). Even short-
term exposure of adipocytes to TNFa stimulates lipolysis
through increased inducible nitric oxide synthase ex-
pression, which in turn up-regulates nitric oxide production
and subsequently phosphorylates and activates hormone-
sensitive lipase(102). Further research has found that im-
munocyte response to LPS, mediated by TLR4 activation,
is approximately three-fold higher in those pre-treated
with sNEFA than those treated with either sNEFA or LPS
alone(103). A positive feedback loop is proposed whereby
sNEFA released from adipocytes activate macrophages,
stimulating further release of TNFa and IL-6 and these in
turn cause inflammatory changes in adipocytes(104).

Studies in vitro have shown that sNEFA activate TLR2
and TLR4 on adipocytes and macrophages triggering c-Jun
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N-terminal kinase and NF-kB pro-inflammatory signalling
cascades resulting in pro-inflammatory cytokine produc-
tion(105–108). However, recent research suggests that it may
be LPS contamination of the fatty acid-free bovine serum
albumin, a reagent commonly used to complex with
sNEFA in in vitro studies, which stimulates TLR4 as
uncomplexed sNEFA had no effect on TLR-dependent
signalling(109). Although this is a matter that requires
further clarification, numerous cell and animal studies do
show that sNEFA are able to elicit a pro-inflammatory
response; furthermore, these low levels of LPS may better
represent the in vivo milieu(110). There are, as yet, limited
studies investigating the inhibitory effects of phytochem-
icals on the pro-inflammatory response of macrophages or
adipocytes to sNEFA. However, as mentioned previously,
studies in both adipocytes and macrophages have shown
that phytochemicals, such as a- and g-mangostin(65),
a-tocopherol(66) and EGCG(68), are able to inhibit signal-
ling pathways downstream of LPS-mediated TLR activa-
tion, ameliorating pro-inflammatory gene expression.

Adipocyte hypertrophy

Hypertrophic adipocytes have been associated with
hypertension(111) and an increased risk of CVD(112), and
further research in human subjects and mice has found
that adipocyte size positively correlates with degree of
AT inflammation(113–116). Hypertrophic adipocytes isolated
from human subjects have been found to have altered
gene expression(117) leading to increased secretion of
pro-inflammatory factors and altered adipokine secre-
tion(118–120). Anti-obesity research has investigated the
ability of nutraceuticals to promote adipocyte apoptosis
and inhibit adipocyte differentiation, thereby reducing AT
accumulation. The two most well-studied transcription
factors regulating adipogenesis are PPARg and cytidine-
cytidine-adenosine-adenosine-thymidine-enhancer-binding
proteins (C/EBP)(121). PPARg is considered to be essential
and adequate for the induction of adipocyte differentiation
and has two isoforms, PPARg1 and PPARg2, whose dis-
tinct roles are yet to be elucidated. Members of the C/EBP
family are either anti- or pro-adipogenic and include
C/EBPa, C/EBPb, C/EBPg and C/EBPd. Their expression
is necessary for the development of adipocyte insulin sen-
sitivity(122) and while they are important for adipogenesis,
the presence of PPARg is still required.
The anti-adipogenic potential of various natural com-

pounds has been investigated and many have been found to
inhibit adipocyte differentiation. The addition of curcumin,
the major polyphenol found in turmeric, to rodent models
of obesity has been shown to reduce body weight gain and
ameliorate the development of diabetes(123,124). This is
thought to be due to its ability to suppress adipocyte dif-
ferentiation and indeed this has been found in studies using
the murine 3T3-L1 cell line, with a concomitant down-
regulation of PPARg (125,126); however, in another study
utilising 3T3-L1 cells, these transcriptional markers were
not affected(124). A recent comprehensive investigation into
the ligand activity of curcumin found it to have no binding
activity at the PPARg ligand-binding site and subsequently

no effect on adipocyte differentiation(127). These disparities
in curcumin activity are most likely related to the different
extractions used as some studies have utilised purified
curcumin, while others have prepared ethanolic extracts of
turmeric which may contain other active compounds.

The green-tea polyphenol, EGCG, induces cancer cell
apoptosis and has been shown to increase weight loss and
reduce fat accumulation in both human(128) and rodent
obesity studies(129,130). In one study, administration of
EGCG to the diets of high-fat fed rats abrogated the
development of glucose intolerance with a concomitant
increase in PPARg gene expression; however, contrast-
ingly, administration of green tea suppressed PPARg gene
expression(131). In 3T3-L1 cells, investigations have
attributed the anti-obesity effects of EGCG to its ability to
induce adipocyte apoptosis and inhibit adipocyte differ-
entiation and proliferation, through down-regulation of
PPARg and C/EBPa(132–134). The concentrations used
in these studies ranged from 0 to 200mM; however, one
study found that EGCG administration at 0.5–10mM, while
having no effect on cell activity, enhanced expression
of genes related to adipocyte differentiation and insulin
sensitivity and reduced fat accumulation(135). In human
subjects, studies investigating the bioavailability of green-
tea polyphenols following consumption of green-tea solids
in water have found the maximum plasma concentration of
EGCG to be <1mg/ml(136,137); therefore, studies carried out
in cells using lower levels of EGCG may better mimic
physiological levels.

However, is the inhibition of adipocyte differentiation
truly beneficial? Recent research has indicated that in the
moderately obese (BMI 26–36 kg/m2), an increase in the
number of smaller adipocytes may also contribute to AT
inflammation. In the study, abdominal AT biopsies were
taken from healthy, moderately obese individuals and
analysed for cell size distribution and inflammatory gene
expression(138). Adipocyte size was not found to be as-
sociated with inflammatory gene expression, instead an
increase in the proportion of smaller adipocytes predicted
the expression of inflammatory genes, which was inde-
pendent from sex, insulin resistance and BMI, although
this association was stronger in insulin-resistant than
insulin-sensitive individuals(138). A total of eight inflam-
matory genes were analysed and of these CD14 and CD45
are specific for monocyte lineage cells, suggesting the
acquisition of a monocytic phenotype by the smaller adi-
pocytes. Previous research has found that pre-adipocytes
acquire functional properties similar to macrophages when
cultured in contact with one another and their gene profile
has been found to be closer to macrophages than adipo-
cytes(139). As outlined in Fig. 2, there are many factors in
pathogenic AT which may affect the normal differentiation
of pre-adipocytes; this then results in the development of a
pro-inflammatory, macrophage-like phenotype as indicated
by the elevated secretion of cytokines and chemo-
kines(140,141), most likely by activation of the key tran-
scriptional regulator of inflammation, NF-kB(141). Further
research in subcutaneous AT biopsies obtained from obese
individuals suggests that there is a failure of pre-adipocytes
to differentiate(140,141), possibly caused by elevated levels
of TNFa(140).
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LPS, high circulating levels of which are found in the
obese or those following a high-fat meal, has also been
found to affect adipocyte differentiation. Pre-adipocytes
are known to have a macrophage-like phenotype and have
a high gene expression and secretion of pro-inflammatory
cytokines(142,143) in response to TNFa and LPS(139,144).
IL-6 expression levels were found to be higher in LPS-
stimulated 3T3-L1 pre-adipocytes than in mature 3T3-L1
adipocytes(145), and continuous treatment of these cells
with LPS impaired their differentiation(146). Furthermore,
in primary cultures of human adipocytes, LPS stimulation
up-regulated pro-inflammatory cytokine mRNA, predomi-
nantly in the pre-adipocyte fraction and, as differentiation
into mature adipocytes occurred pro-inflammatory cyto-
kine expression decreased(144). Moreover, the therapeutic
effects of thiazolidinediones used in the treatment of
diabetes have been attributed, in part, to their ability to
increase adipocyte differentiation(147). Treatment of gene-
tically obese Zucker rats with the thiazolidinedione,
troglitazone normalised hyperglycaemia and hyperinsulin-
aemia in addition to reducing AT levels of TNFa and
leptin(1). This was concomitant with an increase in the
number of small adipocytes and a reduced number of
large adipocytes, without alterations to the total weight of
white AT(148).
Supplementation of diet-induced obese rats with bitter

melon extract powder or the thiazolidinedione, pioglita-
zone, prevented the development of hyperinsulinaemia and
glucose intolerance(149). The number of large adipocytes
(>180mm) was significantly lower in these two groups
compared with those on the high-fat diet alone. In addition,
the number of smaller adipocytes (60–100mm) in the bitter
melon group was similar to those fed the low-fat diet,
which was significantly higher than the high-fat and
thiazolidinedione-treated groups. Bitter melon powder had
the added effect of reducing AT mass and lipid content,
suggesting that lipogenesis within AT was also attenu-
ated(149). In vitro studies have identified further compounds
able to enhance adipocyte differentiation. Phloretin, a
flavonoid found in apples and strawberries, was found to
increase TAG accumulation with an attendant up-regulation
of PPARg and C/EBPa, concomitantly increases in adi-
ponectin expression and secretion were also found(150).
Found in citrus fruits, the flavone nobiletin has been shown
to enhance 3T3-L1 differentiation; however, this was not
due to any activity at PPARg . Instead, nobiletin activated
C/EBPb, which is up-stream of PPARg and induces its

expression(151). Further research clearly needs to be
undertaken to fully determine the impact of individual cell
populations within AT on adipose inflammation; however,
it can be seen that failure of pre-adipocytes to differentiate
can be detrimental with respect to either overloading
of mature adipocytes rendering them hypertrophic or
increasing the inflammatory pre-adipocyte population.

Adipose tissue hypoxia

Secondary to the development of hypertrophic adipocytes
is AT hypoxia. Adipocytes can expand up to 150–200mm
in diameter(118) and the maximum diffusion distance of
oxygen is 200mm; therefore adipocyte hypertrophy can
lead to AT hypoxia as their size may impair oxygen dif-
fusion into the cell(4). A recent study in obese human
subjects has shown their abdominal AT to have a lower
capillary density and oxygen partial pressure than
lean subjects and this correlated negatively with percentage
body fat and macrophage inflammatory protein-1 secretion,
which is involved in inflammatory cell recruitment and
release of pro-inflammatory cytokines(152). Furthermore,
the increase in AT blood flow associated with the post-
prandial state is not seen in the obese(82). AT hypoxia is
also found in rodent models of obesity, in addition to
increased expression of hypoxia-regulated genes and dys-
regulated adipokine secretion(71,153,154). Hypoxia-inducible
factor (HIF)-1a and HIF-2a are transcription factors
induced by hypoxia that affect angiogenesis, glycolysis,
cell proliferation, apoptosis and inflammation(155,156). Gene
expression of HIF-1a has been positively correlated with
body mass(157) and in adipocytes, HIF-1a and HIF-2a ac-
cumulation have been shown to promote the development
of an insulin-resistant state by decreasing insulin receptor
phosphorylation(158). In adipocyte cell lines, hypoxia
reduces NEFA uptake and increases lipolysis as well as
inducing necrosis and apoptosis(71), pro-inflammatory
cytokine production is also increased and adipokine secre-
tion dysregulated(159,160). Furthermore, the differentiation of
pre-adipocytes is inhibited(161).

Production of angiogenic factors, such as vascular
endothelial growth factor and platelet-derived growth
factor, are increased in response to hypoxia(162,163) and
circulating levels of these are found to be elevated in obese
human subjects and mice(164,165). A recent rodent study
has shown that angiogenesis supports, and is essential for

Fig. 2. (Colour online) Factors contributing to conversion of pre-adipocyte to one with macrophage-like activity. LPS,

lipopolysaccharide.
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adipogenesis and that they occur together in cell clusters;
however, as fat mass increases hypertrophy dominates with
a reduction in the occurrence of adipogenic/angiogenic cell
clusters(166). Nutraceuticals have been found to reduce the
expression and activity of HIF in cancer cells(167) with the
overall aim to reduce tumour angiogenesis and therefore
growth; however, similar inhibition in AT may only serve
to further exacerbate hypoxia. In ischaemia-reperfusion
injury, the promotion of HIF and its downstream signalling
targets is beneficial, limiting infarct size by stimulating
angiogenesis(168). The subunits of HIF, HIF-1a, HIF-2a
and the recently discovered HIF-3a, differentially regulate
adipogenesis(169); however, their exact roles are, as yet, ill
defined. The role of HIF and its subunits in AT dysfunction
is a recent area of research and needs to be further under-
stood before investigations into its regulation by nutra-
ceuticals can get underway.

Adipocyte dysfunction

Researchers have attempted to establish what the funda-
mental triggering factor is that tips healthy AT towards one
which is pro-inflammatory; one potential candidate is endo-
plasmic reticulum (ER) stress. Markers of ER stress occur
in AT of both diet and genetically induced mouse models
of obesity(170) and more recently in obese human sub-
jects(171–173), and have been found to be reduced by weight
loss(173). Recently, ER stress has been linked with reduced
secretion of adiponectin, a key adipokine in the regulation
of insulin sensitivity and inflammation in obesity. Incu-
bation of 3T3-L1 adipocytes with a protease inhibitor
induced ER stress which resulted in a reduction in adipo-
nectin synthesis through the activation of c-Jun N-terminal
kinase signalling pathway and subsequent induction of
activating transcription factor 3(174).
The ER is the principal site of protein synthesis within

the cell, ensuring the transport and release of correctly
folded proteins and within adipocytes, also facilitates lipid
droplet formation(175–177). An oxidative environment is
present within the ER and is critical for disulfide bond
formation and correct folding of proteins(177). However, in
reaction to disturbances such as nutrient deprivation, lipids
and increased workload, unfolded proteins accumulate
within the ER triggering the unfolded protein response
(UPR), which results in reactive oxygen species accumu-
lation and cellular oxidative stress(178). This is mediated by
three protein kinases, protein kinase RNA-like ER kinase,
inositol-requiring 1a and activating transcription factor
6(176,177). As a transient measure, the UPR initially reduces
protein synthesis and translocation into the ER, followed
by a longer-term increase in the ability of the ER to handle
unfolded proteins. If protein misfolding persists or is
excessive then cell death is triggered, usually through
apoptosis(176,177).
The UPR is linked to inflammation through production

and accumulation of reactive oxygen species, activation of
the acute-phase response and activation of transcription
factors regulating inflammatory signalling pathways such
as NF-kB and c-Jun N-terminal kinase(175,179). It is
unknown as to what causes ER stress in obesity and there
is little research into ER stress in the adipocyte; however,

some causative factors may include nutrient deprivation,
resulting from decreased vascular density, with con-
comitant hypoxia, and increased protein synthesis due to
adipocyte hypertrophy(180). Elevated NEFA levels may
also be a culprit, as these have been shown to activate the
UPR in other cell types, including pancreatic b-cells and
hepatocytes(181–183). Conversely, ER stress may also result
in elevated blood lipid levels, and research has found that
protease inhibition in adipocytes, which induces ER stress,
suppresses TAG synthesis and the transcription of lipo-
genic genes(184).

Although antioxidants may promote ER stress by
adversely affecting the oxidising environment of the ER, it
has recently been shown that antioxidants could possibly
have some benefit in reducing UPR-induced oxidative
stress. One study investigated the expression of coagula-
tion factor VIII, which is deficient in haemophilia A and is
prone to misfolding in the ER(185). It was found that factor
VIII misfolding in the ER resulted in oxidative and ER
stress in vitro in Chinese hamster ovary-(H9) cells with
eventual apoptosis, which was attenuated by the addition
of butylated hydroxyanisole, a phenolic, lipid-soluble anti-
oxidant. An effect that was also mimicked in vivo in mice.
Further to this, butylated hydroxyanisole treatment reduced
the intracellular accumulation of misfolded factor VIII with
a concomitant increase in functional factor VIII secretion,
both in vitro and in vivo. Treatment of Chinese hamster
ovary-H9 cells with ascorbic acid, which has weaker anti-
oxidant properties than butylated hydroxyanisole, produced
inconsistent results of less intensity(185).

In another study, oxidative and ER stress were induced
in human umbilical vein endothelial cells by incubation in
hyperglycaemic conditions(186). Interestingly though, while
treatment with ascorbic acid and a-tocopherol eliminated
oxidative stress, no effect was found on ER stress, similar
to the results found by Malhotra et al.(185). This discre-
pancy may be due to the different cell lines used or, more
likely, due to butylated hydroxyanisole having phenolic
activity. Research in human colon cancer cell lines has
shown that quercetin, a phenolic flavonoid, is able to
reduce ER stress through the inhibition of the phosphoi-
nositide 3-kinase pathway, which is not replicated by
ascorbic acid or a-tocopherol(187). In a cell-free study,
oxidative stress resulted in the loss of function of the
ER protein-folding enzyme, protein disulfide isomerase
causing an accumulation of misfolded proteins which was
prevented by the addition of the polyphenolic compounds,
curcumin and masoprocol(188). While it has recently been
shown that reduced adiponectin secretion from adipocytes
is due, in part, to ER stress, it has yet to be investigated
whether antioxidants could ameliorate ER stress in the
adipocyte and, in so doing, possibly re-assert an anti-
inflammatory secretory pattern. Given the evidence, it
seems unlikely that a compound with purely antioxidant
activity would have this effect, and therefore polyphenolic
compounds may have more benefit.

Conclusion

Despite the large amount of research into the development
of pathogenic obesity, it is clear that this is a complex and
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dynamic process and as such, further research is required
in order to fully understand the mechanisms involved.
There are thought to be four key areas that are disturbed
during AT expansion leading to the initiation of inflam-
mation within AT; metabolic endotoxaemia, increased
plasma NEFA, hypertrophic adipocytes and increased AT
hypoxia. Adipocyte ER stress is hypothesised to precede
the development of the aforementioned four areas. A role
for nutraceuticals in reversing the development of inflam-
mation in obesity is a subject of great interest, and from the
research reviewed here their potential in this area is clear.
Although having been subject to intensive research in other
areas, grape seed and green-tea polyphenols appear to also
be particularly effective in pathogenic obesity, limiting
metabolic endotoxaemia and the detrimental effects of
elevated NEFA. Newly characterised compounds such as
a- and g-mangostin and bitter melon extract were also
found to have beneficial effects. However, as has been
highlighted in this review, there is still much research that
needs to be undertaken before the role of nutraceuticals in
limiting the development of obesity-related comorbidities
can be fully defined. In particular, further research in
defined, obese populations using randomised controlled
trials is essential.
Although initial research has focused on developing

targeted interventions to limit the expansion of AT by re-
ducing angiogenesis, inhibiting adipogenesis or promoting
adipocyte apoptosis, this has a high risk of adverse side
effects. It is, therefore, possibly more effective instead
to direct research towards reversing the development of
dysregulated AT activity in general, and in this respect,
nutraceuticals may be the answer by providing a broader
spectrum of treatment.
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