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We have performed numerical simulations to investigate the phenomenon of axial pattern
formation exhibited by a non-neutrally buoyant concentrated suspension. Continuum
modelling of the concentrated suspension is done using the suspension balance model
to identify the underlying mechanism of the phenomenon. We demonstrate that axial
concentration variations become amplified to axial bands owing to the influence of the
second normal stress difference (N2), and the first normal difference (N1) accentuates the
effect of N2. We demonstrate that the end walls of the rotating cylinder are necessary to
prevent the smearing out of axial bands but are not a direct cause of the phenomenon.
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1. Introduction

Particle-laden flow in horizontal rotating cylinders is encountered in several applications,
including coating processes, pharmaceutical industries, paste preparation for composite
membranes, microbiological cultures, etc. This has been of interest to physicists owing
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to the several non-equilibrium phases exhibited by such systems besides the intriguing
phenomenon of axial pattern formation. It is well known that heterogeneous mixtures
of dry granular materials segregate under various flow conditions such as vibration,
shaking, rotation and mechanical agitation (Ottino & Khakhar 2000). When a horizontal
cylinder partially filled with a heterogeneous mixture of dry grains is rotated, the grains
segregate by size and/or density to form axial patterns (Seiden, Lipson & Franklin 2004).
The dynamic angle of repose is considered to be the control parameter for axial pattern
formation for dry heterogeneous granular mixtures (Inagaki & Yoshikawa 2010). It is noted
that the end walls of the rotating drum initiate axial band formation via an axial flow due
to friction at the end walls (Chen, Ottino & Lueptow 2010; Arntz et al. 2013; Jain, Fabien
& van Wachem 2023).

A rotating suspension of neutrally buoyant particles partially filling a rotating cylinder
also displays axial pattern formation even with monodispersed particles (Tirumkudulu,
Tripathi & Acrivos 1999; Tirumkudulu, Mileo & Acrivos 2000; Thomas et al. 2001;
Timberlake & Morris 2002). For such cases of the rimming flow of suspensions, it has
been proposed that the differential drainage of the particle and the fluid phases drives
axial segregation (Timberlake & Morris 2003).

In addition, a non-neutrally buoyant dilute suspension, entirely filling a horizontal
rotating cylinder, experiences axial segregation (Breu, Kruelle & Rehberg 2004; Seiden,
Ungarish & Lipson 2005; Kalyankar et al. 2008). For dilute suspensions (volume fraction
φ ∼ 0.02), axial variations in particle concentration are amplified by a buckling instability
driving high-density regions to fall faster, subsequently drawing more particles into
this region (Lee & Ladd 2005). Experimental (Kumar & Singh 2010; Nasaba & Singh
2018, 2020) and theoretical (Hou, Pan & Glowinski 2014; Lopes, Thiele & Hazel 2018;
Konidena, Reddy & Singh 2019) studies indicate that the interplay between centrifugal,
gravitational and drag forces causes axial bands for the dilute suspension system. However,
a unifying mechanism to explain the axial pattern formation phenomenon is still lacking.
The behaviour of a dense suspension in a rotating cylinder, alongside the influence of
end walls, is also unexamined in previous works (Seiden et al. 2004). It should be
emphasized that the axial banding phenomenon is not exhibited with a neutrally buoyant
particle suspension fully filling a rotating cylinder; interplay between the centrifugal force,
drag and gravitational force is very much essential for the axial banding phenomenon
(Kalyankar et al. 2008; Konidena et al. 2018).

Understanding the mechanism of axial band formation is significant as it elucidates the
(de)mixing behaviour exhibited by the viscous dense suspension. It is well known that the
steady-state rheology of a non-Newtonian fluid is governed by the three degrees of freedom
of the stress tensor, i.e. the viscosity (ηs) and two normal stress differences (N1 and N2). In
concentrated suspensions, e.g. φ > 0.22 (Guazzelli & Pouliquen 2018), the anisotropy of
the microstructure results in the particle normal stresses which drive migration (Morris &
Boulay 1999; Sierou & Brady 2002). The previous works to explore the influence of N1,
N2 and shear-induced migration for gravity-driven particle-laden flows are sparse (Dhas &
Roy 2022) and have not investigated axial patterns in rotating flows.

In this work, we perform numerical simulations by varying the three degrees of
freedom of the stress tensor. The effect of the presence of cylinder end walls is also
examined. We report a non-periodic axial band pattern in a rotating dense suspension
resembling the discontinuous banding phase exhibited by viscous suspensions (Kalyankar
et al. 2008; Matson, Ackerson & Tong 2008). As a significant result, we propose a
mechanism for the axial pattern formation in a dense suspension, fully filling a horizontal
rotating cylinder. The first two terms of the shear viscosity (ηs taken from Boyer,
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Influence of normal stresses on axial bands

Guazzelli & Pouliquen 2011) initiate an instability along the axial plane; this instability
becomes accentuated by the influence of stress anisotropy. The third term of the shear
viscosity (ηs given by (2.12)) (1 − φ/φm)−2, negates the action of N2 and pushes
the particle phase towards the end walls. This eventually leads to the formation of a
non-uniformly distributed pattern along the axis of rotation.

2. Mathematical model and simulation set-up

To model the concentrated suspension of non-Brownian particles, we use the original
version of the suspension balance model (SBM) (Nott & Brady 1994; Morris & Boulay
1999), which ascribes particle migration to gradients in the particle stress tensor Σp
(Ramachandran & Leighton 2008). In the model described below, the particle stresses
and the contact stresses are identical, unlike in a more generic SBM, which is a diphasic
model (which has more than three degrees of freedom identified at the macroscopic level)
(Lhuillier 2009; Nott, Guazzelli & Pouliquen 2011). The SBM applies the principles
of conservation of mass and momentum for the fluid and particle phases. For the bulk
suspension, the particle size is sufficiently large to bypass the effects of Brownian motion,
and the fluid is sufficiently viscous to neglect inertia. Therefore, the steady-state mass and
momentum balance equations for the conditions described are written as

∇ · u = 0, (2.1)

∇ · Σ + ρg = 0, (2.2)

where u is the velocity of the bulk suspension, g is gravity and Σ is the bulk suspension
stress (which will be shown later in (2.7)). Using the particle volume fraction φ, the total
mixture density ρ is given by

ρ = φρp + (1 − φ)ρf , (2.3)

where ρp and ρf are the densities of the particle and the fluid phases, respectively. Thus,
(2.2) can be rewritten as

∇ · Σ + �ρφg = 0, (2.4)

where �ρ ≡ ρp − ρf . Note that the constant body force ρf g is omitted in (2.4).
The continuity and momentum equations ((2.1) and (2.4)) are solved in tandem with the

particle-phase conservation equation given as

∂φ

∂t
+ u · ∇φ = −∇ · jt, (2.5)

with jt being the total migration flux. Here, jt is written as a sum of the particle migration
flux due to the cross-streamline migration j⊥ and the additional flux term due to the effect
of a non-neutrally buoyant particle phase jg

jt = 2a2

9η0
f (φ)[∇ · Σp]︸ ︷︷ ︸

j⊥

+ 2a2

9η0
f (φ)[�ρφg]︸ ︷︷ ︸

jg

. (2.6)

In (2.6), a is the suspended particle radius and η0 is the fluid viscosity. The parameter
f (φ) is the sedimentation hindrance function, which indicates the mobility of the particle
phase; its form f (φ) = (1 − φ/φm)(1 − φ)α−1 as used in this work is given by Richardson
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& Zaki (1954). The parameter α is taken as 2 and the maximum volume fraction of the
solid phase φm is 0.58 (Miller, Singh & Morris 2009) for the simulations in this work.
Since the time evolution of migration is sufficiently slow (Breu et al. 2004; Kalyankar
et al. 2008; Matson et al. 2008), the reported states are always near steady state

Σ = −pI + 2η0ηsD + 2ζ0E + 2ζ3G3. (2.7)

The bulk suspension stress tensor equation (2.7) is essentially decomposed in terms of
its components on a tensorial basis adapted to local flow conditions. This tensorial basis
is determined solely by the symmetric part of the velocity gradient, D as in Giusteri
& Seto (2018). Particle stress is calculated as Σp = Σ − Σ f from the knowledge of
Σ f = −pf I + 2η0D. In (2.7), the terms D, E and G3 for planar flows are defined in
Giusteri & Seto (2018) as D = (γ̇ /2)[d̂1d̂1 − d̂2d̂2], E = (γ̇ /4)[−d̂1d̂1 − d̂2d̂2 + 2d̂3d̂3]
and G3 = (γ̇ /2)(d̂2d̂1 + d̂1d̂2). Here, d̂1, d̂2 and d̂3 are orthonormal eigenvectors of D.
The parametric tensor Q which captures the anisotropy of the particles in Miller et al.
(2009) is also enveloped in (2.7). The response coefficients ζ0 and ζ3 are related to λ2 and
λ3 of the parametric tensor Q in Miller et al. (2009) as

ζ0 = η0ηn

3
(1 + λ2 − 2λ3), (2.8)

ζ3 = η0ηn

2
(1 − λ2). (2.9)

We recall that, for simple shear, one finds (Giusteri & Seto 2018)

N1 = −2γ̇ ζ3, (2.10)

N2 = γ̇ ζ3 − 3
2 γ̇ ζ0. (2.11)

Equations (2.10) and (2.11) provide a relation between the first and the second normal
stress differences (N1 and N2, respectively) and the response coefficients (ζ3 and ζ0) of the
constitutive relation for the bulk stress equation (2.7). The shear and normal viscosities
(made dimensionless by taking the ratio with fluid viscosity η0) are as given by Morris &
Boulay (1999) and Boyer et al. (2011)

ηs(φ) = 1 + 2.5φ

(
1 − φ

φm

)−1

︸ ︷︷ ︸
ηs1(φ)

+μc(φ)

(
φ

φm − φ

)2

︸ ︷︷ ︸
ηs2(φ)

, (2.12)

ηn(φ) =
(

φ

φm − φ

)2

, (2.13)

where μc(φ) = μ1 + (μ2 − μ1)/[1 + I0ηn(φ)]. In Boyer et al. (2011), it has been shown
that the frictional formalism of dense suspensions can be related to their classical viscous
rheology. We implement the φ-dependent friction law of dense suspensions proposed by
Boyer et al. (2011) as given by (2.12). The first two terms in (2.12) are denoted as ηs1(φ),
and the third term is denoted as ηs2(φ).

The simulation parameters are close to the experimental works by Kumar & Singh
(2010), Kalyankar et al. (2008) and Matson et al. (2008). The length of the cylinder
L = 0.2275 m and the diameter is D = 0.02 m. The average particle concentration over
the surface of the cylinder is φavg. The size of an individual particle Dp = 2a, which
collectively comprises the particle phase, is 200 µm, and its density ρp = 1000 kg m−3.
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Influence of normal stresses on axial bands

x-axis

y
z

Ω

(a) (b)

Figure 1. (a) Suspension concentration at t = 0 (concentration in the blue region is φ = 0.3, dark red colour
region x � L/2 has φ = 0.4625 and light red region x < L/2 has φ = 0.4375) and mesh along the axis of
rotation. The average concentration φavg = 0.35. (b) Radial view of the discretized geometry by structured
mesh.

The suspending liquid has a density ρf = 1200 kg m−3 with a viscosity of η0 = 0.055 Pa s.
The cylinder is rotated at a rotational velocity of Ω = 5 rad s−1 and the particle velocity
can be calculated using up = 2a2g�ρ/9η0, which is 0.0008 m s−1. The particle Reynolds
number Rep = ρpDpup/η0 is 0.0003. At time t = 0, the suspension configuration is as
shown in figure 1(a), since the particles are buoyant, the concentration is higher at the top
as indicated by the red colour (φ = 0.45), and the blue colour indicates a concentration
of φ = 0.3. The values of ζ0 = 0.233η0ηn and ζ3 = 0.1η0ηn are used for the simulations,
which are consistent with a concentrated suspension rheology (Miller et al. 2009; Xiong
et al. 2024). The contact contribution is chosen similar to dry granular media (μ2 = 0.7,
μ1 = 0.32 and I = 0.005) (Boyer et al. 2011).

3. Numerical implementation and validation

For the numerical implementation of the mathematical model detailed above, the mass,
momentum and particle-phase conservation equations were solved with the open-source
software OpenFOAM (Weller et al. 1998), which uses the finite volume method to solve the
system of partial differential equations. To provide an initial instability in the concentration
of the suspension along the axial plane, the concentration on the right half of the cylinder
(x > L/2) is φ = 0.4625, and on the left half of the cylinder (x < L/2) is φ = 0.4375. The
system of equations (2.1)–(2.5) is implemented by modifying the pimpleFoam solver to a
custom solver which represents the SBM. More precisely, the PIMPLE (a combination
of the Pressure implicit with splitting of operators method and Semi-Implicit Method
for Pressure-Linked Equations) algorithm is implemented to iteratively solve (2.1) and
(2.4), which describe the flow behaviour. Additionally, the transport equation (2.5) uses
the Crank–Nicholson scheme in the discretization of ∂φ/∂t. Adjustable time stepping is
done for simulations in this work, with the maximum allowable time step being restricted
to 0.1. A rotating wall boundary condition is imposed on the wall of the cylinder with
no slip. A zero flux condition is applied on the walls and surface of the cylinder for the
suspension concentration.

The mesh is generated using the blockMesh facility in OpenFOAM, with a total of
189 600 hexahedral cells. Grid independence studies were performed by comparing the
concentration variation across the axial length of the cylinder for three different grid sizes.
The first grid has a size of 120 000 with 600 cells in the axial direction and 200 cells in
the radial direction (grid-A), the second grid has a total of 189 600 with 150 cells in the
axial direction and 1264 cells in the radial direction (grid-B) and the third grid studied
has 240 000 cells with 150 in the axial and 1600 in the radial directions (grid-C). The
concentration profiles of the suspension for the three grid sizes investigated are shown in
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Figure 2. Grid independence studies on the rotating geometry for three different grids: grid-A with 120 000
cells, grid-B with 189 600 cells and grid-C with 240 000 cells. The concentration profiles show excellent overlap
and negligible variation with different grids.

figure 2; very good agreement on the overlap of profiles indicates that the grid size has no
influence on the concentration in the axial direction. For the simulations of a suspension
rotating in a horizontal cylinder, we have used grid-B (189 600 cells).

In order to validate our mathematical model, we compared the concentration and
velocity distributions in figures 3 and 4 for the flow of a non-neutrally buoyant suspension
in a circular pipe with the MRI (magnetic resonance imaging) measurements by Altobelli,
Givler & Fukushima (1991) and the numerical simulations (anisotropic and isotropic
models) as discussed by Ramachandran & Leighton (2007). The concentration of the
suspension compared is φ ∼ 0.23, radius a of the suspended particles is 0.381 mm and
the cylinder radius R is given by R = 33a. The viscosity of suspension η is 0.384 Pa s
and the densities of the suspended particles and the carrier fluid are ρp = 1030 kg m−3

and ρf = 875 kg m−3, respectively. The study has been carried out for three different inlet
velocities uin = 0.2326 m s−1, 0.07 m s−1 and 0.036 m s−1 through the conduit, which
has a length of 360 cm. On the far left columns of figures 3 and 4 are the experimental
results of Altobelli et al. (1991) and the middle columns show the numerical investigations
of Ramachandran & Leighton (2007) with the left semi-circle indicating the anisotropic
model and the right semi-circle representing the isotropic model. The far right columns
of figures 3 and 4 contain the results generated by the mathematical model detailed in the
present work.

From the experimental measurements in figures 3(d) and 3(g), it can be observed that the
interface shape is concave downwards. The anisotropic models show good agreement with
the concavity of the interface. The isotropic model is devoid of such a concave interface
shape, as evidenced by Ramachandran & Leighton (2007) and figures 3(e) and 3(h). The
present model correctly predicts the formation of a high concentration region above the
tube centre, as shown by the concentration contours, however, the anisotropic model of
Ramachandran & Leighton (2007) overestimates this behaviour. The only condition under
which the present model displayed some disagreement in the concentration contours with
the experimental measurements was at the lowest velocity, where the resuspension is
under-predicted in the lower half of the conduit. In addition, it should be pointed out
that there is a slight quantitative disagreement with the concentration profiles regardless
of the isocontours displaying similar shapes. The concentration profile generated from
the current model figure 3(i) shows the suspension starting to settle in the bottom half
of the pipe with resuspension behaviour only near the centre of the cylinder. However,
the interface shape is still in very good agreement with that from the experiments. The
disagreement over the contour lines with the experimental results for uin = 0.036 m s−1

could be due to a couple of reasons. First, the entrance length of the cylinder in the
experiments is 117 cm, which could be insufficient to reach a fully developed state,
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Figure 3. Comparison of concentration distribution in cylindrical channel flows with the experimental results
(a,d,g) of Altobelli et al. (1991); numerical simulations (b,e,h) with anisotropic and isotropic models by
Ramachandran & Leighton (2007); and the present SBM (c, f,i). Here, uin = 0.2326 m s−1, 0.07 m s−1 and
0.036 m s−1 along the rows starting from the top. First two columns are reproduced from Ramachandran &
Leighton (2007), with the permission of AIP Publishing.

whereas, for the simulations performed, the pipe length is 360 cm. Second, the rheological
model simply extrapolates the normal stress measurements made for φ � 0.3 to φ ∼ 0.23
used in the experiments, which could cause deviations in the values of the observed
parameters. In figure 4, we can see the comparison of the velocity data for experiments
(Altobelli et al. 1991), anisotropic and isotropic models from Ramachandran & Leighton
(2007) and the current SBM. It can be observed that the current model shows almost
perfect agreement with experiments. The isotropic model overestimates the magnitude of
velocity for all three inlet velocities.

The two anisotropic models, i.e. Ramachandran & Leighton (2007) and current SBM,
show no such deviations in the velocity distribution. It can be concluded here that
the mathematical model detailed in the previous section captures well the experimental
behaviour of resuspension in pipe flow.
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Figure 4. Comparison of velocity distribution with the experimental results (a,d,g) of Altobelli et al. (1991);
numerical simulations (b,e,h) with anisotropic and isotropic models by Ramachandran & Leighton (2007); and
the present SBM (c, f,i). Here, uin = 0.2326 m s−1, 0.07 m s−1 and 0.036 m s−1 along the rows starting from
top. First two columns are reproduced from Ramachandran & Leighton (2007), with the permission of AIP
Publishing.

4. Results and discussion

Axial pattern formation in horizontal rotating cylinders occurs in two regimes,
gravitational and centrifugal force dominant (Kalyankar et al. 2008; Konidena et al. 2018).
Simulations were performed in the gravitational force dominant regime to satisfy the
Stokes flow condition. Since the gravitational force is dominant, axial bands are formed
along the surface of the cylinder and do not extend inwards along the radial direction. The
radial concentration variation becomes almost steady after 160 rotations of the cylinder,
as shown in figure 5(a). The velocity distribution in the radial direction is shown in
figure 5(b); it does not display any variation under rotation (for data after 40 rotations).
It can also be noted that the high-concentration regions near the rotating wall are nearly
two particle diameters thick. Therefore, for post-processing, the concentration of the
suspension on the surface of the cylinder is extracted to investigate its variation along
the length of the cylinder.

The evolution of axial bands is depicted in figure 6; the concentration fluctuations in
the axial direction at around 40 rotations of the cylinder are reported. The amplitude of
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Figure 5. Concentration and velocity distributions as a function of y/R for z = 0 plane under rotation are
shown in (a,b), respectively; (a) φ/φmax vs y/R, (b) u/umax vs y/R.

this axial perturbation is feeble (�0.01φ/φavg) at 40 rotations but grows for 160 rotations
(�0.04φ/φavg) of the cylinder, as shown in figure 6. Axial bands start to appear near
the end walls of the cylinder at 40 rotations and continue to grow until a steady state is
reached at around 320 rotations of the cylinder. The axial undulation in concentration,
which appears at 160 rotations of the cylinder, grows into axial concentration bands by
320 rotations. Figure 6 also suggests that the axial bands have a maximum amplitude of
�0.1φ/φavg near the end walls. Axial bands far from the end walls display an amplitude
of �0.07φ/φavg when a steady state is reached at 320 rotations of the cylinder. The
non-periodic nature of the axial bands observed here is similar to the discontinuous band
phase exhibited in the experiments with viscous fluids as in Kalyankar et al. (2008) and
Matson et al. (2008). The location of each band remained the same even after 368 rotations
of the cylinder when the simulation ended. The formation of these bands could be a
consequence of either normal stress differences (NSDs) N1 and N2, which are reflected
in (2.7) as ζ0 and ζ3 or ηs, which constitutes of ηs1 and ηs2 as encapsulated in (2.12).

The choice of equations, i.e. the constitutive relation for the total stress equation (2.7)
and the relation for the shear viscosity equation (2.12), enables the isolation of NSDs
(manipulation of ζ0 and ζ3), ηs1 and ηs2. It is to be noted that, albeit not being plausible via
experiments, analysing the roles of NSDs ηs1 and ηs2 individually allows us to determine
the mechanism of axial band formation. Altering the parameters ζ0 and ζ3 varies the
influence of the NSDs, additionally (2.12) is dissected as ηs1 and ηs2 to explore their
respective influences on axial band formation. In other words, the mathematical model
described in § 2 (denoted by ηs ⊕ N1 ⊕ N2 in the proceeding discussion), which produces
axial bands as observed in Kalyankar et al. (2008), is tweaked to identify the underlying
mechanism of the axial band formation.

To this end, the suspension stress is first nullified; this makes the suspension equivalent
to a viscous Newtonian fluid as (2.12) is modified to ηs = 1. There is no undulation of
concentration axially, as depicted by the red horizontal line in figure 7(a). This explains
that attributes of non-Newtonian characteristics to ηs are a prerequisite for concentration
disturbances along the axial plane. Second, ηs1 is isolated; here, (2.12) becomes ηs(φ) =
ηs1(φ) and the parameters ζ0 = 0 and ζ3 = 0. In this case, (2.7) is devoid of NSDs and
ηs2. The advent of axial fluctuations having an amplitude greater than 0.03φ/φavg is
shown in figure 7(a) by the blue dashed line labelled ηs1. This observation implies that ηs1
initiates axial undulations in the concentration in the presence of end walls. However, these
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Figure 6. (a) Evolution of the axial band phenomenon with time for a concentrated suspension as the cylinder
rotates at Ω = 5 rad s−1. (b) Evolution of the ratio φ/φavg with x/L, φavg being the surface average of
concentration. The axial band formation is non-uniform along the axial plane at a steady state.

fluctuations with just ηs1 (blue dashed line) in figure 7(a) have smaller amplitude compared
with ηs ⊕ N1 ⊕ N2 (as indicated by the solid black line) at 368 rotations in figure 6(b),
which have an amplitude of �0.07φ/φavg. As the third case; we have (2.12) as ηs(φ) =
ηs1(φ) with the parameters ζ0 = 0.233ηsηn and ζ3 = 0.1η0ηn. This scenario represents ηs1
with NSDs (both N1 and N2) incorporated, denoted by ηs1 ⊕ N1 ⊕ N2. The concentration
shows pronounced axial fluctuations, which appear almost evenly distributed, (dashed
black line) in figure 6(b). These axial bands exhibit an amplitude �0.09φ/φavg, the highest
amongst all cases investigated in this work. Consequently, it can be deduced here that ηs1 is
responsible for initiating mild undulations to the concentration in the axial plane, and NSD
accentuates these undulations uniformly along the cylinder. The results also suggest that
ηs2 appears to dampen the segregation produced by the effect of NSD to form non-uniform
axial bands.

We proceed to identify the roles of N1 and N2 exclusively on the axial banding
phenomenon. Figure 8 shows the comparison of axial fluctuations when N1 and N2 act
alongside ηs1 (ηs1 ⊕ N1 and ηs1 ⊕ N2) and then in synergy with ηs (ηs ⊕ N1 and ηs ⊕ N2).
For this, primarily, (2.12) is ηs = ηs1 and (2.7) has ζ0 = 0 to make N2 = 0 as represented
by ηs1 ⊕ N1 (solid red line) in figure 8(a). The presence of N1 is a signature of elastic
effects (Seto & Giusteri 2018), with a geometrical interpretation that the eigenvectors of
the stress tensor are displaced by a certain angle in the flow plane (Giusteri & Seto 2018).
Synthesis of ηs1 and N1 produces slight axial undulations of amplitude comparable to those
produced by the action of ηs1 alone (blue dashed line in figure 7a). This result signifies
that elastic effects due to N1, as such, have little influence on axial pattern formation.
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Figure 7. Axial variation in concentration at 368 rotations of the cylinder: (a) ηs = 1 (solid red line) and
ηs = ηs1 (indicated by blue dashed line), (b) ηs = ηs1, ζ0 = 0.233ηsηn, ζ3 = 0.1η0ηn.

Second, we have ζ3 = 0 in (2.7) so that N1 = 0 and ηs = ηs1; N2 indicates tension along
the vortex lines in the cross-sectional plane (Maklad & Poole 2021) and anisotropy of
the normal stress originating from the planarity of the flow (Seto & Giusteri 2018). On
comparing figure 8(b) (ηs1 ⊕ N2) with figure 8(a), we can observe that the amplitude of
axial fluctuations for N2 is higher than for N1. Moreover, it can also be deduced from
figure 7(b) that the course of axial patterns driven by N2 is enhanced by the action of
N1 as the axial bands have maximum amplitude when both N1 and N2 are in synergy
(ηs1 ⊕ N1 ⊕ N2). Finally, for the curves ηs ⊕ N1 in figure 8(c) and ηs ⊕ N2 in figure 8(d)
(2.12) ηs = ηs1 + ηs2, but ζ0 = 0 and ζ3 = 0, respectively. Here, it is made certain that
axial bands produced by ηs ⊕ N2 are more pronounced than ηs ⊕ N1 and ηs2 smears the
concentration towards the end walls. It is also noticeable that the inclusion of ηs2 to (2.12)
only dampens the more pronounced axial banding produced by the NSD far from the end
walls. This claim is consistent with the result of Carpen & Brady (2002) and Maklad
& Poole (2021) that the stability of suspensions and granular flows may be affected by
the presence of NSD and can be expected to enhance the intriguing behaviour of these
systems.

The root mean square (r.m.s.) concentration variation over the inner portion of the
cylinder (between 0.3x/L and 0.7x/L) as a function of the number of rotations is depicted
in figure 9. The concentration in the vicinity of the end walls is neglected in the calculation
of the r.m.s. concentration variation. Figure 9 essentially emphasizes the inferences from
figures 7 and 8 presented above. It can be understood from figure 9 (triangles) that
ηs1 ⊕ N1 ⊕ N2, which has the largest magnitude of concentration variation, produces
the most prominent axial bands. The least growth is for ηs1 ⊕ N1 (diamonds), which is
almost equivalent to just ηs1 (squares), as claimed in the preceding paragraph. From the
above discussion following figures 7, 8 and 9, we can determine the mechanism for axial
pattern formation. The parameter ηs1 initiates axial instabilities along the axial plane; these
instabilities, in turn, trigger a stress contribution isotropic in the flow plane but globally
anisotropic (N2). Therefore, the anisotropic nature (of N2) is the major driving force for
producing bands distributed uniformly along the axis of rotation, N1 enhances the effect
of N2. However, ηs2 dampens the amplitude of axial bands induced by the NSD, thereby
producing non-uniformly distributed axial bands.

We now turn to assess the influence of the end walls of the rotating cylinder on the axial
pattern formation. A periodic boundary condition (PBC) is applied on the end walls of the
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Figure 8. The influence of N1 and N2 in synergy with ηs1 and ηs on axial pattern formation (at 368 rotations
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Figure 9. Comparison of r.m.s. concentration variation over the inner portion of the cylinder between 0.3x/L
and 0.7x/L for various model choices investigated.

cylinder in the axial directions, breaking the problem’s translational symmetry. Figure 10
depicts the concentration profile of a dense suspension at five different rotations (from 288
to 960) of the cylinder along the axial plane. It also shows that the axial fluctuations change
position continuously with time, and there is no steady state as such for the system even
after 960 rotations of the cylinder. The maximum amplitude of the axial fluctuations in
concentration does not exceed �0.05φ/φavg at any point during the simulations. The axial
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Figure 10. Evolution of concentration profiles with periodic boundary conditions along the axis of the
cylinder.

fluctuations produced do not proceed to form axial bands of higher amplitude, as observed
in figure 6. We have also investigated a different initial concentration distribution, where
the suspension is introduced with strong axial bands of φ ∼ 0.45 interlaced between φ ∼
0.3, and PBC applied on the end walls. The r.m.s. concentration variation along the inner
portion of the cylinder (between 0.3x/L and 0.7x/L) is compared in figure 11 for ηs ⊕
N1 ⊕ N2, with PBC, flatinit (initial configuration as in figure 1) and PBC, bandsinit (with
strong axial bands introduced at t = 0). The concentration variation in figure 11 shows an
increase for PBC, flatinit until 160 rotations before damping; however, for PBC, bandsinit,
the variation is continuously damped, which implies that stronger bands are not formed
over time. At this point, it may be inferred that the end walls of the rotating cylinder
are required to prevent the smearing of axial bands. These results demonstrate that the
presence of end walls (figure 10) is essential for the formation of axial patterns but is not
a cause of the banding phenomenon.
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Figure 11. Comparison of r.m.s. concentration variation over the inner portion of the cylinder between 0.3x/L
and 0.7x/L for ‘ηs ⊕ N1 ⊕ N2’ (Endwalls, flatinit) and PBC with two different initial conditions, ‘PBC, flatinit’
as in figure 1, and ‘PBC, bandsinit’ with uniform axial bands.

5. Conclusion

We have performed numerical simulations to identify the underlying mechanism for the
axial band formation exhibited by a concentrated suspension rotating in a horizontal
cylinder. The SBM, which considers the suspension as a single phase (monophasic), is
used as the mathematical model. It is an analysis of how each component of the suspension
rheology contributes to the axial band formation of a concentrated suspension. Axial
undulations in the concentration appear to grow from as early as 40 rotations of the
cylinder; these undulations develop into larger instabilities at 160 rotations and grow into
axial bands as they reach a steady state at 320 rotations, as observed in figure 6.

The choice of the bulk suspension stress tensor given by (2.7) allows us to investigate
the influence of NSDs on axial concentration variations via the manipulation of ζ0 and
ζ3. In addition, the effect of the components ηs1 and ηs2 of suspension shear viscosity
given in (2.12) on axial banding could also be probed. From the analysis of the results
discussed, we propose a mechanism for the axial band formation in non-neutrally rotating
suspensions. The axial bands are initiated by ηs1; in addition, the major driving force for
the growth of these bands is the anisotropy of the suspension stress. The second NSD N2
is primarily responsible for the demixing of the suspension in the axial plane, and the first
NSD N1 accentuates the effect of N2 for axial banding. This is reiterated in figure 9 where
the maximum r.m.s. concentration variation is shown when ηs = ηs1 is in synergy with
NSD. Moreover, ηs2 pushes the concentration towards the end walls, thereby introducing
non-uniformity in the axial bands. It is noteworthy that gravity is very much essential
as neutrally buoyant particle suspensions show no axial band formation, indicating an
interplay between the drag, centrifugal and gravitational forces (coherent with the results
of Kalyankar et al. 2008; Konidena et al. 2018). Also, a mere density mismatch between the
particle phase and the carrier fluid would just produce solid-body rotation in the zero-Re
limit with no evidence of axial band formation. Finally, the end walls of the cylinder are not
a cause but are necessary to prevent the smearing of concentration from the axial bands.
Apart from illustrating the (de)mixing mechanism of a monodispersed dense suspension,
this study could aid in comprehending the mechanism responsible for axial and radial
segregation experienced by dense binary and ternary suspensions.
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