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ABSTRACT

A simple model for IBNR claims is presented. Estimates for the loss reserves
and for the ultimate claims rate are derived. Approximations to the mean
square error of the estimators are produced. A more specific parametric model
is suggested for the case that we deal with claim numbers instead of claim
amounts. The general method is illustrated by a practical application to the
pricing of a casualty excess of loss cover.

1. INTRODUCTION

The IBNR Method which we present in this paper has been developed in
connection with the pricing of casualty excess of loss covers. The method can
also be applied to loss reserving problems for long tail business, however it is
best understood in connection with the practical problem which motivated its
derivation.

A reinsurer has to quote a price for an excess of loss cover. The statistical
information at hand are the revalued individual excess claims from different
accident years as well as a revalued measure of the exposure pertaining to each
accident year (e.g. the revalued premium income). The problems connected
with the revaluation of the claims and of the measure of exposure are by no
means trivial. We shall however assume that this revaluation can be performed
in a satisfactory way and that our data have been corrected for premium and
claims inflation. We shall call this revalued statistics the ‘as if” statistics.

To price the cover we have to estimate the ultimate claims amount in the
layer, i.e. to perform the IBNR correction. In this paper we present a simple
method which requires only about twice the amount of computation of the
chain-ladder method and which has the advantage of being practically
unbiased. An additional advantage of the estimator defined below is that one
can assess its precision. It is felt that these two properties are of special
importance when pricing layers with high deductibles where data are scarce.

In the next section we present the general model. In the third section we
restrict ourselves to claim numbers. In both these sections we illustrate the

! The Paper has been presented at the XXIth ASTIN Colloquium in New York under the title
‘A Pragmatic IBNR Method’.
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theory with an extremely simple example. In the last section we apply our
method to a practical problem.

2. THE GENERAL MODEL

2.1. Summary statistics

Most IBNR methods require only one summary statistics: the IBNR triangle.
If we have the excess claims from n accident years, the IBNR triangle contains
the following information:

dvpt
year 1 2 . . . n Exposure
acc.
year
X, X2 . . . X, E,
2 X2 X202 . . D E,
n Xn,l En

Where X;; is the total amount of excess claims from accident year i in
development year j.

For our purposes we need a more detailed summary statistics which we now
define. Let N, ; denote the total claims amount pertaining to new excess claims,
i.e. to claims which were not yet recorded as excess claims in development year
J— 1. This is the true IBNR component. Let D; be the decrease in total claims
amount between development year j— 1 and development year j with respect to
claims already known as excess claims in development year j— 1. This is the
IBNER component (incurred bu not enough reported claims). D; may take
negative values but cannot by definition be larger than X, ;_,.

The following relations hold true between the X’s, N’s and D’s:

(21.1) Xi =N,‘1 i= 1,...”[

(2.1.2) X; =X, 1-Dy+N; i=1,..n j=2,..n

,j=1
Of course we only observe the variables for which i+j <n+ 1. We shall not as
is usually done reduce the data to one IBNR triangle, the X-triangle, but we
shall work with two triangles: the N-triangle of the genuine IBNR claims and
the D-triangle of the IBNER claims.

From (2.1.1) and (2.1.2) it is seen that the X-triangle can be derived from the
N- and D-triangle.

To illustrate these definitions let us consider a very simple example.
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EXAMPLE

There are 3 accident years. For each accident year we have the usual ‘as if’
statistics : revalued and developed individual excess claims as well as a revalued
measure of exposure.

Claim Development year number
number 1 5 3
Accident
year number 1 1 1 — —
2 2 2 1.5
3 — 0.5 1.5
E, =20 4 — 1 e
S — 1.5 2.5
6 S — 1
Accident
year number 2 1 0.5
2 0.5 L5
3 1.5 -
E, =25 4 — 0.5
5 - 2
6 e 1
Accident
year number 3 1 0.5
2 0.5
3 1
E; =32 4 1.5
5 2

A claim demoted by ‘— is a claim which has not yet reached the priority or
which has dropped below the priority.
In our example the traditional IBNR triangle is:

X-triangle
J
1 2 3
i
3 5 6.5
2.5 5
3 5.5

and the new statistics are
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N-triangle D-triangle
J J
1 2 3 1 2 3
i i
1 3 3 1 1 — 1 -0.5
2 25 3.5 2 — i
3 5.5 3 —

2.2, Assumptions

Let H; denote the set of those variables in the N- and D-triangle which are
observed up to calendar year k:

H, = {N, D;|i+j<k+1}.
For the sake of convenience we also introduce:
Hy = {0, 2}.

H, is the set of all variables which have been observed so far. H;,;_, is the
history of the process up to the calendar year immediately preceding the
emergence of N; and D;.

We make the following assumptions:

(A) E[N; | Hiy;ool = Ed;  i,j=1,...n

The expected IBNR claims amount does not depend on past history, it is the
product of ‘the exposure measure of the accident year with a factor depending
on the development year only.

(Az) E[Dile,-+j_2]=X,-,jf15j i= 1,...n
i=2,...n

The expected decrease in IBNER claims amount is equal to the reported claims
amount of the previous development year times a factor depending on the
development year.

We only observe those variables for which i+j < n+1 but for the purpose
of loss reserving and rating we shall need the assumptions to hold true for all
Lj=1,...n

If we knew whether individual claims are open or closed it might be
preferable to replace the X, ;s in (A,) by the corresponding total claims amount
pertaining to open claims.
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(AB) {Nlj’ Dlj j = 1,2,...”.}

Ny Dy | j=1,2,...n}

are independent sets of random variables. i.e. random variables pertaining to
different accident years are stochastically independent.

Assumptions (A;), (A,) and (Aj), though they are quite general, are not
always satisfied in praxis. In particular, as was remarked by one of the editors,
a new claims manager arriving on the scene may have an impact across claims
cohorts. In such a case assumption (Aj;) would of course no longer hold true.
This I think, shows the limitations of all statistical models and methods used to
assess loss reserves: when applying them to practical problems, we should
always make sure that we have all the necessary information on. the process
generating the claims and that we take that information into account when
choosing a statistical method to estimate the outstanding losses.

2.3. Pricing

We now focus our attention on the pricing problem, i.e. We want to estimate
next year’s expected excess claim amount E[X,,, ,] or alternatively next year’s
expected ultimate claims rate: :

X,
(2.2.1) R= E[ "“’"}
En+l

If the measure of exposure E, ., is the premium income, then R is the expected
ultimate burning cost. Assuming that (A;) and (A,) hold true for accident year
n+ 1, one obtains straightforwardly:

(2.2.2) R(6) = EI:X"H’":| =4 (=6 ...°(1=3,)+
el A(1=65) ...7(1—6,)+

A1 (1=8,)+
An

where

0=(At,... 4p 0y,...9,).
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From (A)), (A,) and (A;) it follows that
n+1—j

Ny
A i=1
2.2.3) L= j=1,...n

n+l-—j

2. E
i=1

and
n+l—j
X;

.j— 1
i=1

are biasfree estimates of the 4’s and J’s respectively.
(2250 RO = A4,(1-38y) ... (1-8,)+A, (183 ... (1-3,)+ 4,
is an estimate of the ultimate claims rate R. The individual estimates being

biasfree and the correlation between the factors being ‘small’ because of (Aj)
the bias of R(#) can be neglected.

EXAMPLE (continued)

.11 . 65 .1
A= — =0.143 lL=-"=0144 1;=— =0.05
77 45 20
.2 . 05
5, = — =0.364 S, =" =-0.1
5.5 5

R = 0.100+0.159+0.050 = 0.309

2.4. Loss reserving
The loss reserve for accident year i is
L= E[X, | H,]

Under assumption (A;) and (A,) it is easily seen that
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(2.2.6) Li=Xins1-i(1=0p12-9) ... "(1-9,)
+ Ei[An+2—i(1_5n+3-i) (1—6n)
t Ani3-i(1=0p44-0) ... (1-0,)

+ ;['n—l(l _571)
+ 4,]

i.e. the loss reserve consists in a component for IBNER claims and a
component for IBNR claims the former depending on the claims observed so
far and the latter on the exposure.

One obtains an estimate of L, by replacing the parameters in (2.2.6) by their
estimates (2.2.3) and (2.2.4) respectively.

ExAMPLE (continued)

Accident 4 IBNER, E, IBNR, L,
year i k
1 6.5 1 6.5 20 0 6.5
2 5 1.1 5.5 25 1.25 6.75
3 5.5 0.700 3.85 32 6.67 10.52
17 23.77
Where 4, ;= (1—0,4,-) ... (1—9,) is the IBNER correction factor.

To compute the loss reserves in practice we will of course use the original
claims as opposed to the revalued claims used for pricing purposes; we will also
have to choose a suitable measure of exposure.

It is interesting to compare (2.2.6) to the formulas for loss reserve provided
by the chain-ladder method and by the Bornhuetter-Ferguson method respec-
tively.

The loss reserve for accident year i according to the chain-ladder method
is:

2.2.7) Li=Xiper1-i Fpi1-4

Where F; is some factor pertaining to development year j (for details see for

instance Nationale-Nederlanden [2]). The same quantity as estimated by the
Bornhuetter-Ferguson method is:

(2.2.8) Li= X, pe1-i+E Gy
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Where G, ,,_; is a factor which is applied to the exposure.
With a suitable notation we can rewrite (2.2.6) in the following way:

(229 Li=Xipr1-idps1-it Eidysr -

It is seen that formally our estimator is a generalisation of both the chain-
ladder and the Bornhuetter-Ferguson estimator: 4,,,.;= F,,;-; and
A,+i-; =0 gives the chain-ladder estimator whereas 4,,;,_; =1 and
Ayi1-; = G,y ; gives the Bornhuetter-Ferguson estimator.

2.5. Performance of the estimator

We now want to assess the performance of R(é) defined in (2.2.5). In order to
do so we need the following stronger assumptions:

(A E[Ny | Hisjool = E2 Var [N;] = E;af
(AY) E[Dij l Hi+j—2] = Xi,j—léj Var [Dij H,] = Xi,j—lsz
Developing R(é) in a Taylor series, we obtain:
2n—1
o OR(O)
(2.3.1) RO~RO + ). 9RO 6,-0)
i=1 00,
(A;) implies that 9,- and éj are not strongly correlated for i # j hence
2n—1 2
n A OR(0 A
(2.3.2) mse (R(8)) = E(R(O)—R(0))* ~ Z (6(5) ) Var (6))
i=1 i lo=0

where we have replaced the unknown quantities.
OR(6)
68,

by the approximations:
OR(0)
86,

0=>0

We still have to find approximations for the Var ((3,»). From (A)), (A% and (A;)
it follows that:

2
(2.3.3) Var (J) = :%- j=1,..n
E;
i=1
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12

(2.3.4) Var(3) = —2 ——  j=2,..n

n+l—j
Xi,j—l
=1

on the other hand we have the following biasfree estimators of aj2 and T]_z

respectively
B 1 n+1—j . , 1 o
(3.5 &= " Y (N~ AE) = j=1,...n—1
- i=1 i
X 1 n+tl—j .
(236) = ) (Dy—8X,- 1) j=2,..n—1
n—j] i=1 ij—1

and if there are enough development years at hand we have:
i, =0 and 5, =0 |

and one may assume:
62=0 and 2 =0.

Plugging the expressions given above into (2.3.2) we obtain an approximation
for the mean square error of R(6).

EXAMPLE (continued)

JoR oR JoR

T =(1-8)(A-5)=0700 - =(1-4)=11 =1
0, 84, 824
SR . . SR R A
= ~3(0=6)=-0157 — = —1,(1-0,)—4, = —0.235
86, 86,
- of . o}
Var(A) = — — — =48-10"° Var(4,) = =2-10"3
E,+E,+E, E,+E,
. o2
Var(d) = =0
E,
. 2 . T2
Var(d) = —>—=110-10"> Var(dy)) = — =0
Xl1+X21 X12

from which one obtains
mse'? (R(§)) = 0.017

Another possibility to evaluate (2.3.3) and (2.3.4) is to specify a parametric
model. An example is given in the next section.
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3. A MODEL FOR CLAIM NUMBERS

We use the same definitions as in section 2 with the difference that claim
amounts are now replaced by claim numbers: X; denotes the number of excess
claims from accident year i in development year j. D is the decrease in total
number of claims between development year j— 1 and development year j with
respect to claims already known as excess claims in year j—1. (D, is a
non-negative integer smaller or equal to X; ;). N; denotes the number of new
excess claims pertaining to accident year i in development year j. Rela-
tions (2.1.1) and (2.1.2) hold true.

EXAMPLE (continued)

From the individual claims of the example of section 2 we obtain the following
IBNR triangle for claim numbers.

X-triangle
J
1 2 3
i
1 2 4 4
2 3 4
3 5
N-triangle D-triangle
J J
1 2 3 1 2 3
i i
1 3 1 1 — | 1
2 3 3 — 2
3 5 3 —

Under assumptions (A ;) and (A,) relation (2.2.2) holds true. R(6) is now the
expected ultimate claims frequency and J; is the probability for an excess claim
to drop below the priority between development year j—1 and development
year j.

The expressions given in (2.2.3) and (2.2.4) are biasfree estimates of the A’s
and d’s respectively. (2.2.5) gives an estimate of the ultimate claims frequency
R(6). The bias of the estimate R(f) can be neglected.
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ExAMPLE (continued)

.10 .6 .1
A=~ =0130, A =-—=0133, ly=- =005
77 45 20
.3 1
5, =" = 0.6, 5, =~ =025
5 4
R(0) = 0.189

The performance of R(#) can be assessed with (2.3.2).
We now make the following parametric assumptions:

(A" Ny | Hisj-o ~ Poisson (4;- Ey)
(A2 Dy | Hiyj— ~ Binomial (6;, X;; ).

It is easily seen that:
A=MUp=U) i=12.

We also assume that (As;) holds true. The log likelihoods of the parameters
are:

+1—
B () ( Z

nt+l—j

(3.2) l(a,-)——-( >, D ) log (3)

i=1

n+l—j

Z Nij) log 4;

i=1

ntl—j n+l—j

Z — Y Dy|log(1-4)
i=1

and it is seen, that the ;lj and 3, of (2.2.3) and (2.2.4) are the maximum
likelihood estimates of the A/s and J;’s.
From the maximum likelihood theory we know that

. 521 -1 ntl—j
Var(@)—»[—E(—# H for Y E - o
i=1

6%,
we therefore use the following approximations:
s &1 !
Var (/) ~ —
& N P
A .
(3.3) Var (4 ) —2L  j=1,...n
n+l—j
E.

i
i=1
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analogously:
] 51—,
(.4) Var (3) =~ o470 i,
n+l-—j
Xi,j—l

i=1

and we obtain an approximation of the mean square error of R(é) by plugging
(3.3) and (3.4) into (2.3.2).

ExAMPLE (continued)

Var () = 17-107*  Var(l) = 30-107*  Var(l;) = 25-107%
Var (9,) = 480-10™*  Var (0,) = 469-107*

R OR SR
=03 =075 -
o, 6, 8,

R R
R _ o091 2R _ouss

8, 86,

mse'”? [R(6)] = 0.080

4. A PRACTICAL PRICING EXAMPLE

The following IBNR triangle (X-triangle) is borrowed from a practical motor
third party liability excess of loss pricing problem :

dvp}
year 1 2 3 4 5 6 7 Exposure
acc.
year
1 7.5 28.9 52.6 84.5 80.1 76.9 79.5 10'224
2 1.6 14.8 321 39.6 55.0 60.0 12'752
3 13.8 42.4 36.3 53.3 96.5 14’875
4 29 14.0 32.5 46.9 17'365
5 29 9.8 52.7 19410
6 1.9 29.4 17617
7 19.1 18129

The excess claims and the measure of exposure (premium of the whole
portfolio) have been revalued. Based on these ‘as if’ statistics we want to
estimate the ultimate burning cost.

Using the chain-ladder method we obtain:
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Total
Claims Estimated Estimated
Accident Exposure Amount Cumulative Ultimate Ultimate
year pos per dvpt Factor Claims Burning
year Amount Cost
n+1—i
1 10" 224 79.5 1 79.5 0.78%
2 12'752 60 1.03 62 0.49%
3 14’875 96.5 1.05 101.1 0.68 %
4 17' 365 46.9 1.37 64 0.37%
5 19'410 52.7 2.00 105.3 0.54%
6 17617 29.4 3.75 110.2 0.63%
7 18"129 19.1 17.07 326.0 1.80%
110'372 848.3 0.77%

(For details on the chain-ladder method see for instance Nationale-Neder-
landen [2]).

It is seen at once that the estimated ultimate burning cost pertaining to
accident year 7 is much larger than the other estimated burning costs. This is
due to a well known problem inherent to the chain-ladder method: the claims
amount of the least developed accident year is multiplied with the largest
cumulative factor providing thus a very imprecise estimate which can heavily
influence the overall ultimate burning cost. This drawback of the chain-ladder
method can easily be corrected by weighing the estimated ultimate burning
costs of the individual accident years in a different way. Let F; denote the
cumulative factor provided by the chain-ladder method which is to be applied
to the claims amount of development year j. X, E; and R denote respectively
the total claims amount, the exposure and the ultimate burning cost as defined in
section 2. The estimated ultimate burning cost pertaining to accident year i is then:

Xi,n+1—i‘Fn+1—i
E;

The chain-ladder method weighs these estimates with E; the exposure of the
corresponding accident year, thus giving the following overall estimated
ultimate burning cost

n
z Xintt—i Foer1-i

i=1
n
2 E
1=i

Instead of E; we use the following weights:

R =

E;
Fn+1—i
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which correspond to ‘used exposure’ and give less weight to less developed
accident years.
We obtain the following overall estimated burning cost:

n
Z Xi,n+l—i

i=1

n Ei
y ——

1=i Fyyi-i

We have the thus rederived a special case of the Cape Cod method [3], an
IBNR method similar to the Bornhuetter-Ferguson method [1]. This method
provides the following estimates:

Total
Claims Estimated
Accident E Amount Cumulative ‘Used Ultimate
Xposure , .
year as per Factor Exposure Burning
dvpt year Cost
n+l—i
1 10'224 79.5 1 10'224 0.78 %
2 12'752 60 1.03 12'335 0.49%
3 14" 875 96.5 1.05 14" 199 0.68 %
4 17365 46.9 1.37 12697 0.37%
5 19'410 52.7 2.00 9712 0.54%
6 17617 294 3.75 4’698 0.63%
7 18129 19.1 17.07 1062 1.80%
384.1 64'928 0.59 %

We now consider the more detailed statistics of the N- and D-triangles. The
statistics of new IBNR claims are:

dvpt
year 1 2 3 4 5 6 7
ace.
year
1 7.5 18.3 28.5 234 18.6 0.7 5.1
2 1.6 12.6 18.2 16.1 14.0 10.6
3 13.8 22.7 4.0 124 12.1
4 2.9 9.7 16.4 11.6
b 29 6.9 37.1
6 1.9 27.5
7 19.1
N-triangle
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The statistics of decreases in the claims amount are:

dvpt
year 2 3 4 5 6 7
acce.
year
1 -3.1 4.8 —8.5 23.0 3.9 2.5
2 -0.6 0.9 8.6 - 14 5.6
3 -59 10.1 —-4.6 —31.1
4 -14 -2.1 —-2.8
5 0 -~58
6 0
D-triangle

The striking feature of these more detailed statistics is that even in
development year 6 and 7 there is an important amount of new claims to the
layer, however this fact is partly compensated by a decrease of the amount of
already known excess claims and therefore the less detailed traditional IBNR
statistics give the spurious impression that the total amount of excess claims is
exactly known after six or seven development years which is obviously not the
case in this example.

We now want to estimate the ultimate burning cost with our method. From
(2.2.3) and (2.2.4) we obtain:

j ’; '}

1 0.45-1073

2 1.06-1073 —0.359
3 1.40-1073 0.072
4 1.15-1073 —0.048
5 1.18-107? —0.054
6 0.49-1073 0.070
7 0.50-1073 0.033

We see that the 4’s reach a maximum in year 3 and decrease thereafter but it
would be misleading to assume that A; = 0 for j > 8.

Between the 1st and the 2nd development year there is an important increase
of the known excess claims; after that the excess increase or decrease more or
less randomly and the ¢’s oscillate around zero.

By plugging the parameters into (2.2.5) we obtain the following estimate for
the ultimate burning cost:

R(H) = 0.61%,

An estimate which is almost identical to the one obtained with the Cape Cod
method.
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Under assumptions (A;), (A,) and (A;) we know that R(é) is a practically
biasfree estimate of R(#), whereas neither in the case of the chain-ladder
estimate nor in the case of the Cape Cod estimate do we know anything about

the bias of the estimator.

We now make the stronger assumptions (Af), (A%) and (A%) and we estimate

R. SCHNIEPER

o; and 7; according to (2.3.5) and (2.3.6).

j 7 3
1 0.054

2 0.074 0.387
3 0.109 1.269
4 0.079 1.177
5 0.056 3.460
6 0.057 0.303
7 0 0

The assumption 6; = 0 and 7; = 0 is not very realistic, however it has little
impact on the mean square error of R(f). From (2.3.3) and (2.3.4) we now

obtain the standard deviations of the estimators of our parameters.

j o(i) a(3)
1 0.16-1073
2 0.24-1073 0.070
3 0.40-1073 0.121
4 0.34-1073 0.095
5 0.29-1073 0.260
6 0.38-1073 0.026
7 0 0
We also need the following expressions:

oR OR OR

— =4, = 1.253 —=4,=0921 — =4, =10.993

o4, A A3

OR OR OR

— =4, = 0.948 —— = 45 = 0.899 —— = d¢ = 0.967

04 OAs d g

JR

=1

yy

OR 1

68, =9,

OoR

— = —[414,+1,45] = —0.00166

60, — 03
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OR '

—_— = —[11A1+/12A2+/13A3] = —0.00279
664 1—64

OR

655 1_55

oR

O o A+ . +Asdd] = —0.00546
556 1_56

OR

557 1_57

From (2.3.2) we now obtain
mse'2(R(0) = 0.13%)

Our method also provides a measure of the precision of the point estimator.

To summarize what we have obtained so far we can say that we have an
estimate of the burning cost after seven development years (0.61%), this
estimate is practically unbiased and reasonably precise since its standard
deviation is (0.13 %). Our detailed statistics have shown us that there are still
some excess claims to be expected in the following development years, a fact
which we would have overlooked if we had only used the usual IBNR statistics.
To assess the impact of further development years on the ultimate burning cost
we can use the experience of similar portfolios or some market statistics if that
kind of data is available, if such is not the case we can extrapolate our
estimates of the A’s and of the J’s.

Based on the analysis of the given portfolio, a realistic extrapolation would

be:
Ay = Ay = 0.5-1073
4 =0 j=10,11...
6; =0 j=28,9,...
Thus our estimate of the ultimate burning cost is
R=071%.
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