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Abstract

The theory of Yang-Mills fields is explicitly formulated in terms of the theory of connec-
tions in principal and associated fiber bundles. Special attention is paid to the fiber bundles
with Lorentz and Poincar6 structures. Equations of the form V\[/ = 0, where V is a generalized
convariant derivative, are shown to contain "mass" terms if the connection in the Poincar6
fiber bundle is cononically associated to the connection in the Lorentz fiber bundle.

Introduction

The concept of gauge invariant interactions (or Yang-Mills fields) is an attrac-
tive way to unify the theory of interacting physical fields (Yang and Mills (1954),
Utigama (1956)). It is known that the theory of Yang-Mills fields is parallel
to the theory of connections in vector bundles (Hermann (1970)). Geometrical
meaning of the gauge invariance of the theory becomes even more transparent
when the formalism of principla and associated fiber bundles is uded. The ex-
plicit correspondence of differential geometric and physical terms is described
in section 1. In section 2 fiber bundles with the Lorentz group structure are
discussed. The covariance derivative is generalized for the case when the struc-
ture group acts upon the tangent vector space of the base manifold. Solutions
of the Dirac equation with zero mass are shown to be horizontal cross sections
in the generalized sense. In Section 3 the structure group is enlarged to the
Poincare group. The equations satisfied by the horizontal cross sections acquire
additional terms that are of simple form (mass-like) if the connection in such an
enlarged fiber bundle is canonically associated with the connection in the original
fiber bundle.

1. Gauge invariance and fiber bundles

Let F be a linear vector space and X a function* from a manifold M to F
defined on an open subset of M. Such a function will describe a physical field

* In this paper we do not deal with questions of differentiability. Every function is considered
to be as many times differentiable as needed in explicit statements.

376

https://doi.org/10.1017/S144678870003158X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003158X


[2] Gauge invariant interactions 377

while M will be the space-time manifold. Descriptions of physical fields are usually
invariant with respect to gauge transformations in the following sense: There is a
Lie group G acting differentiably on F such that for every function x -* g(x) e G,
xeM, defined on the same subset of M as i]/, g(x)i]/(x) describes a field physically
equivalent to i^(x). To describe such a situation mathematically, we must look for
a structure where one element corresponds to the whole class of fields g(x)ij/(x)
with different g(x)'s. Such a structure is the family of cross sections in an associated
fiber bundle, as explained further.

Let P(G,M) be a principal fiber bundle (Kobayashi and Nomizu (1963))
P is a manifold on which Lie group G acts differentiably without fixed point
(on the right, say). M is the quotient space of P by the equivalence relation in-
duced by G. Orbits of G in P are called fibers. We now form P x F and define
action of G on it by

(l) 1

Define E as the quotient space (P x F)G with respect to such action of G on
P x F. Then a point (p, \[/)G e E is identical with (pg, g ~ V ) G e E f° r a ^ 9 6 G-

A map $ :M -» E contains the gauge invariance as

(2) 4>{x) = (K*),<K*))G = (p(x)g-\x),g(xMx))G

E is called a fiber bundle associated to P with standard fiber F. <f>{x), a cross
section in E, is what corresponds to a given physical state of field \j/. Choice of a
particular function \J/ in one of the equivalent classes is determined by a corre-
sponding p(x), a cross section in P.

An alternative way of describing <f>{x) is by an F-valued function on P: If p0

is any point on the same fiber as p(x) we define a function £ : P -> F as follows

(3) (Ax)Hx))e = (PO,«PO))G.

This defines % at all points of P that project onto a subset of M on which \}i is
defined. Dependence of ^(p) on p when it moves along a fixed fiber is trivial:

(4) (

so that

(5)

There is a one-one correspondence between the set of functions t, and the set
of cross sections in the associated fiber bundle. A physical field ij/(x) may be re-
covered from £ by choosing a cross section p(x) in the principal fiber bundle P:

(6) Hx) = Z(p(x)).

Functions \ji satisfy differential equations characteristic for the physical fields
they describe. Such equations involve directional derivatives X\l/(x), X being a
tangent vector at x e M.
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Equations describing behaviour of a free (i.e., non-interacting) field \j/(x) are
normally invariant with respect to a fixed gauge transformation

(7) iKx)-#(x), 9zG.

The same equations will not be invariant with respect to a general gauge
transformation \j/{x) -» g(x)\p(x) because of the effect of differentiation on g(x). A
covariant derivative Vx is then sought with the property

(8) Vx3(x).Kx) = <7«Vx<Kx).

It means that in the fiber bundle formalism we need a directional derivative
that is not affected by changes that occur along the fibers. If the fibers are thought
of as indicators of vertical direction, all we need is to specify a horizontal direction.
A covariant derivative should then be connected with a horizontal directional
derivative.

In differential geometry, a horizontal direction is specified by a connection in
the fiber bundle. Let T be a connection in P. Then if Xp is a tangent vector at
peP we have a unique decomposition

Xp = Yp + Zp,

where Yp is horizontal, and Zp vertical. The connection T may be also characterized
by the connection form co, which is a differential 1-form on P with values in the
Lie algebra ^ of the structure group G, satisfying

(1) co(Xp) = 0 if Z p is horizontal,
(2) co(Xp) = A if Xp is vertical, A e <S

corresponding to the vector Xp in the following way: Let Gp be a subspace of the
tangent vector space at p e P which is naturally isomorphic to the tangent vector
space of group G at the identity via the action of G on P. The isomorphism of the
latter with <& provides the correspondence.

Let us now return to the problem of covariant derivative. Function <j) or £ is
considered to be given, while a pair of p(x) and \]/(x) is chosen in the equivalence
class. If X is a tangent vector at x e M, Xp will denote a tangent vector at p{x)
such that it is tangent to the cross section p considered as a submanifold of P, and
its natural projection is X. The covariant derivative Vx is then defined by

(9) V ^ x ) =

where Yp is the horizontal component of Xp. It is easy to show that it satisfies
property (8) (see Smrz (1973a)). Rewriting Yp as Xp — Zp and using

as well as

* Vector space Fis considered as a representation space of Lie algebra 'S, and <o(Xp) is the
corresponding matrix.
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[4] Gauge invariant interactions 379

we can write the covariant derivative as

(10) vx«K*) = W ) + «W-K*)-
If X = d/dx11, the last expression may be written more explicitly

where VM denotes the covariant derivative with respect to d/dx", Aa, a = 1, •••,n,
form a basis of Lie algebra ^S, and B°(x) are components of the connection form co.

B"u(x) (or, in fact, rather — B°(x) in literature) are the Yang-Mills fields inter-
acting with the system described by \j/(x) and p(x).

2. Fiber bundles with Lorentz structure

If the structure group of the principal fiber bundle acts not only on manifold
P and vector space F, but also on the tangent vector space Mx at every point x of
the base manifold M, the concept of the covariant derivative may be naturally
generalized. Besides satisfying (8) for every given vector X we may try to find a
tangent vector Xo such that

(11) W ^ C x M x ) = 0(x)V,oiKx).

If Xo = E % ^"d/dx" it means that

HI HI m

(12) E a"\g(x)^x) = E a"'flf(x)V>(x) = *(x) E a"V^(x)

where

a" = E ™= 1D"(x)av, 5"(x) representing the action of the group element g{x)
on the tangent vector space at x e M if the basis {djdx1,---, d/dx"1} is used. Condi-
tion (12) will be true for all functions \j/{x) only if

(13) a"' = g(x)a"g-\x).

Of course, if a" are real numbers, and G acts on Mx with only the null vector being
fixed, there is no non-trivial solution for (13).

On the other hand, a solution may exist, if coefficients a" are allowed to be
matrices of the same order and over the same field as those representing elements
of group G and its Lie algebra &. Also, the linear properties of the connection
form (o may be extended to

co(aX + bY) = aco(X) + bca(Y)

with a and b being matrices. Note that co(X)itself is a matrix of the same type, and
the multiplication is well denned. Then
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V ," a»x = £ a"Vx
« = 1

just as for the real coefficients.
As an example we consider G to be the homogeneous Lorentz group. We

assume further that M is a four-dimensional manifold such that at each point
x e M there exists a basis

/i{Kx)^-H, k = 1,2,3,4

with the following properties: If Lki(g) is the four-dimensional real representation
of g e G satisfying the usual orthogonality relations

I Ll
k(g)glnLl(g) = gkm, geG,

!in = l

gln = 0 if / # n, 01X = g22 = g33 = - 0 4 4 = 1,

then

I Lk(g)al = a*'
( = 1

represents the action of G on the tangent vector space of point x if h is used as the
basis. In order to solve condition (13) we have to find a,, I = 1,2,3,4, satisfying

ga'g-1 = I Ll
k(g)ak.

If F is the four-dimensional complex vector space and the generators of the
Lorentz group are written in the form Skl = \{ykyl — y'yk), where yk, k = 1,2,3,4,
are the Dirac matrices satisfying ykyl + ylyk = 2gkll, then matrices ak may be
chosen as proportional to yk,

ak = cyk, c e C .

The coefficients a" related to basis {djdx',---,djdx4'} are then obtained by
a" = £*=i hk(x)ak. The operator VXo = V is what we call the generalized
covariant derivative. The equation

(14) ViK*) = 0

is identical to the Dirac equation without the mass term. It includes the Yang-Mills
fields B"u{x), a = l,---,6, describing the field of gravitation. Both B^{x) and hk(x)
are, of course, connected with the Riemannian metric on M. A relation connecting
B°(x) and hk(x) was derived in Utiyama (1956) under certain simplifying assump-
tions. A more general and simple derivation based on the fiber bundle formalism
is given in Smrz (1973a).
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3. Extension to Poincare structure.

It is possible to introduce a mass term into the equation (14) without loosing
its homogeneity. In fact, the mass term comes from a set of additional Yang-Mills
fields not included in considerations of section 2. The only way to bring more
Yang-Mills fields into the formalism is to enlarge the structure group of the
principal fiber bundle. We shall consider now a principal fiber bundle with the
Poincare group G as its structure group. G has a form of a semidirect product
G = V x G, where G is the homogeneous Lorentz group, and V is the four-
dimensional real vector space isomorphic to the abelian group of translations.
Similarly the Lie algebra 'S of group G has a form of a semi-direct sum & = V + 9.
If P is a product manifold V x P with P being the manifold of Lorentz frames as
defined in the previous section, then every connection form & in P(G, M) uniquely
decomposes according to

(15) i*cb = co + a,

where i is the natural injection of P into P (i* denotes the mapping of differential
forms induced by the manifold map i), a) is a ^-valued 1-form on P, and a is a
F-valued 1-form on P. In the covariant derivative (10) a will generate additional
four fields ££(x). These fields are connected with the group of translations, but as
long as these vertical translations along fibers of P are not somehow related to
the "real" translations in the base manifold, their form is not specified any
further. On the other hand, there is a natural way of defining such a relationship,
known from studies of the affine connections. We shall briefly review the con-
struction as it applies to the structures we study.

Every point p of the bundle of Lorentz frames P may be considered as a linear
isomorphism V -> Mx. Quantities h%, n, k = 1,2,3,4, that characterize a point in
P are an explicit matrix formulation of such isomorphism. A 1-form with values
in V may be defined on P by

where Xp is a tangent vector at p e P, n is the projection map so that n(Xp) is a
tangent vector at x = n(p) e M. Differential form 6 has the same properties as <x
with respect to the action of group G, and it is possible to set

(16) 9 = a.

A connection in P(G, M) that satisfies (16) is in the theory of affine connec-
tions called the connection canonically associated with co in P(G, M). In the explicit
form with fixed bases in V and M, the condition (16) reads

(17) B%x) = h%x)

where Bk(x) is the Yang-Mills field associated with the translation in the direction
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of fcth axis, and /i* is the usual (a little confusing) notation for the inverse of
matrix hk.

Let us now return to the equation Vip = 0 with V being the generalized
covariant derivative. We shall write it in an explicit form

4 4 , fl 4 10

(18) £ £ *K*)«*hrr + E B^p' + E BW
n = l * = 1 V*7-* 1 = 1 o = 5

where Aa, a = 5, ",10, are the generators of the Lorentz group, while plt

I = 1, •••,4, generate translations. Using (17) the terms connected with transla-
tions simplify as follows:

£ £ £ ftMaXWP! = £ °kPk
11 = 1 * = 1 1 = 1 * = l

This is a constant matrix that, due to the properties of matrices ak and pk,
commutes with all elements of the homogeneous Lorentz group. It is not neces-
sarily a multiple of the identity matrix, and its form will depend on a particular
representation of the Poincare group as well as on the choice of matrices ak. The
mass term of the Dirac equation is obtained in the correct form if ak is propor-
tional to yk, and pk is chosen as l/R yk, where the Poincare group is considered a
contracted (in Wigner's sense, Inonii and Wigner (1953)) de Sitter group.

Finally, we shall consider a weaker condition than (16). The translation part
a of the connection form may still be in a relationship to the canonical form 8, but

(19) OL(XP) = fl^,),

where <pp is an automorphism of the tangent vector space at p. If Rg denotes the
action of g e G on P

<xpg(RgXp) = Rg.ap(Xp) = Rg.0p{4>pXp) = dp9{Rg<f>pXp)

but also

apg{RgXp) = 6WpgRgXp)

so that the relation (19) makes sense only if

(20) 4>pg = Rg4>PRg-v
In particular, if <f>p defines an automorphism (j>x : Mx -* Mx by

then <j>x must commute with Rg. But G (Lorentz group) acts irreducibly on Mx,
therefore the only automorphism commuting with Rg for all g e G is a multiple of
identity. In such a way we obtain a condition

(21) ap = m(x)0p, x = n(p).
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[8] Gauge invariant interactions 383

The mass terms obtained while condition (21) holds differ from the canonical
terms of condition (16) only by a scalar function on M.

Conclusions

We can say that a physical system of a particle interacting with a system of
classical fields corresponds to the geometrical system of a principal fiber bundle
with connection plus an associated fiber bundle. The connection contains all in-
formation about the system of classical fields, while the wave function of the
particle corresponds to a cross section in the associated fiber bundle. In case of a
Dirac particle the cross section is horizontal in a generalized sense. A new rela-
tionship between translations and the mass of the particle is suggested by such an
approach. There are many questions that remain to be answered. It is, for example,
the question of dynamical equations for the classical fields. What is the form of a
general dynamical equation for a connection in a principalfiber bundle? What is its
relation to the usual equations for the field of gravitation? Finally, the formalism
should be applicable also to the system of interacting quantum fields. Unfor-
tunately, the structure group of the fiber bundle must be non-compact if it is to
contain the Lorentz group, and this is expected to bring many difficulties into
quantized theory.
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