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Abstract

Let G be a finite p-group, and let M(G) be the subgroup generated by the non-central conjugacy classes
of G of minimal size. We prove that this subgroup has class at most 3. A similar result is noted for
nilpotent Lie algebras.

2000 Mathematics subject classification: primary 20D15, 20E45, 17B30.

This note is concerned with the influence of the conjugacy class sizes of a finite
group on its structure and the analogous problem for Lie algebras. The only groups
that we consider are finite p-groups, and the letter G is reserved to denote such a
group. Let G be a finite p-group, and let 1 = nx < n2 < • • • < nk be the sizes of
its conjugacy classes. We refer to classes of size n2 as minimal classes, and to their
elements as minimal elements. We also write n, = pb', and if x lies in a class of
size rii, we say that x has breadth bt, and write bG{x) — bt (the index G will often be
omitted). In [7], Ishikawa has shown that if k = 2, then cl(G) < 3. A simplification
of his proof, by Isaacs, appears in [1]. In [8] we pointed out that a slight variation
on Ishikawa's argument proves that if G is generated by minimal elements, then
cl(G) < 3, and conjectured that in any p-group the subgroup, M(G) say, generated
by the minimal elements has its class bounded by a function of p only. We were able
to prove this for p = 2, with the bound 2, and derived from it that 2-groups with
k = 3 are metabelian. Here we prove a strong form of the full conjecture, showing
that cl(M(G)) < 3 always. This provides, in particular, a new proof of Ishikawa's
theorem, and we also deduce from it that 3-groups with k = 3 have derived length at
most 4.
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One of the difficulties in Ishikawa's theorem is that the assumption that all non-
central classes have the same size is inherited neither by subgroups nor by factor
groups, and so induction is not applicable. As a simple example of this problem,
consider the group G with presentation (JC, y, z \ xp = yp = zp = 1), and all
commutators of weight 3 being the identity. This is a group of class 2 and order p6, in
which the non-central elements have p2 conjugates each. However, in H = G/{[x, y])
there are classes of both sizes p and p2. More generally, let G be generated by
JCI , . . . , xn, with all generators of order p, and all commutators of weight 3 trivial. Then
G' = Z(G) is an elementary abelian group of order p("), with a basis consisting of all
commutators [*,, Xj],i < j . It is easy to see that if x £ Z(G), then C(;t) = (x, Z(G)),
and thus all non-central elements of G have breadth n — 1. In [4] there are constructed
p-groups, of class 2 and generated by elements of order p, with an arbitrary set
(containing 1) of p-powers as the set of class sizes. Such a group is a factor group of
the above G, if n is large enough. Thus there can be no restriction on the number of
class sizes of factor groups of groups with just two sizes. We avoid that problem by
focusing on the breadth of a single element.

Similar to the group case, let L be a finite-dimensional nilpotent Lie algebra.
We then write 0 = bx < b2 < • • • < bk for the codimensions of the centralizers
(annihilators) of the elements of L. An element whose centralizer has codimension
b2 is termed minimal. Then one can prove, by arguments which are almost identical
to the group case, results analogous to Theorems 1, 5, and 7, below. Indeed, some of
the proofs are even slightly shorter, because we do not need to consider pth powers.
We do not spell out the proofs, just state the analogue of Theorem 5.

THEOREM L. Let L be a finite-dimensional nilpotent Lie algebra, and write M{L)
for the subalgebra generated by the non-central elements with a centralizer of maximal
dimension. Then cl(M(L)) < 3.

We recall that Lie algebras analogues of Ishikawa's theorem, and other related
results, were proved earlier in [1] (of course Theorem L provides another proof of
Ishikawa's theorem for Lie algebras). It may be thought that, analogously to the fact
that in 2-groups M(G) has class at most 2, in Lie algebras of characteristic 2 the
subalgebra M(L) is of class at most 2. However, that does not hold. Consider, over
any field, a 5-dimensional Lie algebra L, with basis x, y, z, u, v, relations [x, y] =
-[y, x] = z, [x, z] = -[z, x] = M, [y, z] = -[z, y] = v, and where all the other
commutators are 0. Then L is an algebra of class 3, in which all non-central elements
have a centralizer of dimension 3. The group analogues of this example, groups of
order p5 and class 3, with \G'\ = \G : Z(G)| = pi, exist only for odd p (see [6] for
many examples, and partial classification, of p-groups with k = 2).

We use CG(X) and NG(X), or C(X) and N(X) when there is no danger of confusion,
for the centralizer and normalizer of the element, or subgroup, X, in G. We denote by
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Zj(G) and y,(G) the upper and lower central series, Z(G), G', and <$>(G) the centre,
derived subgroup, and Frattini subgroup, respectively, and cl(G) the nilpotence class
of G. Also, if N<G, then Z(G mod N) is denned by Z(G mod N)/N = Z(G/N).

Our main technical result is as follows.

THEOREM 1. Let K bea normal abelian subgroup ofG, x bea non-central element
ofG of breadth b, and y e [K, x]. Then b(y) < b.

LEMMA 2. Let x e H < G, N <G, and \G : H\ = \N\ = p. Then b(x) - 1 <
bc/N(xN) < b(x) andb(x) - 1 < bH(x) < b{x). IfC(x) < H, then bH(x) =
b(x) - 1.

PROOF. The first inequality follows from the facts that the conjugacy class of x
maps onto the conjugacy class of xN, and that at most p elements of G map to the
same element ofG/N. The other claims are obvious. •

LEMMA 3. Using the notation above, assume that «2 > p, and let N < G have
order p. Then Z(G mod N) = Z(G).

PROOF. Let x e Z(G mod TV). Then all conjugates of x lie in xN, so x has at most
p conjugates. The assumption n2 > p shows that x is central. •

PROOF OF THEOREM 1. Naturally we may assume that K £ C(x). If b(x) = l,then
\G : C{x)\ = p, therefore G = KC(x), andC(;c)<G,and so also Z(C(x))<G. Since
x e Z(C(x)), we have [K,x] < K n Z{C{x)) < Z(G), as desired. Now assume
that b(x) > 1, and apply induction on b = b(x). We can find a subgroup C(x) <
H < KC(x) such that \H : C(x)\ = p. Then C(x) < H and H = C(x)(H fl K), and
we can find an element z e K such that z € N(C(x)) - C(x) and zp e C(x). Then
z normalizes Z(C(x)), which contains x, and therefore 1 ^ [x, z] e Z(C(x)) D K.
Thus C([x, z]) > KC(x), so C([x, z]) contains C(x) properly, and b([x, z]) < b.
We now have two possibilities.

(I) [x, z] e Z(G). In that case C1«JC, z)) < 2, and so [x, z]p = [x, zp] = 1, and
[x, z] has order p. Write N = ([x, z]). In G/N the coset xN commutes with both
C(x)/N and zN, and so bC/N(xN) < bc(x). It follows from Lemma 2 that xN has
breadth b{x) — 1. By induction bC/N(yN) < b — 1, and by Lemma 2, b(y) < b.

(II) [x, z] $. Z(G). Then KC(x) ^ G. Let L be a maximal subgroup containing
KC(x). Then bL(x) = b — 1, and by induction bL{y) < b — 1, implying bG(y) < b.

•
An obvious but important corollary is as follows.
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COROLLARY 4. Let K be a normal abelian subgroup ofG. Then [K, M(G)] <
Z(G).

THEOREM5. cl(M(G)) < 3andcl(M(G)/Z(G)) < 2. Ifp = 2, thenc\{M{G)) <
2 and M(G)/Z(G) is abelian.

PROOF. Write M = M(G). Let K be maximal among the normal abelian subgroups
of G that are contained in M. Then CM(K) = K. By Corollary 4, [M, K) < Z(G) <
Z(M), and so K < Z1(M). However, then M' < CM(K) = K, that is, M' < Z2(M)
and cl(M) < 3. Also [A/', M] < [K, M] < Z{G), and so cl(Af/Z(G)) < 2.

That cl(M(G)) < 2 if p = 2 is Theorem 4 of [8]. That M(G)/Z(G) is abelian in
that case will be proved following the statement of Theorem 6 below. We first recall
a definition and a result from [8]. •

DEFINITION. Let G be a p-group. The centralizer equality subgroup D(G) of G is
the subgroup generated by all elements of G satisfying C(x) = C(xp).

Obviously D(G) > Z(G), and easy examples show that both equality and inequal-
ity of these two subgroups occur. The applicability of this subgroup in our context
follows from the obvious fact that if x is a minimal element, then either*'' e Z(G), or
x is oneofthe generating elements ofD(G). IfD(G) < H < G,thenD(G) < D(H).
The next result, which is [8, Theorem 7], shows that D(G) always has a large cen-
tralizer. For its statement, recall that a left n-Engel element is an element x such that
[y, x,..., x] = 1 for all y e G, where x occurs in the commutator n times.

THEOREM 6. Let G be a p-group. then the following statements are true.

(a) D{G) is abelian.
(b) IfD(G) <H <G, andc\(H) < p, then D(G) < Z(H).
(c) C(D(G)) contains ZP(G), as well as all normal subgroups of G of class less

than p, all elements of breadth less than p, and all left p-Engel elements.
(d) Let c < p. If N is maximal among the normal subgroups ofG of class c, then

D(G) < N.
(e) D(G) < ZJ(G).

Here we recall that J(G) is the Thompson subgroup of G, the subgroup generated
by all abelian subgroups of maximal order, and ZJ(G) is its centre, which is equal
to the intersection of all these abelian subgroups. Recall also that various subgroups
with properties similar to those of J{G) have been defined; we have in mind the
two ^-subgroups of Glauberman [3, Section X.8] and the Puig subgroup L(G) [2,
Appendix B]. It is not difficult to see that D(G) lies in the centre of all three of these
subgroups.
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Now return to Theorem 5. It was proved in [8, Proposition 6] that the minimal
elements of a 2-group G lie either in D(G) or in Z2(G). Therefore M(G)/Z(G) is
abelian, being a subgroup of the abelian group D(G)Z2(G)/Z(G).

The following result may be considered as a 'local' version of Theorem 5.

THEOREM 7. Let x be a minimal element. Then cl(x)G < 2. If p = 2, then (x)G is
abelian.

PROOF. We will prove a stronger statement, that {x)GZ(G)/Z(G) is abelian. First,
letb(x) = 1. Then|G : C(x)\ = p, soC(x)<GandZ(C(x))<G. Sincex e Z(C(x)),
{x)G is abelian. Next, we assume that b(x) > 1, and induct on b(x). Let AT be a
maximal normal abelian subgroup of G. Then C(K) = K. If x e K, then (x)G < K,
so (x)G is abelian. If x £ K, then K £ C(x), and as in the proof of Theorem 1,
we can find an element y e K, such that [y, x] is a central element of order p, and
if N = ([x, y]), then in G/N the element xN is minimal, of breadth b(x) — 1. By
induction {x)G is abelian, modulo Z(G mod TV). However, Z(G mod AO = Z(G), by
Lemma 3.

If p = 2, then [8, Proposition 6] shows that either x e D(G) or x e Z2(G).
Thus (x)G is contained either in the abelian group D(G) or in the abelian group
{x, Z(G)}. •

Combining the last theorem with Theorem 6 (c) yields the following addition to
Theorem 6.

COROLLARY 8. D(G) centralizes all minimal elements.

In [8] we pointed out that if G has k class sizes, and x e G, then xp" ' e D(G). In
particular, G is an extension of an abelian group by one of exponent < pk~l (if p — 2,
the exponent can be taken to be 2k~2). Analogously we have the following result.

COROLLARY 9.I/G has k class sizes, then G is an extension of a group of class 3
by a group of exponent pk~2.

PROOF. Let x € G, and consider x, xp, ..., xpt '. If two of these elements have
the same centralizer, these two elements lie in D{G), and in particular xpi~2 € D(G).
If no two of these powers have the same centralizer, they represent all the class sizes,
so xpk is central, and xpk 2 is minimal. In either case xpt'2 G D(G)M(G), and the
last subgroup is of class 3, by Theorem 5 and Corollary 8. •

Since groups of exponent 3 are of class 3 and metabelian [5, Chapter 18], we obtain
the following.
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COROLLARY 10. A 3-group with just three class sizes is an extension of a group of
class 3 by a group of class 3, and has derived length of at most 4.
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