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p-adic confluence of g-difference equations

Andrea Pulita

ABSTRACT

We develop the theory of p-adic confluence of g-difference equations. The main result is
the fact that, in the p-adic framework, a function is a (Taylor) solution of a differential
equation if and only if it is a solution of a g-difference equation. This fact implies an
equivalence, called confluence, between the category of differential equations and those
of g-difference equations. We develop this theory by introducing a category of sheaves
on the disk D7 (1,1), for which the stalk at 1 is a differential equation, the stalk at ¢ is
a g-difference equation if ¢ is not a root of unity, and the stalk at a root of unity £ is a
mixed object, formed by a differential equation and an action of og.
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Introduction

The main aim of this paper is to provide a theory of confluence for g-difference equations in the
p-adic framework.

A motivation: the rough idea of the confluence

Heuristically we say that a family of g-difference equations {0 (Yy) = A(q,T) - Yy}gen-(1,0—{1}
(where o, is the automorphism f(T') — f(qT)) is confluent to the differential equation 6,(Y,) =
G(1,T) - Yy, with 6y := T'd/dT, if one has

liml G(¢,T) =G(1,T)
q—)

where G(q,T) = (A(q,T) —1I)/(q¢—1) is the matrix of the g-derivation A, := (6,—1)/(¢—1) acting
on M, and moreover if, in some suitable meaning,

limY, =Y. (0.1)
q—1

Roughly speaking, in this paper we show that in the p-adic framework, if a differential equation
is given, then, for e sufficiently small, one may choose the family {G(q,T)}, in order to have
Y, = Y1, for all ¢ € D™(1,¢). Conversely if ¢, is not a root of unity, and if a single equation
Oq, (Yqo) = Alq,,T) - Yy, is given, then, under some assumptions on the radius of convergence of
its generic Taylor solution Yy , one can find a differential equation and family as above with the
property that Y, = Y, = Yj, for all ¢ € D*(1,]|g, — 1|). In this sense, in the p-adic context,
the solutions of g-difference equations are not simply a discretization of the solutions of differential
equations, but they are actually equal. We want now to state these facts more precisely.

The work of André and Di Vizio

In [ADV04] André and Di Vizio initiated the study of the phenomena of confluence in a p-adic
setting. For K a complete discrete valuation field of mixed characteristic, they found an equivalence
between the category of ¢-difference equations with Frobenius structure over the Robba ring R jai

(here called o,-Mod(R ja12)(®)), and the category of differential equations with Frobenius structure
over the Robba ring R ja (here called 6;-Mod(R jai)(®).
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One of the restrictions of [ADV04] is that the number ¢ is required to satisfy |¢— 1| < |p|*/®~1).
Indeed, in the annulus |¢ — 1| = |p\1/ (»=1) one encounters the pth root of unity and, if £&¥ = 1, then
the category Jé—MOd(RKalg)((b) is different in nature from the category of differential equations,

since it is not K®8-linear (that is, the ring of automorphisms of the unit object is strictly larger
than K?#).

The equivalence of [ADV04] is obtained as follows. In [And02] one proves that the
Tannakian group of §;-Mod(R jcaz)(?) is Zyais((r)) X Ga, where k is the perfect residue field of K,
and Zyaie((y)) is the absolute Galois group of k28((t)). On the other hand in [ADV04] one shows that
gg-Mod(R katz)(® has the same Tannakian group Tyas((1)) X Gq. By composition with the respective
Tannakian equivalences (T and 77 below), one then obtains the so-called confluence functor Conf,
(in the notation of [ADV04] one has T = Vl(f) and T}, = V((;g)):

Confy
aq—Mod(RKalg)(¢) e > §1-Mod(R geatg)(?) (0.2)

Tq_ UA
Rep yarg (Zhate(z)) X Ga)

1

The strategy of [ADV04] consists in showing that, as in the case of differential equations
(cf. [And02]), every object M in o,-Mod(R ja1z)(®) is quasi-unipotent, i.e. becomes unipotent after
scalar extension to a special extension of Ry (cf. §8.3). Once a basis of M is fixed, this means that
M admits a complete basis of solutions Y € GLn(k\;;[log(T )]), where Rk is the union of all special
extensions of R (it is a sort of lifting of k((¢))*8). We will call étale solutions the solutions of M in
ﬁ;[log(T)]. The proof of this relevant result needs a substantial effort, and is actually not less com-
plicated than the classical p-adic local monodromy theorem for differential equations itself (i.e. the
fact that 77 is an equivalence). Thanks to the fact that this important, but also very peculiar, class
of g-difference and differential equations are trivialized by ﬁ;[log(T)], one can define 7 (respec-
tively T,) as the functor associating to a differential (respectively g-difference) equation (M, M)
(respectively (M701(1\/1)) the K#&-vector space T1(M, 0}1) (respectively Tq(M,a}zvl)) of its ‘étale’ solu-
tions in ﬁf;[log(T)].l The action of Zjaig(()) X Gq on the space of the ‘étale’ solutions arises from
its action on k\;;[log(T)] by Ri-linear automorphisms commuting with §; and o, on @[log(T )]

Hence one sees for the first time in [ADV04] the fact that the ‘étale’ solutions of a g¢-difference
equation with Frobenius structure are also the ‘étale’ solutions of a differential equation. Moreover
the functor Conf, is nothing but the functor sending a g-difference equation (with (strong) Frobenius
structure) into the differential equation having the same solutions.

In the present paper we prove that this ‘permanence’ of the solutions holds also for Taylor
solutions (see below). We then develop a p-adic theory of confluence using, as a unique tool, this
fact, here called propagation principle. We prove indeed that this principle is sufficient to define the
confluence and deformation equivalences, over almost all p-adic ring of functions, with very basic
assumptions on the equations. This theory requires only the definition and the formal properties
of the generic Taylor solution Y (x,y). For this reason it is not a consequence of the previously
developed theory (as presented in [ADV04] and [DV04]). Conversely we deduce, as a special case,
the confluence of [ADV04] by comparing Taylor solutions and ‘étale’ solutions (cf. the end of the

introduction).
'Following the definition in §3.2, Vg‘z’)(M) = (M ®ry ﬁ;[log(T)])élzo is actually the dual of the space of
solutions Hom%K(M,RK[log(T)]) (respectively same remark for fo;)(M) = (M ®r, Rrllog(T)])’*=™ and

Hom (M, Rx [log(T)]))-
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The generic g-Taylor solution

Let now K be an arbitrary ultrametric complete valued field of mixed characteristic (0,p). Let
X =D"(co, Ro) —Uj=1..., D™ (ci, Ri) be an affinoid, where D™ (c, R) denotes the open disk centered
at ¢ of radius R. Let Hx (X) be the ring of analytic elements on X . Consider a g¢-difference equation

0oY) = A@,T)-Y, A(q,T) € GLy(Hx (X)) (0.3)
on X. Denote by (M, Ué\/l) the g-difference module over X defined by this equation.

A major difference between the complex and the p-adic settings is that in the latter there are
disks (not centered at 0) which are g-invariant. A disk D™ (¢, R) C X(K) is g-invariant (i.e. the map
x +— gz is a bijection of D™ (¢, R)) if and only if |¢ —1||¢| < R, and |¢| = 1 (cf. Lemma 5.1). Starting
from this consideration, in [DV04] Di Vizio defines, for g-difference equations, the g-analog of the
generic Taylor solution of a differential equation (cf. Definition 5.11):

T — 1Y),
Yiay) = 3 Halg, )& on, (0.4
[n]
n=0 q
where H,,(q,T) is obtained by iterating the equation (0.3): di(Y) = Hy(q,T) - Y, where
oq—1
(¢—1T"
For a large class of equations it happens that, for all ¢ € X(K), the series Y (z,c¢) represents a

function which converges on a disk D™ (¢, R), with |¢ — 1||c| < R. More precisely Y (z,y) converges
in a neighborhood of the diagonal of the type Ur := {(x,y) € X x X | |z — y| < R}, with

lg—1]-sx <R, (0.5)

dg =

where sy := sup.cy |c| as shown in the following picture (one easily sees that sx = max(|co|, Rp))-

DIAGONAL

Ur

We call such equations Taylor admissible. The matrix function Y (z,y) : Ur — GL,(K) is
invertible and satisfies the cocycle conditions: Y (z,9)-Y (y,2) = Y (z,2) and Y (x,y) "' = Y (y, z), for
all (z,y), (y,2), (x,z) € Ur. Moreover Y (qz,y) = A(q,2)Y (z,y) and, for all ¢ € X(K), the matrix
Y(z,c¢) € GL,(Ak(c, R)) is a fundamental basis of solutions of the equation (0.3). In particular the
g-difference algebra Ag(c, R) of analytic functions over the disk D™ (¢, R) trivializes (M, a}]v[).

The following fact is the main point of this paper (cf. Theorem 7.7). If now ¢’ # ¢ belongs to
the disk D7 (¢, R/sx) = D7 (1, R/sx ), then the matrix

Ald z) =Y (¢'z,y) - YV(z,y) " =Y (dz,y) - Y(y,z) =Y (dz,2) (0.6)

is an analytic function of x on all of X. Indeed (¢'x,x) € Ug, for all x € X, and hence the matrix
A(q,x) maps x — (¢'z,z) — Y(q'z,z) = A(¢',z). One shows easily that A(¢',z) € GL,(Hr (X)),
for all ¢ € D~ (1, R/sx), since Y (x,y) is invertible. This fact implies that Y (z,y) is simultaneously
the Taylor solution of every equation of the family {oy(Y') = A(¢',T)Y }q, for all¢’ € D™(1,R/sx).
Equivalently, this means that the g-difference module (M, 0(11\4) is canonically endowed with an action
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of oy, for all ¢ € D™(1,R/sx ). This remarkable fact will be called the propagation principle. As
one can see, this happens actually under the following weak assumptions on (M, 02/[):

(i) ¢ is not a root of unity; (0.7)
(ii) Y(x,y) converges on some Ur with |[¢ — 1| -sx < R < rx; (0.8)
where rx = min(Ry, R1,..., R;) is a number depending on the geometry of X. The category of

g-difference modules (M, 0(11\4) satisfying these two properties for a suitable unspecified R satisfying
lg — 1]sx <7 < R < ry will be denoted by o,-Mod(H (X))

The assumption |¢ — 1|sx < R assures that the image of the map x — (¢gz,z): X — X x X is
contained in Ur. The bound R < rx assures that the function Y (x,y) does not converge outside
X. Indeed the properties of Y (x,y) outside X are not invariant under Hy (X )-base changes in M.
Finally condition (ii) also assures that the map x — gz is a bijection of X globally fixing each
individual hole of X (cf. §5.2). Since rx < sx, we are assuming implicitly that |¢ — 1| < 1. But no
restrictive assumptions on X or on K are made.

Obviously this process works just as well if the initial function Y (x,y) is the generic Taylor
solution of a differential equation. The category of differential equations whose Taylor solution
converges on Ug, for an unspecified R satisfying r < R < rx, will be denoted by 6;-Mod(H g (X))M.

Discrete and analytic o-modules

Let Q(X) be the set of ¢ € K for which x — gz is a bijection of X. Then Q(X) is a topological
subgroup of K*, and the disk D™ (1, R/sx), with R < rx, is an open subgroup of Q(X). The group
Q(X) acts continuously on Hi(X) via ¢ — o4. The data of M, together with the simultaneous
og-semi-linear action of a}]\/[, for all ¢ € D™(1,R/sx), is then a semi-linear representation of the
subgroup D™ (1, R/sx) € Q(X). This representation has the following three remarkable properties.

(a) The map (¢, z) — A(¢,z) is analytic in (¢, ). In particular, the representation is continuous.
(b) The group D~ (1, R/sx ) depends on R, and hence on M.

(¢) The matrix Y (x,y) is simultaneously the generic Taylor solution of the g-difference module
(M, o)), for all g € D™ (1, R/sx).

Inspired by the first two properties we define a new class of objects called discrete or analytic
o-modules as follows. Consider a subset S C Q(X). A discrete o-module on S is nothing but an
Hr (X) semi-linear representation of the group (S) generated by S. If S = U is an open subset of
Q(X), we define analytic c-modules on U to be a discrete o-modules over U together with a certain
condition of analyticity of 02/[ with respect to ¢q. These categories are denoted by o-Mod (H (X ))%iSC
and o-Mod(H g (X))7/ respectively. In this paper the words discrete or analytic will refer to the
discreteness or analyticity of oM with respect to ¢. We heuristically imagine the analytic o-modules

q
as semi-linear representations of the (co-variant) sheaf of groups U — (U).

Remark 0.1. It is important to notice that morphisms between analytic o-modules over U are
morphisms of representations. More precisely, once a basis of M (respectively N) is fixed, we have
a family of operators {0y (Y) = A(q,T)Y }qewy (respectively {0y (V) = /Nl(q,T)Y}qE<U>) such that
A(q,T) (respectively /Nl(q,T)) depends analytically on (¢, 7). A morphism o« : M — N then must
simultaneously commute with quw and O'qN, for all ¢ € (U). In other words the matrix B of «
must simultaneously verify A(q,T)B = aq(B)Z(q,T), for all ¢ € (U). Actually there are non-
isomorphic analytic o-modules over U defining isomorphic g-difference equations at every g € (U)

2The data of an analytic o-module is actually nothing but ‘a family of g-difference equations depending analytically
on q'.
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(see Example 2.6). This is analogous to having non-isomorphic sheaves having isomorphic stalks at
every point.

Taylor admissible o-modules

We now want to analyze property (c): the constancy of the solutions. If S & ppe (where ppo =
{¢€ € K?8 | ¢¢" = 1,3n > 1}), we call Taylor admissible o-modules over S those o-modules for
which the g-Taylor solution Y (z,y) is the same for all ¢ € (5), and satisfy the condition (ii), for all
g€ S (cf. (0.8)). If S =U is open, by the propagation principle, Taylor admissible o-modules are
automatically analytic on U (cf. Remark 7.8). This category is denoted by o-Mod(Hx (X))2dm C
o-Mod(Hx (X))j7'. We heuristically imagine Taylor admissible o-modules as semi-linear represen-
tations of the (co-variant) sheaf of groups U — (U), which are locally constant.

Taylor admissibility is a particular case of a more classical notion. If C/Hx(X) is an algebra
admitting an action of the group (S) extending that on Hy (X), then a semi-linear representation
of (S) over Hi(X) is called C-admissible if it is trivialized by C. For a discrete o-module M over S
to be trivialized by C means exactly that there exists Y € GL,(C) which is a simultaneous solution
of all operators defined by M. If M is trivialized by C we will say that M is C-constant. We observe
that if S = ¢%, then C is nothing but a g-difference algebra over Hz (X). So the constancy of the
solutions does not depend on the analyticity of M; rather it is a discrete fact.

In §3 we define discrete o-algebras, and we develop a basic differential /difference Galois theory
for discrete o-algebras. The analog of the Picard—Vessiot theorem providing the existence of a
discrete g-algebra trivializing a given discrete o-module is missing. We are thus obliged to work
with the category of discrete o-modules trivialized by a fixed discrete o-algebra C. In §4 we develop
formally the theory of C-confluence and C-deformation, which will also depend on the chosen discrete
o-algebra C.

Remark 0.2. Notice that solutions will be defined formally as morphisms M — C commuting
simultaneously with the actions of o, for all ¢ € S (cf. §3.2). This fact, together with Remark 0.1,
explains why the notion of C-constant o-module implies the constancy of the solutions (with respect

to q).

The confluence functor

Let (M, oM) be an analytic o-module over U. By analyticity we also have an action of the Lie algebra
of (U) (here systematically identified with K - ;). In other words the following limit converges to
a connection 6M : M — M (cf. §2.4):

M

M= lim T4 L e End" (M), (0.9)
qe(U)g—1 q—1

where ¢ runs over the (open) group (U) generated by U. In terms of matrices, the matrix G(1,7T)
of oM is

G(L,T) = qaﬁqm(q,mq_l

(cf. Equation (2.4.5)). By continuity, morphisms of analytic o-modules also commute with the
connection (cf. Remark 2.5(1)). Hence we obtain a functor called Confy : o-Mod(Hg (X))} —
§1-Mod(H (X)), sending (M, oM) into (M, 6) (cf. Remark 2.13). This functor is not an equivalence,
but it does induce an equivalence:

Conf™ : o-Mod(Hg (X)) 2 61-Mod (Hg (X)), (0.10)
872
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where Confgay simply denotes the restriction of Confy; to the category
o-Mod(H (X)) € o-Mod (H g (X))2m

of Taylor admissible o-modules verifying condition (ii) with » < R < rx (cf. (0.8)), where r > 0
is large enough to have U C D7 (1,7/sx) (cf. Corollary 7.9). The propagation principle gives a
quasi-inverse functor (cf. Remark 2.13 for a formal presentation).

On the other hand let ¢ € U — 0. An analytic o-module over U defines a g-difference module by
forgetting the action of 024, for all ¢ # ¢. Again the propagation principle provides an equivalence

Res? : o-Mod(Hx (X))l = o-Mod(Hx (X)), (0.11)

where r < rx is sufficiently large to have U C D™ (1,7/sx) (cf. Corollary 7.9). We call the composite
equivalence Confgay. Thus we have

Conf}™ := Confy™ o (Res!) ™! : g-Mod(Hx (X)) = 61-Mod (M (X))". (0.12)

The equivalence Conf;ray sends a g-difference equation satisfying conditions (i) and (ii) (cf. (0.7)
and (0.8)), into the differential equation having the same generic Taylor solution.

Roots of unity and g-tangent operators

In this last equivalence the number ¢ must not belong to pp~. If ¢ = &, with " = 1, the
category of o¢-difference equations is not K-linear and cannot be equivalent to the category of
differential equations. Nevertheless, if, for ¢ ¢ pp~, the radius R of the g-Taylor solution is large,
the propagation principle gives an operator Uév[ : M — M acting on M. The idea is to replace the
category o¢-Mod(H (X)) with another category. The expected object ‘at £’ should also be endowed
with an action of the Lie algebra, as we have just done in the case £ = 1. For all g € (U) the action
of the Lie algebra of (U) is given by the limit
M M

ag /T g
5" == lim —-—L € End®@" (M),

!

7—q ¢ —q

for ¢,q' € (U), as shown in the following diagram.

Clearly 5(1]\/[ = a}]v[ o &M so to give 51(1\4 is equivalent to give 6. In a root of unity the ‘limit object’
is a mixed data (M, 02/1,511\4), i.e. a connection 6} on M together with an action of 02/[ on M. We
call these new objects (¢, d¢)-modules. In the sequel every terminology is given simultaneously for
o-modules and (o, d)-modules. The additional data of 52/[ makes the category of (¢, d¢)-modules

K-linear. Moreover (52/[ preserve the information in a neighborhood of £ indeed we find equivalences
ConfgTay .= Conf ™ o (Res{) ™" : (o, 8¢ )-Mod (Hx (X)) =5 §,-Mod (He (X)), (0.13)
Def, " := Res o (Resf) ™" : (0¢, 6¢)-Mod (Hx (X)) =5 (o, 6,)-Mod (Hx (X)), (0.14)

If ¢ is not a root of unity, then the data of 511\4 is superfluous; indeed if the module is Taylor admissible

the propagation principle allows one to reconstruct (5{\/[ from a}]\/[.
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We notice that in the classical setting over the complex numbers C, understanding of the case
q = £ € pp~ Temains an open problem.

Quasi-unipotence and comparison with André—Di Vizio’s confluence

Up to a correct definition for the notion of Taylor admissibility, the previous theory can be general-
ized to more general rings of functions. From § 7.4 on we obtain the theory over R . We prove that
every g¢-difference equation with Frobenius structure over Ry is quasi-unipotent (i.e. is trivialized
by @[log(T )]), for all ¢ € D™(1,1) — ppe, generalizing the main result of [ADV04]. We actually
prove this theorem in the more general context of o-modules, and (o, d)-modules. We deduce it
by the Quasi-unipotence of p-adic differential equations with Frobenius structure over R, and by
deformation. The idea is the following. As already mentioned, we are obliged to work with o-modules
trivialized by a fixed discrete o-algebra C, and the C-confluence and C-deformation functors
depend on C. In the ‘quasi-unipotent’ context this algebra is C := R [log(T)], while in the context
of the propagation theorem C := Ak (c, R), for an arbitrary point ¢ € X, and suitable R > 0. To
compare Taylor solutions to the ‘étale solutions’ in GLn(ﬁ;[log(T )]), the idea is to find a discrete
o-algebra of functions over a disk containing k\;[log(T)]. Actually such an algebra does not exist.
Thus we use a theorem of Matsuda [Mat02] (cf. Theorem 8.13) providing an equivalence between
61-Mod (R )(® with the sub-category of - Mod(HT )(#) formed by special objects. Special objects
are trivialized by a special extension of HT (cf §8.3). The ring Ag(1,1) is a discrete o-algebra

over H}{. We then prove that the algebra Cet “%[log(T')] generated over H}{ by all the ‘étale solu-
tions’ of special objects admits an embedding C%[log(T)] C Agag(1,1) commuting with 61, with
the Frobenius, and with a}]\/[, for all ¢ € D7(1,1) — ppeo (cf. Lemma 8.24). This will prove that the
C-confluence and the C-deformation functors defined by using C = Ag(1,1) or C = Rg/[log(T)]
are actually the same (cf. Corollary 8.26). Moreover it proves also that the confluence of André-Di
Vizio coincides with our Conf:fay (cf. §8.5), and thus it is independent on the Frobenius.

Structure of the paper

Section 1 is devoted to notation. In §2, we give definitions and basic facts on discrete/analytic
o-modules and (o,9)-modules. In §3 we define discrete o-algebras and (o,d)-algebras, and we give
the abstract definition of solutions. In §4 we give the formal notion of confluence. In §5 we intro-
duce generic Taylor solutions and in §6 the generic radius of convergence. In §7 we define Taylor
admissible objects and obtain the main propagation theorem (Theorem 7.7). In the last (§8) we
apply the previous theory to the Robba ring and to the p-adic local monodromy theorem.

Index of categories

o-Mod(B)dise 878  (0,6)-Mod(B,C)¥™t 884 (0,8)-Mod(Hx (X)) 899
o,-Mod(B) 878  o-Mod(B, C)j ™! 884  (0,0)-Mod(Hx (X ))adm 899
(0, 6)-Mod(B)g™> 879 (0,6)-Mod(B, C)2emt 884 o-Mod(R )%™ 899
(04, 64)-Mod(B) 879 g,-Mod(B,C)g 885  o-Mod(H] )adm 899
51-Mod(B)an 879 aq-Mod(B,c[)]aUn 885 g-Mod(Ry)Y 906
ZﬁgigR)K) 228 U_MOd(Rf)[Sﬂ 898 5-Mod(H},)Y 906
o-Mod(H)g 898 §-Mod(H1,)SP 909
o-Mod (R ) 880 . 1-Mod(H T K)”
o-Mod(H}, )2 g0 (@0) MOd(Rf)g 898 U-Mod(HK)sT . 910
o-Mod () dis 380 (0,6)-Mod(H ], )l Ky 898 (o, 5)-Mod(H£2 fs(l;) 910
(o, 8)-Mod (B2 g1 o-Mod(Hk(X ))§ 899 og-Mod(Ri)*™ 913
o-Mod (B, C)enst 884 o-Mod(H(X))¥! 899  og-Mod(Rg)*" 915
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1. Notation

We refer to [DM82] for the definitions concerning Tannakian categories. In the sequel when we say
that a given category C is (or is not) K-linear, we mean that the ring of endomorphisms of the unit
object is (or is not) exactly equal to K. We set Ry := {r e R|r > 0}, and ¢; :=T'd/dT.

1.1 Rings of functions
Let R > 0 and ¢ € K. The ring of analytic functions on the disk D™ (¢, R) is

Ag(c,R) = {Z an(T — )"

n=>0

an € K, liminf |a,| /™ > R}. (1.1.1)
n

Its topology is given by the family of norms |> a;(T — c)i|(c,p) := sup|a;|p’, for all p < R. Let
) # I C Rxp be some interval. We denote the annulus relative to I by Cx(I) := {z € K | |z| € T}.
By C(I), without the index K, we mean the annulus itself and not its K-valued points. The ring of
analytic functions on C(I) is

Ag(I) == {Zam

1EL

a; € K, lim |a;|p" =0, for all p € I}. (1.1.2)
i—=Fo0

We set |>°, a;T"|, := sup; |a;|p’ < +o0, for all p € I. The ring Ag(I) is complete for the topology
given by the family of norms {|-|,},er. Set I. :=]1 —¢,1[, 0 < ¢ < 1. The Robba ring is defined as

Ric = Ak (L), (1.1.3)
e>0

and is complete with respect to the limit Frechet topology.

1.2 Affinoids
DEFINITION 1.1. A K-affinoid is an analytic subset of P! defined by

X :=D"(co, Ro) — | D (es, R), (1.2.1)
=1

for some 0 < Ry,..., R, < Ro, cp,...,¢n € K, c1,...,¢, € Dp(co, Rg). We denote by X the K-
affinoid itself, and for all ultrametric valued K-algebras (L, |- |), we denote by X (L) its L-rational
points.

Let HI2*(X) be the ring of rational fractions f(7') in K(T), without poles in X (K?8), and let
|- lx be the norm on H*(X) given by || f(T)|x := sup,e x(xaie) | f(x)]. We denote by
Hr(X) (1.2.2)

the completion of (H:Y(X),|| - |/x). It is known that if p1,ps € |[K?2|, and if X = DT(0,p2) —
D~(0, p1), then Hi (X) = Ag([p1, p2]). Let now e > 0. If X = DT (¢co, Ro) — Ui, D™ (i, Ri), we set
X :=D"%(co,Ro+¢) — Ui D (¢;, R; — €). We then set

Hio(X) = | Hr(X0). (1.2.3)

e>0
The ring H}{(X ) is complete with respect to the limit topology. Let X3 := {x | |z| = 1} we set
Hi = Hie(X1), Hi :=H (X)) (1.2.4)
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1.3 Norms
Every semi-norm |- |g on a ring B will be extended to a semi-norm on M, ,(B) = M,(B), by

setting [(b; ;)i j|B := max; ; |b; j|B.

DEFINITION 1.2. Let X be an affinoid. A bounded multiplicative semi-norm on Hy (X) is a function
|- |+ s Hi(X) — Rxo, such that [0, = 0, |1, =1, |f — g« < max([f]« |g]+), [fgl« = [f]«|g]+, and
|-« < - ||x, for some constant C' > 0.

1.3.1 Let (L,|-])/(K,|-|) be an extension of valued fields. Let ¢ € X (L), then |- |, : f —
|f(c)|z is a bounded multiplicative semi-norm on Hp(X). If D*(¢,R) C X, then |f|r) =
SUP,ept  (c,R) |f(x)| is a bounded multiplicative semi-norm on Hg (X). Moreover if f = > ..,
ralgt™ =

ai(T — ¢)', a; € L, is the Taylor expansion of f at ¢ € X(L), then |f|., ) = sup; |a;|R".

DEFINITION 1.3. Let f(T) = Y,c; ai(T — ¢)', a; € K, be a formal power series. We set |f|. ) =
sup; |a;|p’; this number can be equal to +oc.

DEFINITION 1.4. Let r — N(r) : Ryg — R>o be a function. The log-function attached to N is
defined by N(t) := log(N(exp(t))), that is

]’\7 : RU{—OO} EEP—)R}Q LR}O B&RU{—OO}
We will say that NV has a given property logarithmically if N has that property.

DEFINITION 1.5. Let f(T) = > 5qai(T — ), a; € K, be a formal power series. The radius of
convergence of f(T) at ¢ is Ray(f(T),c) := liminf;>q |a;| /% If F(T) = (fur(T))ns is a matrix,
then we set Ray(F(T),c) := miny, , Ray(fnx(T), c).

LeEMMA 1.6 [CR94, ch. II]. Let f(T) € K[[T — c]]. Suppose that |f|(,,,) < oo, for some py > 0.
Then one has the following:

(i) for all p < po one has Ray(f(T),c) = p, and |f|,p) < oo;
(ii) the function p — |f|cp) : [0, po] — Rxq is log-convex, piecewise log-affine and log-increasing,
as shown in the following picture:

10g(|f|(c7p))

— log(0) log(p)

l0g(po)
]

(111) one has |f(T)|(C,p) = Sup|m_c|<p’x€Kalg |f($)|Kalg = hmr_)pf Sup‘x_c‘:nreKalg |f($)|Kalg;
(iv) all zeros of f(T) are algebraic moreover f(T) has a zero ¢ € K&, with |¢ —c| = p < py, if and
only if the previous graph has a break at log(p).

1.4 Generic points
Let (Q,]-])/(K,]-|) be a complete field such that |Q2] = R, and that kq/k is not algebraic.

PROPOSITION 1.7 [CR94, 9.1.2]. For every disk D (c, p), ¢ € K, there exists a point t. , € Q, called
a generic point of DT (c, p) such that |t., — clo = p, and that D, (t..p, p) N K& = 0.
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1.4.1 A generic point defines a bounded multiplicative semi-norm on H g (X ), and hence defines a
Berkovich point (cf. [Ber90]). The reader knowing the language of Berkovich will not find difficulties
in translating the contents of this paper into the language of Berkovich.

For all f(T) € Hx(D"(c,p)), one has

[f(tep)la = 1F(T)lcp) - /()] :Tlin,?fl sup /()] (1.4.1)

Hence, although the point ¢., is not uniquely determined by the fact that Dg,(t.,,p) N K alg — ().
the norm | - |, (i.e. the Berkovich point |- | ,)) does not depend on the choice of t. .

By point (iii) of Lemma 1.6, if p € |K| (respectively p € |[K®28|; p ¢ |[K?2]), then one also has
|/ (te,p)| = max|f(z)|

|lz|=p
zeK

respectively
|ftep)l = max [f(@); [f(tep)l = lim  max |f(z)].

r—p~ |z—c|=re|K?|
reKals reKals

PROPOSITION 1.8 [Ber90]. Let X = D*(co, Ro) — U=y, D~ (ci, Ri) be an affinoid. Let t., g, €
X () be the generic point of D (¢;, R;). Then, for all f € Hy(X), one has

IF(D)llx = max(|f (tey,ro)ls - -5 [f (Een.r0)|0)- (1.4.2)

LEMMA 1.9. Let X = D" (cg, Ry) — Ui:l,...,n D~ (¢, R;) be an affinoid. Let rx := min(Ry, ..., Ry,).
Then

d _
77| <t

Proof. This follows easily from the Mittag—Leffler decomposition of f(7") together with the obser-

vations that || f(T)|lx = max;—o, . n(|f(te;,r;)]) (cf. (1.4.2)), and |f'(te, r,)| < Ri_1|f(tci,Ri)|> for
all 7. O

2. Discrete or analytic o-modules and (o, §)-modules

DEFINITION 2.1. Let B be one of the rings of §1.1. We denote by
OB)={qe K |og: f(T)— f(qT) is an automorphism of B}, (2.0.1)
Q1(B) = Q(B)ND~(1,1).
We will write @ and @1 when no confusion is possible.
Notice that Q(B) C (K*,|-|) is a topological group and always contains a disk D™ (1, 7p), for

some 79 > 0. One has Q(Ax(I)) = Q(Rk) = Q(H}{) = {q € K | |g| = 1}. One sees easily that
OQHk (X)) C{qe€ K ||q| =1} (cf. §5.2, and Lemma 5.1).

DEFINITION 2.2. Let S C Q be a subset. We denote by (S) the subgroup of Q generated by S. Let
©(Q) be the set of all roots of unity belonging to Q. Then we set

S =85 —p(Q). (2.0.3)

2.1 Discrete o-modules

By assumption, every finite dimensional free B-module M has the product topology.
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DEFINITION 2.3 (Discrete o-modules). Let S C Q be an arbitrary subset. An object of
o-Mod(B)dis (2.1.1)
is a finite dimensional free B-module M, together with a group morphism
oM () — Autert (M), (2.1.2)
sending ¢ — Ué\/l, such that, for all ¢ € S, the operator quw is 04-semi-linear, that is

quvl(fm) :Uq(f)-ag/l(m), (2.1.3)

for all f € B, and all m € M. Objects (M, ™) in o-Mod(B)&¢ will be called discrete o-modules
over S. A morphism between (M,oM) and (N, oY) is a B-linear map o : M — N such that

aoaév[ = JqNoa, (2.1.4)

for all ¢ € S. We will denote the K-vector space of morphisms by Homg (M, N).

Notation 2.4. If S = {q} is reduced to a point, then the category of discrete o-modules over {¢} is
the usual category of g-difference modules. We will therefore use a simplified notation:

04-Mod(B) := o-Mod(B) . (2.1.5)

Remark 2.5. (1) Conditions (2.1.3) and (2.1.4) for ¢ € S imply the same conditions for every g € (S).

(2) If M # 0, the map o™ : (S) — Aut$™*(M) is injective. Indeed, since B is a domain and M
is free, the equality aév[(fm) = J}I\fl(fm), for all f € B, for all m € M, implies that Uq(f)alqw(m) =
aq/(f)aé\f{(m), and hence the contradiction: o4(f) = oy (f), for all f € B.

(3) The morphism o™ on (S) is determined by its restriction to the set S. Conversely, if a map
S — Aut{"(M) is given, then this map extends to a group morphism (S) — Aut{™ (M) if and
only if the following conditions are verified:

(i) 0}1\4 oa}z\fI = 024 o Ué\/[, for all ¢q,¢’ € S;

(i) If n,m € Z, and q1,q2 € S, such that ¢ = ¢3*, then (03/11)” = (a}]\;{)m;
(iii) If 1 € S, then oM = 1d.

2.1.1 Matrices of o™. Let e = {eq,...,e,} C M be a basis over B. If a}]v[(ez-) =2, aii(q,T) e,

then in this basis quw acts as

0g' (f1s-- fa) = (0g(f1), -, 04(Fn)) - Ala, T), (2.1.6)
where A(q,T) := (a; ;(q,T)); ;. By definition A(1,T) = Id, and one has

In particular A(¢",T) = A(q,¢"~'T) - A(q,q"%T)--- A(q, T).

2.1.2 Internal Hom and ®. Let (M,o™), (N, o) be two discrete o-modules over S. We define
a structure of discrete o-module on Homp(M, N) by setting a}fom(M’N)(a) = a}]\l owo (a}]vl)_l, for
all ¢ € S, and all @« € Homp(M, N). We define on M ®@p N a structure of discrete o-module over S
by setting Ué\/I@N(m ®n) = J}I\A(m) ® O'qN(’I’L), for all ¢ € S, and all m € M, n € N.

2.1.3 If S° # 0 (cf. (2.0.3)), then the category o-Mod(B)&*¢ is K-linear. If B is a Bezout ring
(i.e. every finitely generated ideal of B is principal), then o-Mod(B)$*¢ is Tannakian (cf. [ADV04,
12.3]). The ring Hx(X) is always principal. If K is spherically closed, then Ax(I), Rk, H}{ are

Bezout rings.
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2.1.4 Asalready mentioned in the introduction, the following is an example of two non-isomorphic
analytic o-modules over X (cf. Definition 2.9), having isomorphic ‘stalks’ at every ¢ € U C Q(X).
This is analogous to having non-isomorphic sheaves having isomorphic stalks at every point.

Ezample 2.6. Let X = {|x| = 1}, then Q(X) ={x € K | |z| =1}. Let U :=D"(1,1), and let 7 € K
satisfy |7| = |p|Y/®~Y. Put then A(q,z) := exp(r(q — 1)x), and A(q,z) := exp(mq(q — 1)z). Let M
(respectively N) be the discrete o-module over U defined by the family {o,(Y) = A(q,z) - Y }qev
(respectively {o4(Y) = Ag, z) - Y }eer). In this fixed basis of M and N, the matrices of every
isomorphism between (M, a}]\/[) and (N, a}]\l) are of the form B(q,z) = A-exp(n(1—q)z) € Hr(X)*,

with A\ € K*. Hence for all ¢ € U the equation 04(Y) = A(q,2)Y is isomorphic to o4(Y) = A(q,2)Y.
But since B(q,z) depends on ¢, M and N are not isomorphic as analytic o-modules over U.

2.2 Discrete (o, d)-modules
Let S C Q(B) be an arbitrary subset.

DEFINITION 2.7 (Discrete (o, §)-modules). An object of
(0,6)-Mod (B)dise (2.2.1)

is a discrete o-module over S, together with a connection® 6} : M — M. Objects (M, o™, M) of
(0,6)-Mod (B)&s¢ will be called discrete (o,8)-modules over S. A morphism between (M, o™, 5}1)
and (N, oY, 6Y) is a morphism «a : (M,oc™M) — (N, o) of discrete o-modules satisfying

aodl =6 oa. (2.2.2)
We will denote the K-vector space of morphisms by Hom(Sg’&) (M,N).
Notation 2.8. By analogy with (2.1.5), if S = {¢}, then we set
(04, 04)-Mod(B) := (0, 6)-Mod (B) . (2.2.3)
If ¢ = 1 we denote it by 6;-Mod(B).

As already mentioned in the introduction, we introduce the operator

5}]\/[ = 0(11\/1 oo, (2.2.4)
For all f € B, all m € M, and all g € (S), one has that
8o (f -m) = oq(f) - 6, (m) +64(f) - 7' (m). (2.2.5)

Moreover, for all & € Hom(*% (M,N), and all ¢ € (S), one has a o 5(1]\/[ = 5}1\1 o a.. Heuristically we
imagine M as endowed with the map ¢ — 51(1\4 : (S) — End§2"(M). This justifies notation (2.2.1)
and (2.2.3).

2.2.1 Matrices of 6'. Let e ={e1,...,e,} C M be a basis over B. Let A(q,T) € GL,(B) be the
matrix of alqvI in the basis e (cf. (2.1.6)). If (5}]\/[(61') =2.;9i,j(q,T) ej, and it G(¢,T) = (9i,j(¢, 1)),
then 51(1\4 acts in the basis e as

Go (f1y- s ) = (0g(f1) -+ 64(fn)) - Al T) + (04 (f1), -, 04(fn)) - Glg, T). (2.2.6)
One has moreover the rule
G(q'-q,T)=G(q,qT) - Alg,T). (2.2.7)

3That is, 611 verifies 011 (fm) = 81(f) - m + f - 811(m), for all f € B, for all m € M. Recall that & := T'd/dT.
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2.2.2 Internal Hom and ®. Let (M,o™, M), (N, o, 6N) be two discrete (o, §)-modules over S.
We define a structure of discrete (o, d)-module on Homp (M, N) by setting

5é-lom(M,N) (Oé) = (5qN o — O-é{om(MvN) (Oé) o 5}1\4) o (O,é\/[)—l' (228)

This definition gives the relation 6 (o) = o () od3" (m)+6;! (a) ooy (m), for all v € Homp (M, N),
and all m € M, where H := Homg(M, N). We define on M®g N a structure of discrete (o, §)-module
over S by setting

M®N M N M N
6 " (m@n) =4, (m)®@o, (n) + o, (m) @6, (n), (2.2.9)
for all g € S, and all m € M, n € N.

2.2.3 If B is Bezout, then (o,§)-Mod (B)&*¢ is K-linear and Tannakian.

2.3 Analytic o-modules

Analytic o-modules are defined only if the ring B is equal to one of the following rings: Ag([),
Hi (X)), H}{(X), Hr, H}{, R . Notice that if U C Q(B) is an open subset, then the subgroup
(U) € Q(B) generated by U is open, i.e. (U) contains a disk D (1, 7), for some 7 > 0.

DEFINITION 2.9. Let B := Hg(X). Let (M,o™) be a discrete o-module over U. Let A(q,T) €
GL,(B) be the matrix of alqvI in a fixed basis. We will say that (M,o™) is an analytic o-module if,
for all ¢ € U, there exist a disk D™ (q,74) = {¢' | |[¢" — q| < 74}, with 7, > 0, and a matrix A4(Q,T)
such that:
(i) A4(Q,T) is an analytic element on the domain (Q,7T) € D™ (¢, 7) x X;

(ii) for all ¢ € Dy (q,74), one has Ay(Q,T) o=y = A(¢, T).
This definition does not depend on the choice of basis e. We define

o-Mod(B)# (2.3.1)

as the full sub-category of o-Mod(B )dISC whose objects are analytic o-modules. Let I C R be an
interval. We give the same definition over the ring B := Ag(I), namely, if C(I) := {|T| € I}, the
point (i) is replaced by:

(") A4(Q,T) is an analytic function on the domain (Q,T) € D™ (q,14) x C(I).
Ezample 2.10. The discrete o-modules appearing in Example 2.6 are actually analytic.
2.3.1 Analyticity of Hom(M,N) and M@N. If (M, ™) and (N, o) are two analytic o-modules

over U, then (Hom(M, N), oHomMN)y and (M@N, eM®N) are analytic. This follows from the explicit
dependence of the matrices of gHomMN) 4nq eMEN o1y the matrices of o™ and oN.

2.3.2 Discrete and analytic o-modules over Ag(I), Ri and Hi (X (X). If I C Iy, then the
restriction functor o-Mod(Ak (I2)){/ — o-Mod(Ag (11))f7" is faithful. Indeed the equality f|, =g,
implies that f = g, for all f,g € Ax(I3) (analytic continuation [CR94, 5.5.8]).

DEFINITION 2.11. Let S C Q be a subset, and let U C O be an open subset. We set

o-Mod(Ri ) = | ] o-Mod(Ax (J1 — &, 1))iF, (2.3.2)
e>0

o-Mod(R )& := ] o-Mod(Ag (J1 — &, 1[)) . (2.3.3)
e>0

Similarly, one can define a—Mod(H}{ (X)) and a—Mod(H}{ (X)) dise,
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Remark 2.12. Since U is open, one has U° # () (cf. (2.0.3)). By §2.1.3, if B is one of the previous
rings (and if it is a Bezout ring), then o-Mod(B)j} is K-linear and Tannakian.

2.4 Analytic (o,d)-modules

We maintain the previous notation. In §2.4.1 below we define a fully faithful functor
(Forget 6) 1 : 0-Mod(B)# — (o, §)-Mod (B)isc, (2.4.1)

which is a ‘local’ section of the functor Forget ¢ : (o, §)-Mod(B)#s¢ — o-Mod(B)ds¢. The essential
image of the functor (Forget §)~! will be denoted by

(0, 8)-Mod (B)2n. (2.4.2)

By definition, the functor which ‘forgets’ the action of ¢ is therefore an equivalence

(0,8)-Mod (B)2n 2252, 5 Mod(B)2. (2.4.3)

Notice that a morphism between analytic (o, d)-modules is, by definition, a morphism of discrete
(0, d)-modules.

2.4.1 Construction of 5. Let (M,o™) be an analytic c-module. We shall define a (o, §)-module
structure on M. It follows from Definitions 2.9 and 2.11 that the map ¢ — O'év[ (U) — Autg (M) is
derivable, in the sense that, for all ¢ € (U), the limit

M_ M
U A O- d
5y =g lim L —1 = ( —0M> 2.4.4
g =0 Jim = — 93 (q) (2.4.4)
exists in End$2™ (M), with respect to the simple convergence topology (cf. (2.4.5)). Moreover, for
all ¢ € (U), the rule (2.2.5) holds, and 5(1]\/[ = a}]\/[ o oM.

M N

Let a : (M,oM) — (N, oY) be a morphism of analytic o-modules, that is o o o, =0, oa, for
all ¢ € U. Passing to the limit in the definition (2.4.4), one shows that o commutes with 5}1\4, for all

g € U. Hence the inclusion Homg”é) (M,N) € Hom{;(M,N) is an equality. If e = {e;,...,e,} C M

is a basis in which the matrix of alqvI is A(q,T), then the matrix of 5}1\4 is (cf. (2.2.6), Definition 2.9
and 2.11)
A, T) - Alg, T)
Glg.T) =g lim pr— = (0(A4¢(Q.1))) g, (2.4.5)
where 0g is the derivation Q d/dQ, and A,(Q,T) is the matrix of Definition 2.9.

Remark 2.13. By the above definitions, there is an obvious functor
Confy : 0-Mod(B){/* — 61-Mod(B), (2.4.6)
obtained by composing (Forget 6)~! (cf. (2.4.3)) with Forget o : (0,d)-Mod(B)# — §;-Mod(B).

3. Solutions (formal definition)

3.1 Discrete o-algebras and (o, d)-algebras
Let S C Q(B) be a subset.

DEFINITION 3.1 (Discrete o-algebra over S). A B-discrete o-algebra over S, or simply a discrete
o-algebra over S, is a B-algebra C such that:
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(i) Cis an integral domain, and the structural morphism B — C is injective;

(ii) there exists a group morphism o*

: (S) — Autg(C) such that ag is a ring automorphism
extending 05, for all g € (S);

(ili) one has CZ = K, where Cg := {c € C| g4(c) = ¢, for all ¢ € S}.

We will call Cg the sub-ring of o-constants of C. We will write o, instead of Ugj, when no confusion
is possible.

Observe that no topology is required on C. The word discrete is employed, here and later on,
to emphasize that we do not ask for ‘continuity’ with respect to ¢q. Notice also that if a discrete
o-algebra C is free and of finite rank as B-module, then it is a discrete o-module.

3.1.1 If S° # 0 (cf. (2.0.3)), then B = K, and B itself is a discrete o-algebra over S. On the
other hand, if § = {{} is reduced to a root of unity { € p(Q), since BZ = B% # K, it follows that
B itself is not a discrete o-algebra over S. Hence there is no discrete o-algebra over S = {£}. To
deal with this problem we introduce the following definition.

DEFINITION 3.2 (Discrete (o, d)-algebra over S). A discrete (o,d)-algebra C over S is a B-algebra
such that:

(i) C satisfies properties (i) and (ii) of Definition 3.1;
(ii) there exists a derivation 0¥, extending d; = T'd/dT on B, and commuting with J?, for all
q € (5);
(iii) one has C¥Y = K, where 7% := {f € C| f € CZ, and &,(f) = 0}.

We will call C(SU’(S) the sub-ring of (o, d)-constants of C. We will write 7 instead of 5?, if no confusion
is possible.

The operator 55 = ag 059 satisfies property (2.2.5). Since B(S‘W) = K, it follows that B is always
a (0, 6)-algebra over S, for an arbitrary subset S C Q(B), even for S = {¢}, with £ € u(Q(B)).

3.2 Constant solutions

DEFINITION 3.3 (Constant solutions on S). Let (M,o™) (respectively (M,o™,M)) be a discrete
o-module (respectively (o, d)-module) over S, and let C be a discrete o-algebra (respectively (o, d)-
algebra) over S. A constant solution of M, with values in C, is a B-linear morphism

a:M— C

M C
a — %
and a o 0(11\4 = ag o a, for all ¢ € §). We denote by Homg(M, C) (respectively Hom(so’é)(l\/[, C)) the
K-vector space of the solutions of M in C.

such that a oo oaq, for all ¢ € S (respectively « simultaneously satisfies « o 5%/[ = 5? o a,

3.2.1 Matrices of solutions. Let M be a discrete o-module (respectively (o, d)-module). Let C
be a discrete o-algebra (respectively (o, d)-algebra) over S. Recall that, if S = {¢}, with " = 1,
then there is no discrete o-algebra, over S (cf. §3.1.1).

Let € = {e1,...,e,} be a basis of M, and let A(q,T) (respectively G(¢,T')) be the matrix of alqvI

respectively I this basis (cf. (2.2.6)). We 1dentity a morphism « : — U with the vector
ivel (52/[ in this basis (cf. (2.2.6)). We identif hi M — C with th
(yi)i € C™, given by y; := «a(e;). In this way constant solutions become solutions in the usual vector
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form. Indeed

oq(y1) Y1
: =A(¢g,T)- | + |, forallge s, (3.2.1)
Jq(yn) Yn
respectively
dq(y1) n
: =G(g,T)-| |, forallges. (3.2.2)
dq(yn) Yn

DEFINITION 3.4. By a fundamental matriz of solutions of M (in the basis €) we mean a matrix
Y € GL,(C) satistfying simultaneously
o,(Y)=A4(¢,T)-Y, forallqes, (3.2.3)
respectively satisfying simultaneously
Y)=A(q,T) Y, forallqels,
7(Y) = A@.T)-Y, forall g "
ny)=G1,17)-Y.

3.2.2 Unit object and o-constants. Let I = B be the unit object. By the description given

above, every solution a € Hom@(I, C) (respectively a € Hom(sa’é)(l,C)) can be identified with

y = a(l) € C% (respectively y = (1) € C(SU’(S)). We obtain Cg = Hom@(I, C) (respectively
C(Sa’é) = Hom(sa’d) (I, C)). In particular BZ (respectively B(Sa’é)) is identified with Endg(I) (respectively

Endgr’é) (I)), and the category is K-linear if and only if B = K (respectively Bgr’é) = K).

3.2.3 Dimension of the space of solutions. Let F' := Frac(C) be the fraction field of C, then
both o, and §; extend to F' (cf. [vdPS03, Ex. 1.5]).

LEMMA 3.5 (Wronskian lemma). Let M be a (o, §)-module (respectively o-module) over S, and let
C be a discrete (o, 0)-algebra (respectively o-algebra) over S. One has

dim g Hom 7 (M, C) < rkg(M). (3.2.5)

(respectively if S° # ) (cf. (2.0.3)), then dimgHom% (M, C) < rkg(M).)

Proof. One has dimKHomg”é)(M, C) < dimgHom? (M, C) < rkg(M). On the other hand, if ¢ € S°,

then Hom?e (M, C) < rkg(M) (cf. [DV02, Lemma 1.1.11]). Hence
dimgHom% (M, C) < dimgHom?(M, C) < rkg(M). O

4. C-constant confluence

In this section we state the formal results regarding confluence. We introduce the notion of C-
constant modules. As explained in the introduction, this notion is an adaptation of the notion
of C-admissibility in the sense of representation theory. On the other hand it can be interpreted
as a generalization of the Galois theory for differential and g-difference equations. According to
this point of view, in our context we have the problem that the analog of the Picard—Vessiot
algebra trivializing a given object M does not exist for arbitrary objects M. Also the uniqueness
of the Picard—Vessiot algebra remains an open problem. We avoid these problems by working with
the category of modules trivialized by a given algebra C which is fixed once and for all. We hope
that this problem will be overcome in the future; the recent work of C. Hardouin and M. Singer
seems to be a first progress in this direction [HS08].
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4.1 C-constant modules

Let B be one of the rings of §§1.1 and 1.2, let S C Q(B) be a subset, and let U C Q(B) be an open
subset.

DEFINITION 4.1 (C-constant modules). Let M be a discrete o-module over S. We will say that M
is C-constant on S, or equivalently that M is trivialized by C, if there exists a discrete o-algebra C
over S such that

dimgHom% (M, C) = rkgM. (4.1.1)
We give the analogous definition for (o, §)-modules. The full sub-category of o-Mod(B)&=¢ (respec-
tively (o, 0)-Mod(B)%5¢), whose objects are trivialized by C, will be denoted by

o-Mod (B, C)§"s* (respectively (o,d)-Mod (B, C)&™"). (4.1.2)

The full subcategory of o-Mod(B, C)§* (respectively (o, d)-Mod (B, C)§"s*) whose objects are an-
alytic will be denoted by

o-Mod(B, C)g o™ (respectively (a,8)-Mod (B, C)7e™"). (4.1.3)

Notice that M is trivialized by C if there exists Y € GL,(C), n := rkgM, such that Y is
simultaneously a solution, for all ¢ € S, of the family of equations (3.2.3) (respectively both the
conditions of (3.2.4)). Roughly speaking, M is C-constant on S if it admits a basis of ¢g-solutions in
GL,(C) which ‘does not depend on ¢q € S’.

LEMMA 4.2. Let M, N be two discrete o-modules (respectively (o,d)-modules). If M, N are both
trivialized by C, then M ® N, Hom(M,N), M"Y, NV are trivialized by C.
Proof. The fundamental matrix solution of M ® N (respectively Hom(M, N)) is obtained by taking

products of entries of the two matrices of solutions of M and N respectively. Hence ‘it does not
depend on g € S°. The assertion on MY, NV is a particular case of the previous one. ]

LEMMA 4.3. Let S’ C S be a non-empty subset. Let C be a discrete (o, )-algebra over S. Then the

restriction functor Resg,, sending (M, o™, M) into (M, U|I\</IS/) , 00,

Resg : (0,0)-Mod(B, C)¥™' — (0, §)-Mod(B)&, (4.1.4)

const

is fully faithful and its image is contained in the category (o,0)-Mod(B,C)§"". The same fact is
true for discrete o-modules under the assumption (S’)° # ().

Proof. The proof is the same in both cases: here we give the proof in the case of (o, §)-modules. We
must show that the inclusion Homg”d) (M,N) — Hom(so,’é)(l\/[, N) is an isomorphism, for all M, N in
(0,0)-Mod(B, C)¥"s*. In other words, we have to show that if & : M — N commutes with o, for
all ¢’ € S’, then it commutes also with o4, for all ¢ € S. One has

Homg”d) (M,N) = Homg”d) (M®NY B) = Hom(sa’é) M®NY,C)NnHomp(M®NY,B), (4.1.5)

Homy" (M, N) = Hom " (M @ NV, B) = Hom 7" (M ® NY, C) N Homg (M @ N, B).

Observe that M @ NV is the dual of the ‘internal hom’ Hom(M,N). By Lemma 4.2, M ® NV is
trivialized by C. The restriction of M® NV to S’ is obviously C-constant on S, since it is trivialized
by C. This implies that

C" = Hom ™ (M @ NY, C) = HomJ” (M @ NY, C). (4.1.6)

This shows that a morphism with values in B C C commutes with all o, and ¢,, for all ¢ € 5, if
and only if it commutes with all o, and d4, for all ¢ € S’. Hence

Hom ™ (M @ N¥, B) = Hom$” (M @ NY, B). (4.1.7)

O
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4.1.1 Restriction to roots of unity. By the previous lemma, if £ € SN u(Q), then

Res(ey : (0,6)-Mod (B, C)§™" — (o, d¢)-Mod (B) (4.1.8)
is again fully faithful. On the other hand, if S° # (), then the restriction
Res 3y : 0-Mod(B, C)§™" — o¢-Mod(B) (4.1.9)

is not fully faithful, since o-Mod(B, C)%™" is K-linear, while o,-Mod(B) is not K-linear (i.e. K C
End(I), but K C End(I); cf. §1).

4.1.2 The case of an open subset. We observe that if U is open, then the condition U° # () is
automatically verified. Hence, by Lemma 4.3, if S C U is a (non-empty) subset, the restriction

ResY : (o, c?)-l\/[od(B,C)?]n’comSt — (0,6)-Mod (B, C)&"s* (4.1.10)

is fully faithful. The same is true for o-modules, under the assumption S° # (). In particular, if
U’ C U is an open subset, then the restriction functor is fully faithful:

Resgys : (o,6)-Mod (B, C)j/"“™" — (0,6)-Mod(B, €)™, (4.1.11)
Resy, : 0-Mod (B, C)/*™" — o-Mod(B, €)™,

4.2 C-constant deformation and C-constant confluence

In this section we give the formal definition of the confluence and deformation functors. As usual
S C Q(B) is an arbitrary subset, and U C Q(B) is an open subset.

DEFINITION 4.4 (Extensible objects). Let ¢ € S. Let C be a discrete o-algebra over S. A g-difference
module M is said to be C-extensible to S if it belongs to the essential image of the restriction functor

Resfq} : 0-Mod(B, C)§™" — o,-Mod(B).

The full sub-category of o,-Mod(B) whose objects are C-extensible to S will be denoted by
04-Mod(B, C)g. If U is open, and if ¢ € U, we will denote by

o4-Mod (B, C)in (4.2.1)

the full sub-category of o,-Mod(B)y whose objects belong to the essential image of
o-Mod(B, C)aUn’COHSt. We give analogous definitions for (o, d)-modules.

Lemma 4.3 and Definition 4.4 easily give the following formal statement.
COROLLARY 4.5. With the notation of Lemma 4.3, one has an equivalence
Resfq} : (0,6)-Mod(B, C)%™" = (04, d4)-Mod(B, C)s. (4.2.2)
The same fact is true for o-modules, under the additional hypothesis that q € S°.

DEFINITION 4.6. (1) Let S C Q(B) be a subset and let ¢,¢ € (S). We will call the C-constant
deformation functor, denoted by

Def§ ¢ (0g,04)-Mod(B,C)s = (o4, 84)-Mod(B,C)s, (4.2.3)
the equivalence obtained by composition of the restriction functor (4.2.2):
Defg i i= Resp,y o (Res§y) ™" (4.2.4)
(2) We will call the C-constant confluence functor, the equivalence
Confy :=Def{; : (d4,0,)-Mod(B,C)s = 61-Mod(B, C)s. (4.2.5)
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(3) Suppose that ¢ € S° and ¢’ € S, then we will again call the C-constant deformation functor,
denoted again by

Def(?,q’ : Uq_MOd(B> Cls — Jq"MOd(Ba C)s, (4.2.6)

the functor obtained by composition of the restriction functor (4.2.2): Defgq, = Resf 1 © (Res{s q})_l

If ¢’ € S°, then Defgq, is an equivalence.

It follows from Corollary 4.5 that, if ¢,¢' € U, one has an equivalence, again called Def® P

Defgq/ : (0¢,0¢)-Mod(B, C)ff* — (07, 0¢)-Mod(B, C)7. (4.2.7)
The same fact is true for analytic o-modules under the condition ¢,q" ¢ u(Q).

4.2.1 Notice that the functor Resfq} does not depend on C, but (Resfq})_1 is a particular section

of Res{sq} with values in the category of objects trivialized by C (cf. Corollary 4.5). Hence (Res{sq})_l,

ConfgJ and Defgq, actually depend on C.
4.2.2 According to Definition 4.4 (cf. Equations (2.1.5) and (2.2.3)), if ¢ € U C U’, then, by
Lemma 4.3 (cf. §4.1.2), the following restriction functors are fully faithful immersions:
ResY : o-Mod(B, C)yr — o-Mod(B, C)y,
Resg/ : 0-Mod (B, C)?}}’COHSt — 0-Mod (B, C)aUn’COHSt;
respectively
ResY : (o,6)-Mod (B, C)yr — (0,0)-Mod(B, C)y, (4.2.8)
Resy : (0, 6)-Mod (B, C)3 ™" — (,8)-Mod (B, C)3-<"*,

We can then consider the following diagram in which we heuristically imagine categories appearing
in the first two lines as the stalks at g of suitable corresponding stacks over Q(X).

an, const Equation (2.4.3)

UU g- MOd(B C) UU (O’, 5)-M0d(B,C)aUn’C0nSt
Uu ReS{q}l O] ZlUU Res{i}
Uy 0¢-Mod(B,Cly < Uy (04, 9,)-Mod(B, C)u (4.2.9)

q)-
ial © ll(e 8)
)-

o4-Mod(B) (0g4,04)-Mod(B)

Forget d4

Here U runs over the set of open neighborhoods of ¢, and i, and i, s are the trivial inclusions
of full sub-categories. In the sequel we will study the full subcategory of o,-Mod(B) (respectively
(04,04)-Mod(B)) formed by Taylor admissible objects this category is contained in the essential
image of i, (respectively i(,s)) (see Theorem 7.6). In this case we will obtain an analogous diagram
(see Corollary 7.9) in which i(, ) is an equivalence (for all ¢ € U), and i, is an equivalence only if
q is not a root of unity.

If ¢ is not a root of unity, then all the arrows of this diagram will be equivalences, hence giving
04 is superfluous. If g is a root of unity, then the right-hand side vertical arrows will be equivalences,
while the arrow on the left-hand side will not. In this last case the g-tangent operator d, is necessary
to preserve the information in the neighborhood of q. In this case the good notion of stalk at q of an
analytic o-module is the notion of (o4, d,)-module and not simply that of o,-module.
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One may have the feeling that the functor ‘Forget ,” contains ‘information’ if ¢ is a root of

unity, but we will see (Proposition 8.6) that, if B= Ry or if B = H , then this functor sends every
(0,d)-module with Frobenius structure into a direct sum of copies of the unit object.

4.2.3 Dependence on C. Let C; C Cs be two algebras as above. Then clearly DefCQ/ extends

Defcl, to the larger category of modules trivialized by Cs. One of the main problems of the theory
is that if there are no inclusions between C; and Cs, then it is not clear whether there exists a
discrete o-algebra (respectively (o,d)-algebra) Cs containing both C; and Csy. For this reason, if
the same object is trivialized by C;, and also by Cs, it is not clear whether its deformations with
respect to C; and Cy are equal. We will encounter this problem in § 8.4.

5. Taylor solutions

In this section B = Hg (X), for some affinoid X = D% (cp, Ry) — U;—; D (¢, R;), and S = {q} €
QHK(X)) C{q € K ||q| =1} is reduced to a point. Let (2, |-|)/(K,]|-|) be an arbitrary extension
of complete valued fields. Let ¢ € X(2) and let p.x > 0 be the largest real number such that
Dg, (¢, pe,x) € X (), for all complete valued field extensions (€', -[)/(€2,]-|). One has

pe,x = min(Ro, [c — c1],|c —cal, ..., |c = ¢cyl). (5.0.1)

Notice that ¢ can be equal to a generic point (cf. Proposition 1.7). We want to find solutions of
g-difference equations converging in a disk centered at ¢, i.e. matrix solutions in the form (3.2.3),
with values in the og-algebra C := Ag/(c, R), for some 0 < R < p x.

5.1 The g-algebras Q{T — c}q,r and Q[[T — cl]q

Unless we explicitly state the contrary, we will not assume that ¢ ¢ u(Q). The following results
generalize the analogous constructions of [DV04] to the case of a root of unity.

LEMMA 5.1. Let 0 < R < pc x. The algebra Aq(c, R) is an Hq(X)-discrete o-algebra over S = {q},
if and only if both of the following conditions hold:

lg —1llcl < R and |¢| =1. (5.1.1)

DEFINITION 5.2. Let ¢ € K* be an arbitrary number. Following [DV04] and [ADV04] we set

(T —¢)gn = (T — )T — qc)(T — ¢*c)--- (T — " o), (5.1.2)
nl,=1+q+¢+ -+, (5.1.3)

D (@=D@-D@ -1 (¢" = 1)
[n], = T . (5.1.4)

5.1.1 The q-binomial. For all ¢ € K*, we define the ¢g-binomial (?)q by the relation

(- T)1— gT)- (1 - g='T) = Y (-1 (”) gD (5.1.5)
q

1=0

where, if 7+ = 0, the symbol ¢(i=1/2 ig by definition equal to 1. This extends the definition given in
[DV04] (cf. Equation (5.1.7) below) to the case of a root of unity. If 1 < i < n—1, by induction one

has
() =Co) wi(7) = () () e
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If ¢ is not a root of unity, then one can write

<n> _ [nlg-In— 1]q';'["—i+1]q, (5.1.7)

i (g

If ¢ is an mth root of unity, then [n]'q =0, for all n > m. The family {(T" — ¢)¢n}n>0 is adapted
to the g-derivation

o,—1 ﬁ
(¢-1)T T
in the sense that for all n > 1 one has dy((T' —¢)q,n) = [n]q- (T'—¢)gn—1. One always has the relation

dq(fg) = 04(f)dq(9) + dg(f)g. More generally our definition of g-binomials allows us to generalize
the proof of [DV04, Lemma 1.2, (1.2.2)] to the case of a root of unity. We obtain the formula

dy = (5.1.8)

dp(fg)(T) = (?) dr (f)(q'T)d(g)(T). (5.1.9)

=0 q
5.1.2 The following lemma extends [DV04, §1.3] to the case of a root of unity.
LEMMA 5.3. Let (2,]-])/(K,|-|) be a complete extension of valued fields. Let |¢—1||c| < R, |q| =1,
and let f(T) =3, 5oan(T — )" € Aq(c, R). Then the following hold:
(a) f(T') can be written uniquely as the series of functions
= @n(T = ¢)gn € Aalc, R), (5.1.10)
n=0
with a,, € Q satisfying sup,, [a,|p" < oo, for all p < R;
(b) for all |g = 1flc] < p < R one has |£(T)|(e,) = SuPyso lan|o" = 5up,i50 [ o"
one has Ray(f(T),c) = liminf, |a,|~'/" = liminf, |a@,|~"/";
(d) if moreover q ¢ u(Q), then one has the so-called g-Taylor expansion (cf. [DV04])

= de{(f)(C)w. (5.1.11)

—~
]
~

Proof. Since Aq(c, R) = MTHR_HQ(D-F(C, 7)), we need only prove the proposition for Ho (D% (¢, 7)),
with |g —1|[¢[ <7 < R. We recall that a series of functions }, -, fn, fn € Hix (DT (c,7)), converges
to a function f € Hx (D (c,r)) if and only if limy, | fnl(c,r) = 0. Writing (T'— q ic)=(1-¢")e+(T—c),
one sces easily that (T —C)gmn = >y by, ni(T — ¢)t, with b; i,; satisfying (i) boo =1, (ii) 3071' = 0 for
all @ > 1, (iii) bnn =1foralln >0, (iv) gnz =0 for all i > n, and (v) for all 0 <i < n:
b=t > (1= =¢"2) - (1 =), (5.1.12)
0<k1 < <kp—i<n—1
In other words [1, (T — ¢)g1, (T — €)g2,---» (T = €)gn]t = B - [1,(T — ¢),(T — ¢)2,...,(T — ¢)"]*
where B = (bn,z)n,z_o,...,n isan (n+ 1) x (n 4+ 1) lower triangular matrix satisfying (i)—(v). Since
lg —1| < |g—1], one also has the property (vi) |Zm| < (lg—1]Je))™ % < ™%, for all 0 < i < n. Hence
for all n > 0, one has (T' = ¢)gn = (T — )" + gn(T), With |g,(T)|(c,r) < 7", 50 (T = )gnl(er) =
(T = ¢)"|(c,y = r™. It is easy to prove that also the matrix B := B! = (bn,i)n,i=0,...n satisfies the
properties (i)-(vi). Consider now f(T) = 3_, g an(T —¢)". Writing fn(T) := 30" g an(T — )" =
Yo gan > i bni(T — ¢)q; and rearranging terms one finds f,(T) = > oo anm(T — ¢)gn, With
Qnm = Y opo Gntkbntkn. By property (vi) and by the assumption that limy, |a,|r™ = 0 the sum

888

https://doi.org/10.1112/50010437X07003454 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X07003454

p-ADIC CONFLUENCE OF @-DIFFERENCE EQUATIONS

ap = Ek>0 Qptkbptk,n converges in (2. Moreover

|an|r™ < Iilgx || |brten| - 7" < < max || 7 (5.1.13)
=

This proves that lim, [a,|r"™ = 0, and hence that the series of functions - @n (T —¢)qn is conver-
gent in Ho(D¥ (¢, 7). If f0,(T) := Y0 @n(T—C)gn, one sees that | f0,— funl(e,r) < SUPgs0 [@mekr™
which tends to 0, so lim,, f2 (T') = lim,, f,,(T) = f(T) in Ho(D*(c,7)). Now the inequality (5.1.13)
shows that max,>¢ [ap|r" < max,>o|a,|r", and a symmetric argument using the matrix B instead
of B proves the opposite inequality so max,>q [@,[r" = max,>o |a,|[r" = [f(T)](,y). This last equal-
ity shows the uniqueness of the coefficients {ay}, since if > g @n(T — ¢)gn = Zn>0 an(T — ¢)gn,
then -, <o (an —a,)(T = ¢)gn = 0, and hence sup,,(|a, — a,|r") = 0, so that a,, = a,, for all n > 0.
Clearly the radius of convergence of f(7') is equal to both sup,,>o{r = 0 | |a,|r" is bounded} and
sup,,>o{r = 0 | [@,|r™ is bounded}. Hence, by classical arguments on the radius of convergence, one
has Ray(f(T),c) = liminf, |a,|~'/" = liminf, |&,| /™. The assertion (d) is proved in [DV04]. O
Remark 5.4. If f(T) = >, 50 fa(T — g, and if g(T) = >, gn(T — ¢)gn, then f(T)g(T) =
Zn>0 hn(T = €)gn, where h,, = hy,(q;¢; fo, .-, fni 90, -, 9n) is a polynomial in {q, ¢, fo,..., fn, 90,

..y gn}. Indeed one has (T — ¢)gn - (T — C)gm = ZZJF?nlax(nm a,g" (T — €)g.k, With alg" ™

a,gn’m) (g,¢) € Q. This also shows that if vy .(f) := min{n | f,, # 0}, then one has
Vg,e(f9) 2 max(vg,c(f), vg,c(9))- (5.1.14)

If moreover g ¢ pu(Q), then, by using equations (5.1.9) and (5.1.11), one has

= j g Ulals + 1=y | vz, 508 .
hn_j:o&z:;) ([3]2)2[7?—]']51 e (¢ =1)°¢ fsyn—jg;- (5.1.15)

5.1.3 The algebras Q[T — c]q and Q{T — c}4r. We have the following definitions.

DEFINITION 5.5. For all ¢ € Q(X) we set

QT — ], = {Z fulT € Q} (5.1.16)
n=0

T — ctgr = {Z fu(T €Q, hmlnf | ful 7Y™ > R} (5.1.17)
n=0

We define a multiplication on Q[T — ¢, and Q{T — ¢}, g by the rule given in Remark 5.4.
LEMMA 5.6. The algebras Q[T — c], and Q{T — c}4 r are commutative 2-algebras, for all ¢ € Q.

Proof. We prove only the associativity, the other verifications being similar. We have to prove that
(fg)h = f(gh). By Lemma 5.3 the assertion is proved if f,g,h € Q{T — ¢}, r, with |¢ — 1||c| < R,
since in this case Q{T — ¢}, r = Aq(c, R). On the other hand one can assume that f,g,h are
polynomials since, by Remark 5.4, the nth coefficient of (fg)h and of f(gh) is a polynomial in ¢
and in the first n coefficients of f, g, h. O

Remark 5.7. If there exists a (smallest) integer ko such that [g" — 1||c| < R, then one shows that
T —clyr = Hko ' Aq(q'c, R), where R depends explicitly on R, ¢ and ¢ (cf. [DV04, Proposi-
tion 15.3]). In this case Q{T — c}q r is not a domain and hence is not a Hq(X)-discrete o-algebra
over S = {q}.

Remark 5.8. If x, y are variables, then Q[[z—y]], is not an algebra, but merely a vector space. Indeed
the multiplication law involves y in the coefficients ‘h,,” of Remark 5.4. This minor mistake occurs

889

https://doi.org/10.1112/50010437X07003454 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X07003454

A. PurLita

occasionally in [DV04], but it is an irrelevant inaccuracy and does not jeopardize any proposition
of [DV04]. Indeed the matrix Y (z,y) always seems to be used there under the assumption (5.5.6)
(cf. Lemma 5.16).

5.2 g-invariant affinoids

Let |¢ =1, g € K. Let X := D" (co, Ry) — U1 D~ (ci, Ri), ¢1,...,¢n € D;_{(Co,Ro), co € K, be a
K-affinoid. Then X is g-invariant if and only if |¢ — 1||cg| < Ro, and the map = +— gz permutes the
family of disks {D™ (¢;, R;)}i=1,....n. This happens if and only if for all ¢ = 1,...,n there exists (a
smallest) k; > 1, such that |¢* —1||¢;| < R;, and moreover the family of disks {D~(¢¥¢;, Ri)Yr=1, .k
is finite and contained in {D™ (¢;, R;)}i=1,... n- If ko is the minimum common multiple of the k;, then
x — ¢"x leaves every disk globally fixed and, by Lemmas 5.1 and 5.3, one has

ldgro (F)llx < i1 (5.2.1)
for all f € H(X) (cf. Lemma 1.9). Indeed by the Mittag-Lefler decomposition [CR94], we reduce
to showing that every series f = > . ;a;(T" — c;)?, such that |aj|R! tends to zero, satisfies

ko (F)l(ci,ri) < Rt |fl(c:,r:)> and this is true by Lemma 5.3.

Such a bound does not exist for d, itself. One can easily construct counterexamples via the
Mittag—Leffler decomposition.

5.3 The generic Taylor solution

We recall the definition of the classical Taylor solution of a differential equation.

DEFINITION 5.9. Let §; — G(1,7), be a differential equation. Let G,,)(T') be the matrix of (d/dx)".
We set

n

Yoam(z,y) =Y _ Gy (y)w- (5.3.1)

n!
n=>0

By induction on the rule G, = G’M + GGy, one finds [|Gpyllx < max(HGmHX,r;(l)”,
hence

(5.3.2)

|G[n](c)|ﬂ>_l/n - |p|V/ (P~
[n!| ~ max(ry’, |Gyl x)

In other words Yg(x,y) is an analytic function over a neighborhood U of the diagonal of the type

Ur = {(z,y) € X x X | |x —y| < R}, (5.3.3)

Ray(Ye(T,c),c) =lim inf(

n

for some R > 0.
LEMMA 5.10. One has Yg(x,z) = 1d, and, for all (x,y) € Ur

(d/dy)(Ya(z,y) = —Ya(z,y) - Guy(y), (5.3.4)
Yo(z,y) ™' = Ya(y, ), (5.3.5)
Yo(z,y) - Ya(y, 2) = Ya(z, 2), (5.3.6)
(d/dz)(Ya(z,y)) = Guy(@) - Ya(z,y). (5.3.7)

Proof. See [CM02, p. 137] (cf. Lemma 5.16). The proof is analogous to that of Lemma 5.16. O

DEFINITION 5.11. Let ¢ € Q — pu(Q). Consider the g-difference equation
0o(Y) = A@,T)-Y, Alq,T) € GLy(Hx(X)). (5.3.8)
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Let H,, be defined by dj(Y) = H,, - Y. We formally set

Yaan (@) =3 H<y>% (5.3.9)
n=0 q

We will omit the index A(g,T) if no confusion is possible. Observe that Yy, 7)(z,y) is a symbol
and does not necessarily define a convergent function.

Ezample 5.12. With the notation of Example 2.6, the generic Taylor solution of the equations
0y(Y) = Alq.2)Y and 0,(Y) = Alg.2)Y are Yagu(e.y) = exp(r(z —y)) and Yy, (2.y) =
exp(mq(x — y)) respectively. Notice that Y4, .)(7,y) is constant with q.

DEFINITION 5.13. For all (not necessarily bounded nor multiplicative) semi-norms | - |, on Hx (X)
extending the absolute value of K we set

Ray(Ya(qr) (@), | - |1) := lim inf (| Hy ()] /| [m]} )~/ (5.3.10)

If Ya(q,)(%,y) is a convergent function on some neighborhood of the diagonal of X x X, then, for
lf (D)« :==|f(c)]a, c € X(£2), one finds Definition 1.5, namely Ray(Y (z,y),| - |.) = Ray(Y (z,¢),c).
In this case we will write Ray (Y (z,y),¢) := Ray(Y (z,y),]||c) (cf. §1.3.1). If X’ C X is a sub-affinoid
we simply write Ray(Y (z,y), X') := Ray(Y (z,y), || - || x)-

5.4 Transfer principle

As in the differential setting, if X’ := D¥ (¢, R)) — U;_; D (¢},R;) € X is a g¢-invariant sub-
affinoid of X, such that every disk D™ (¢}, R}) is also g-invariant, then the estimate (5.2.1) holds
(cf. Remark 7.12). Then, by induction on the rule H, 1 = dy(Hy) + 04(H,)H1, one shows that
||Hn||X’ g max(||H1||X/,r;<})", hence

Ray(Y (z,y), X') := limninf(HHnHX//\[n];\)_l/” = inf Ray(Y(z,y),c)

ceX’(Q)
. liminf,, \[n];\l/"
= min Ray(Y (z,y),c) > — , (5.4.1)
c€{ter Ry reotel b max(ry;, | Hil x)

where (€2, |-[)/(K, |-|) is sufficiently large to contain {t g ..., ¢, m,} (cf. §1.4). As suggested by the
referee, one can prove the second and the third equalities using a g-analog of a theorem of Dwork and
Robba (cf. [DV04]). One may also observe that, since || H,,(T)||x: = |Hn(c)|q, for all ¢ € X'(£2), then
Ray(Y (v,y), X') < inf.cxr(q) Ray(Y (x,y),c). The converse of this inequality is proved as follows.
By the properties of the Shilow boundary one has ||H,(T)||xs = max;—o,_. s |Hn(ty r:)|- Hence
(IIHn(T)IIX//I[n]gl)‘l/" = min;—o g |Hn(tC§’R;)|/|[n]!q|_1/", and since ‘liminf’ commutes with the
‘minimum over a finite set’, then Ray(Y (z,y), X') = min;—q . ¢ Ray(Y (2,y),t» g). Now since we
have chosen {2 such that ./ g/ € X'(€2), then
in Ray(Y te pr) = inf  Ray(Y(xz,y),c).
i ay(Y(z,y).te,r) > In o) ay(Y(z,y),c)
This proves the required equalities.
In particular if X' = D¥(c,p) C X, with |¢ — 1||¢] < p < pex, is a g-invariant disk, then
Ray(Y (x,y),c) is greater than or equal to
Ray(Y(z,y),D"(c,p)) = min Ray(Y(z,y),c)
/€D (e,p)
lim infn([n]é)l/"

max(p—l, |H1|(c,p)) ‘

= Ray(Y (z,y),tcp) = (5.4.2)
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Notice that if [¢ — 1|[c| < R := Ray(Y(z,y),c), then Y(z,c) € M,(Aqa(c, R.)), but Y (z,c) is
invertible only in GL, (Aq(c, R)), with R := min(p x, Ray(Y (x,y),c)) (cf. Lemmas 5.15 and 5.16).

5.5 Properties of the generic Taylor solution

The formal matrix solution Y4 (z,y) is not always a function in a neighborhood of type Ur of the
diagonal of X x X. But if for all ¢ € X (K?#) one has |¢ — 1||¢] < R < min(p. x, Ray(Y (z,y),¢)),
then, by Lemma 5.3, and by the transfer principle (cf. Equation (5.4.2)), Ya(z,y) actually defines
an invertible function on Ug (cf. Lemmas 5.15 and 5.16). If X = D™ (co, Ro) — U;—; D™ (¢, Ri), the
condition |¢ — 1||¢] < R < min(pe x, Ray(Y (z,y),c)), for all ¢ € X(K?#), implies that

lg — 1| sup(Ryo, |co|) = |¢ — 1| max |c| < R < min p. x = min(Ry, ..., R,) =rx. (5.5.1)
ceX ceX
In particular, since rx = min(Ry, ..., R,) < sup(|co|, Ro), this is possible only if
lg— 1] <1, ie. ifqge Q1(X). (5.5.2)

HypoOTHESIS 5.14. From now on, without explicit mention to the contrary, we will assume that
q€ Q1(X). (5.5.3)

LEMMA 5.15. Let ¢ € Q1(X) — u(Q1(X)). Let f(x,y) be an analytic function in a neighborhood of
type Ur C X x X of the diagonal of X x X. Assume that*

lg — 1|max(|co|, Ro) < R < rx. (5.5.4)
If moreover f(x,y) satisfies f(x, qy) = a(y)- f(x,y), with a(y) € Hx(X)*, then f(z,y) is invertible.

Proof. Since f is an analytic function, it is sufficient to prove that f has no zeros in Ur. We need
only show that, for all ¢ € X(Q2), the function g.(y) := f(c,y) has no zeros in D™ (¢, R). One has
dq(9c(y)) = h(y) - ge(y), with h(y) = (aly) — 1)/((¢ — 1)y). Assume that g.(c) = 0, for some ¢ €
D~ (c, R) = D™ (¢, R), then, by Lemma 5.3, g.(y) = >, ak(y — ¢)gn, With ag = 0. Since ¢ ¢ pu(Q),
we have [n],a, = 0 if and only if a, = 0. Hence, by Remark 5.4 one has v, z(dy(gc)) = vgza(gc) — 1.
On the other hand, v, z(hgc) > v4z(gc), which contradicts dy(g.) = hg.. O

LEMMA 5.16. Let ¢ € Q1(X) — pu(Q1(X)), and let

T

o f(z,y) = flgz,y), of : f(z,y) — f(z,qv),

d* = ﬂ 4V — o —1 . (5.5.5)

T (g-1a g1y

Suppose that Y4(x,y) converges on Ug, with (cf. §5.5)

lg — 1|max(|co|, Ro) < R < rx. (5.5.6)

Then Y(z,y) is invertible on Ur and satisfies Ya(x,z) = Id and
dy Ya(z,y) = =0y (Ya(z,y)) - Hi(y), (5.5.7)
o¥Ya(z,y) = Yal(z,y) - Alg.y) ", (5.5.8)
Ya(z,y) - Ya(y,z) = Ya(z, 2), (5.5.9)
Ya(z,y)~' = Yaly,z), (5.5.10)
dq Ya(z,y) = Hi(z) - Ya(z,y), (5.5.11)
og Ya(z,y) = Ag, x) - Ya(z,y). (5.5.12)

“That is, assume that |¢ — 1| max(|co|, Ro) < R < pe,x for all ¢ € X (K™8).
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Proof. The relation Y (z,z) = Id is evident, while (5.5.7) is easy to compute explicitly, and is
equivalent to (5.5.8). Since Y (z,y) converges on Ug, (5.5.8) implies that the determinant d(x,y)
of Y (z,y) satisfies d(z,qy) = a(y)d(x,y), with a(y) = det(A(q,y)!) € Hg(X)*. By Lemma 5.15,
d(x,y) is then invertible on Ug, and hence also Y (x,y) is invertible. By (5.1.9), and since q ¢ p(Q),
the relation dj (Y (z,y)Y (z,y)~!) = 0 gives

WY (2,9)Y) = —oU(Y (,5)71) - Y (2,)) - Y () (5.5.13)
Hence, for all x,y, z such that |z —y|, |z —y| < R, the relation (5.5.13) together with relation (5.5.7)
give dj(Y(z,y) - Y(z,y)"1) = 0. Since ¢ ¢ p(Q), this implies, by Lemma 5.3, that the function
Y (z,y)Y (z,y)"! does not depend on y. Specializing for y = x and y = z, one finds Y (x,2) =
Y(z,2)~" and Y (z,y) - Y(y,2) = Y(x,2). Then, by the above expression for df(Y (y,z)~') =
dy (Y (z,y)), the relations (5.5.11) and (5.5.12) follow from (5.5.10) and (5.5.7). O

5.5.1 The case [g—1| =1, |¢| =1. Ifforace X onehas [q—1|[c] > Ray(Y4(q,1)(,y), ), then
Lemma 5.16 does not apply (cf. [DV04, §15]). It may happen (cf. Remark 7.12) that there exists
a (smallest) kg > 0 such that condition (5.5.6) holds for ¢ instead of ¢, and for Y a(gr0 1)(,9)
instead of Y44 7)(7,y). There then exists a Taylor solution Y. € M,(Aq(c, R)) of the iterated
system ok, (Ye) = A(g*, T)Y.. In this case, for all ¢ € X(Q), we can recover a solution YPi#
of the system o,(Y"®) = A(q,T)Y"®# itself in the algebra of analytic functions over the dis-
joint union of disks Ufial D~ (¢’c, R). Indeed o, acts on the algebra [icz/koz M, (Ak(q¢'c, R)) by
0q(Myio(T))icz/koz) = (Myit1.(qT))iez/koz, and so one has

YPE(T) = (VE(T))i o= (Alg',q7'T) - Yela ™' T))iczyhoz- (5.5.14)

In fact A(¢"tl, ¢ 'T) = A(q,T)A(q',q *T). This and related matters are very well explained
in [DV04].

5.5.2 Notice that the relations of Lemma 5.16 hold for Y(z,y) as a function on Ug, and not
for YP18(T) (cf. (5.5.14)). In other words the expression Yfig(ac, y) has no meaning if |z —y| > R. In
particular the expression (5.5.9), which is the main tool of the propagation theorem (Theorem 7.7),
holds only if |z —y|, |z —y| < R.

5.5.3 The case of a root of unity. If ¢ € u(Q) is a root of unity, then even when a solution
Y € GL,(Aq(c, R)) exists, the radius is not defined since we may have another solution with
different radius (cf. Example 5.17 below). For this reason, the radius of convergence of the system
(5.3.8) will be not defined if ¢ € p(Q).

Ezample 5.17. Let ¢ = & be a pth root of unity, with £ # 1. The solutions of the unit object at
tP € ) are the functions y € Aq(t”, R) such that y(¢7") = y(T'). Every function in 77 has this
property. For example the family of functions {y, := exp(a(T? — t¥))}acq is such that for different
values of « one has different radii.

5.6 Taylor solutions of (o4, d4)-modules

In this subsection ¢ may be a root of unity. We preserve the previous notation. We consider now a
system (the notion of the solution of such a system has been defined in §3.2):

o,(Y)=A4(¢,T)-Y, A(q,T) e GL,(Hk(X)),

It can happen that a solution of Uév[ is not a solution of 5}1\4 as shown by the following example.
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Ezample 5.18. Suppose that ¢ € D~(1,1) is not a root of unity. Let X := D¥(0, |p|'/®~1),
A(q,T) := exp((¢g — )T) € Hr(X)*, G(¢,T) := 0. Let ¢ = 0, and R < [p|"/?®=D. Then every
solution y(T') € Ag(0,R) of the operator o, — A(q,T) is of the form y(T) = X - exp(T), with
A€ K. If §4(y) = 0, then y = 0. Hence, the (o4, d,)-module defined by A(q,T") and G(¢,T") has no
(non-trivial) solutions in Ag (0, R).

To guarantee the existence of solutions we need a compatibility condition between o, and g,
which should be written explicitly in terms of matrices of o7 and df. This obstruction will not
appear in the sequel of the paper since this condition is automatically satisfied by analytic o-modules
(cf. Lemma 5.19). This will follow from the fact that a solution o : M — Agq(¢, R) is continuous
(see the proof of Lemma 5.19). Observe that Lemma 5.19 below is not a formal consequence of the
previous theory. Indeed, by Definition 3.2, the general (o,d)-algebra C has the discrete topology,
hence the morphism « : M — C defining the solution is not continuous in general.

LEMMA 5.19. Let U C Q(Hi (X)) be an open subset, and let M be an analytic (o, d)-module on U,
representing the family of equations {oq(Y) = A(q,T) - Y }4ev, with A(q,T) € GL,(Hk(X)), for
all g € U. Let Y.(T) € GL,(Aq(c, R)), |qg — 1||c] < R < pe,x, be a simultaneous solution of every
equation of this family. Then Y.(T) is also solution of the equation
5,(Y) = G(g,T) - Y, (5.6.2)

where G(q,T) := q(d/dq)(A(q,T)) (cf. (2.4.5)). Hence Y.(T) is a solution of the differential equation
defined in §2.4.1,

51(Y.(T)) = G(L,T) - Yu(T), (5.6.3)
where G(1,T) = G(q,q'T) - A(q,q 'T)™' € M, (Hk (X)) (cf. (2.2.7)).
Proof. In terms of modules, the columns of the matrix Y.(7') correspond to Hg (X)-linear maps
a: M — Aq(c, R), verifying 0,00 = a0 JéVI, for all ¢ € U (cf. §3.2.1). We must show that such
an « also commutes with d,. This follows immediately by the continuity of . Indeed, the inclusion
Hi(X) — Aq(e, R) is continuous, and hence every Hg (X)-linear map Hy (X)" — Aq(c, R) is
continuous. O

5.7 Twisted Taylor formula for (o,d)-modules, and rough estimate of radius

Let X be a g-invariant affinoid. Let

d . Og — O 1
D, := 040 =% :;/1anﬁ = q_T.éq.
For all ¢ € Q(X) and all f(T') € Hx(X), one has
Dy(f - 9) = 04(f) - Dy(g) +Dy(f) - 74(9); (5.7.1)
(d/dT ooq) =q- (040d/dT), (5.7.2)
Dl = q"("" V2 " o (d/dT)", (5.7.3)
!
1Dy (f(T))llx < I | f(T)]|x (cf. Lemma 1.9). (5.7.4)

=
Hence, for all ¢ € K,
il
(1 —n)!
if n <4, and Dy(T — c¢)® = 0 if n > 4. This shows that if

DT — ¢)i = LM n=D/2 (g i

F(T) = a;- Lc))/z € Aq(c, R)

N (i1
’L')O (2) qZ(Z
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is a formal series, with |g — 1[|c] < R < p x, then a, = Dy (f)(c/q"), and the usual Taylor formula
can be written as
(T —o)"
ZD” )e/q") —————. (5.7.5)
; —1)/2
)
The following proposition gives the analog of the classical rough estimate for differential and
g-difference equations (cf. [Chr83, 4.1.2] and [DV04, 4.3]).

PROPOSITION 5.20. Let ¢ € X(Q2). Assume that the system (5.6.1) has a Taylor solution Y. €
M, (Aq(c,R.)), with |g — 1|lc| < R, < pe,x. For all g-invariant sub-affinoid X' C X, containing
D*(c,|q — 1||c|), one has

|p|V/ =)
R. > . (5.7.6)
max(ry: | A(q, T)|[x+, |G(q,T)/qT | x7)
In particular if X' is a disk D" (¢, p), with |¢ — 1||¢| < p < pe.x, then
1/(p—1) .
R.> p p (5.7.7)

~ max(|A(q, T)l(c,p), |G(a, T)l(c,p) /max(1, || /p))”
Proof. The matrix Y.(T) satisfies o (Yo(T)) = Apny(q, T)-Ye(T), and Dy (Ye(T')) = Fiyy (¢, T) - Ye(T),
where Fig = Id = Ajg}, Apy = A(q, T), Fiy):= (1/qT)G(q,T), and

Apyy =07 (Apy) -+ 0q(Ap) - Apy,s (5.7.8)
Hence one has
( )”
120
which is a hybrid between the usual Taylor formula and the Taylor formula for g-difference equations.
Inequalities (5.7.6) then follow from the inequality

n 1 "
Fug(e/a e < 1L < x|yl - Ll G:711)

If X’ =D%(c,p), then the last term is equal to

1 1G(a, T, "
2T E DD 4G, )

p max(L, [c)/p)

Indeed rp+ (. p) = p, Fip = (1/4T)G(q, T), and [T (. p) = [(T' = ¢) + ¢|(c,p) = max(p, |c[), hence

1
- . G ’T c
qTmax(e,p) | ¢@ Dl

and |q| = 1. O

[Flal(c.p) =

6. Generic radius of convergence and solvability

DEFINITION 6.1 (Generic radius of convergence). Let ¢ € Q(X) (respectively ¢ € Q(X) — u(Q)),
let ¢ € X(K*8), and let D¥(c,p), |¢ — 1|lc|] < p < pex, be a g-invariant disk. Let M be the
(04,04)-module (respectively o,-module) defined by the system (5.6.1) (respectively (5.3.8)). Let
Ry, = Ray(Y(x,y),tc,) = Ray(Y(x,y),| - |(p) be the radius of convergence® of Y, 1)(Tte,p)-

®In the case of the g-difference equation (5.3.8), the radius Ry, , is given by definition (5.3.10). In the case of the
system (5.6.1), the radius Ry, , is given indifferently by definition (5.3.2) or by definition (5.3.10). Indeed under our
assumptions these two definitions are equal since Y4 1) (2,y) = Ygu,1)(2,y). However observe that the definition
(5.3.10) exists only if ¢ € Q@ — u(Q), while definition (5.3.2) preserves its meaning on the root of unity.

895

https://doi.org/10.1112/50010437X07003454 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X07003454

A. PurLita

Assume that®

lg — 1te,p| < Ry, (6.0.1)
We define the (¢, p)-generic radius of convergence of M to be the real number
Ray(M, | - |¢,p) = min(Ry, ,, pe,x) > |q — 1]|c]. (6.0.2)

6.0.1 The assumption (6.0.1) ensures that the disk of convergence of Y (z,y) at y = t., is
g-invariant. The bound Ray (M, |-|.,) < pc,x ensures that Y (z,y) is invertible in the disk D™ (. ,, R),
for all 0 < R < Ray(M,| - |.,) (cf. Lemma 5.15). We recall that |t.,| = min(|c[,p), and that

| D+ (ep) = MaXy ep* () | - |yo- Hence, by the transfer principle (cf. §5.4), one has

Ri,, = Ray(Y (z,y),tcp) = Ray(Y(x,y),D"(c,p)) =  min  Ray(Y(z,y),5).  (6.0.3)

Yo eD;alg (Cvp)

The number Ray(M,| - |, ) is invariant under change of basis in M, while the number R , =
Ray(Y (z,9),| - |(c,p)) depends on the choice of basis. Observe that Ray(M, |- .. ,)) depends on the
affinoid X, and on the semi-norm | - |(C7p) defined by t.,, but not on the particular choice of t.,
(cf. §1.4.1).

DEFINITION 6.2 (Solvability). Let M be a o4,-module (respectively a (o4, d4)-module) on Hg (X).
We will say that M is solvable at t., if

Ray(Mv | ’ |(c,p)) = Pec,X- (6.0.4)

6.0.2 Continuity and log-concavity of the radius. Notice that every point |- |, in the Berkovich
space associated to X is of the form |- |.,, for a suitable p > 0, and for a point ¢ in X (L), where
(L,| - |)/(K,| -]) is a sufficiently large extension of complete valued fields. One may verify that
| l(e,p) = Ray(M, |- |(c,)) is a well defined function on the Berkovich space (i.e. the radius does not
depend on the chosen ¢, but only on |- |,). In a recent preprint [BDV07] it has been proved that
the function |- |, — Ray(M,| - |.) is continuous on the Berkovich space. We refer to [BDV07] for a
very inspiring treatment to this subject.

We notice that this generalizes a previous statement [CD94] proving, for all ¢ € X(L), the
continuity of the function p — Ray(M,| - |.,).

Let now (L,|-|)/(K,]|-|) be any extension of complete valued fields. Let ¢ € X(L). The function
p+— Ray(M, |- |.,) defined on [0, p. x] is log-concave (cf. Definition 1.4), and it can be proved that
it is piecewise log-affine. This follows essentially by the definition of the radius (cf. (5.3.10)), and
by Lemma 1.6.

6.1 Solvability over an annulus and over the Robba ring

Let B := Ag([), with I = |r,73[, and let M be a o,-module (respectively a (o4, dq)-module) on
Ak(I). For all ¢ € K, |c| € I, one has t.| = tg¢- For all affinoid X C C(I) containing the
disk D™ (c, |c[) one has p. x = |c[. Then the norm |- |. | : Ax(I) — R and the generic radius
Ray(M, | - |(¢,|c)y) do not depend on the choice of ¢ or the affinoid X, but only on |c|. Hence, for all
p € I, we choose an arbitrary ¢ € €, with |c| = p € I, and we set

ty:=tep, and Ray(M,p) := Ray(M, |- |p))- (6.1.1)

To define the radius we need the assumption |¢ — 1[|t,] < py, x = p (cf. Definition 6.1).

®Observe that pe,x = pr. ,.x indeed D¥(¢,r) = DT (tc,p,7), for all r > p.
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Since [t,| = p, this assumption is equivalent to
lg—1] < 1. (6.1.2)

DEFINITION 6.3 (Solvability at p). Let ¢ € Q1 — p(Q1) (cf. (2.0.2)). Let M be a o4-module on
A (I). We will say that M is solvable at p € I if

Ray (M, p) = p. (6.1.3)
6.1.1 Solvability over Ry or Hk. Let ¢ € Q1 — p(Q1). Let M be a o,-module over Ri. By
definition M comes, by scalar extension, from a module M, defined on an annulus C(]1 — ¢y, 1]). If

g2 > 0, and if M., is another module on C(]1 — &2,1[) satisfying Me, ® 4, (1-e,,1) Rk — M, then
there exists an 3 < min(eq, £9) such that

M, @ A (J1 —e3,1]) = M, @ Ax(J1 — &3, 1]). (6.1.4)
Hence the limit lim, ;- Ray(M, p) is independent of the choice of the module M.
DEFINITION 6.4. Let ¢ € Q1 — pu(Q1), and let |g — 1| <7 < 1. We define
o-Mod(H )M, (6.1.5)
as the full subcategory of O'q—MOd(HL-) whose objects satisfy
Ray(M,1) > r (r>|q¢—1]), (6.1.6)
as illustrated below in the log-graphic of the function log(p) — log(Ray (M, p)/p) (cf. Definition 1.4).

log(Ray(M, p)/p)
log(p)

log(r)

log(|lg — 1)

Objects in aq-Mod(H}{)m will be called solvable.
DEFINITION 6.5. Let ¢ € Q1 — pu(Q1), and let |g — 1| <7 < 1. We define
o-Mod (R )" (6.1.7)

as the full subcategory of 0,-Mod(Rx) formed by objects M satisfying lim, ,;~ Ray(M, p) > r, and
there exists ¢, > 0 such that Ray(M, p) > [¢— 1|, for all p € |1 — ¢4, 1[. There are two possible cases,
r > |q¢— 1| and r = |¢ — 1], as illustrated in the following pictures.

log(Ray(M, p)/p) log(Ray(M, p)/p)
log(1—24) log(p) log(1— 24) log(p)
5 log(r) :

...................... log(lg — 1)) log(r) = log(|g — 1|)

Objects in g,-Mod (R ) will be called solvable.

Remark 6.6. Notice that in Definition 6.4 the existence of e, > 0 such that Ray(M, p) > |¢ — 1|, for
all p € |1 — ¢4, 1+ ¢4[ is automatically verified since one assumes r > |¢ — 1|.
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6.1.2 Analogous definitions for (oq,dq)-modules. In the case of (o4, d4)-modules, the generic
radius of convergence is defined even if ¢ is a root of unity. We then give analogous definitions of
(04,04)-Mod(B)I"], for B := Ry or B := H}(, without any restrictions on q.

6.2 Generic radius for discrete and analytic objects over R and ’H}{
In this section B =Rk or B = H}{.

DEFINITION 6.7. For all € > 0 let

L= {]1_5’1[’ ?fB:Rf’ (6.2.1)
1—¢e,1+¢[, if B=H.
DEFINITION 6.8. For all subsets S C D7 (1,1) = Qy, for all 0 < 7 < 1, we set
Sr:=5ND"(1,7). (6.2.2)
DEFINITION 6.9. Let 0 <r < 1. Let S C D~ (1,1), S° # (). We denote by
o-Mod(B)!!! (6.2.3)
the full subcategory of o-Mod(B)g whose objects M have the following properties.
(i) The restriction of M to every ¢ € S belongs to o,-Mod(B)!"!
(ii) For all 7 such that 0 < 7 < r, there exists e, > 0 such that the restriction Resiﬁ%(M) comes,
by scalar extension, from an object
M., € o-Mod(Ag (I, ))& (6.2.4)
such that, for all p € I._, and for all ¢,¢' € S;, one has (cf. (5.3.9))
Yaqr)(Tstp) = Yaqm)(T,tp). (6.2.5)

Objects in aq—Mod(B)[Sl} will be called solvable.

Ezample 6.10. This example justifies the condition (i) given in the preceding definition. Let r :=
w:= [p|"/®=1Y and let S = D~ (1,w). Let M be the discrete o-module over the Robba ring defined
by the family of equations {0, — A(q, T) }4es, where A(q,T) := exp((¢~* —1)T~1). Then Y (z,y) :=
exp(z~! —y~!) is the simultaneous solution of every equation of this family. Observe that A(q,T) €
Ry if and only if |[g=! — 1| < w, but if |¢g — 1| tends to w™, then the matrices A(q,T) do not all
belong to the same annulus. Indeed A(q,T) € Ak (I.) if and only if |[¢7 — 1| < w(1 —¢).

Remark 6.11. Condition (i) implicitly implies that S C D™ (1,r) if B = H}( (cf. Definition 6.4), and
S CDF(1,r) if B= Rk (cf Definition 6.5).

6.2.1 Analogous definitions for (oq,064)-modules. One defines analogously (o, 5)-M0d(B)[§], but
without restrictions on S C D™ (1,r), as the subcategory of (o,9)-Mod(B)g, whose objects verify
conditions (i) and (ii), in which equation (6.2.5) is replaced by (cf. definitions (5.3.1) and (5.3.9))

Yoar)(Toty) = Yan)(Totp), (6.2.6)
forall pe I, ,and all ¢ € S;.

7. The propagation theorem

7.1 Taylor admissible modules

DEFINITION 7.1 (Taylor admissible discrete modules on S). Let X := D™ (co, Ry) — ;- D™ (¢4, R;)
be an affinoid, and let S C Q1(X) be a subset with S° # () (cf. (2.0.3)). Let (M, ™) be a discrete
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o-module defined by the family of equations
{oq—A(q,T)}qes, Alq,T) € GL,(Hk(X)), VgeS. (7.1.1)
We will say that (M, ™) is Taylor admissible on X, with generic radius greater than r, if:
(1) one has S € D™ (1,r/max(|co|, Ro));
(2) there exists a matrix Y (z,y), convergent in Up (cf. (5.3.3)), with R > r satisfying, for all ¢ € S,
the condition (5.5.1), that is
r< R<ry; (7.1.2)
(3) Y(z,y) is a simultaneous solution of every equation of the family (7.1.1).
The full subcategory of o-Mod (H i (X))$5¢ whose objects are Taylor admissible, with generic radius
greater than r, will be denoted by
o-Mod (Hx (X)) (7.1.3)
Moreover we set
o-Mod(Hx (X))¥™ := |_Jo-Mod(Hx (X))§, (7.1.4)

where r < rx runs in the set of real numbers such that S C D™ (1,r/max(|co|, Ro)). We define
analogously the categories (o, 5)—M0d(HK(X))[§] and (o, 8)-Mod(Hx (X))2™ of admissible (o, 6)-
modules on S. Namely the condition S° # () is suppressed, and if (M, o™, M) is a discrete (o, d)-
module on S defined by a system of equations (cf. (3.2.4)), then the Taylor solution Y 1y(,y) (cf.
(5.3.1)) of the differential equation defined by §}! satisfies (7.1.2), and moreover is simultaneously
a solution of every equation defined by aé\/l, for all ¢ € S.

7.1.1 Taylor admissibility over H}{(X). We define
O‘-MOd(H}{(X))g] (respectively (o, 5)-M0d(H}{(X))[§]) (7.1.5)
as the full subcategory of O'—MOd(HL-(X))S (respectively (o, 5)—Mod(H}<(X))g) formed by objects

whose restriction belongs to O‘-MOd(HK(X))g] (respectively (o, 5)—Mod(HK(X))[§]).

Remark 7.2. If X = {|T| = 1}, H}((X) = H}( (cf. (1.2.4)), this definition is equivalent to Defini-
tion 6.9.

7.1.2 Taylor admissibility over Ri. We preserve the notation of §6.2.

DEFINITION 7.3. We will say that an object is Taylor admissible over an annulus C(I) if its restriction
to every sub-annulus C(J), with J compact, J C I, is Taylor admissible (cf. Definition 7.1).

One defines Taylor admissibility over Ri by reducing to the case of modules over a single
annulus C(I;), for some € > 0 sufficiently close to 0. One finds in this way exactly Definition 6.9.

DEFINITION 7.4. Let S C D™ (1,1), with S° # . Let 7g := sup,cg[q — 1]. We set
o-Mod (R )™ := -Mod (Rx) 7%, (7.1.6)

We give the same definition for (o, §)-modules, without assuming that S° # 0: (o, 6)-Mod (R ¢ ) 2™ :=
(0,8)-Mod (R) 7).

7.2 Propagation theorem

Remark 7.5. We preserve the notation of Definition 7.1. If M is Taylor admissible on X, then, in
particular, M is trivialized by Ag (¢, R), for all ¢ € X(K). Hence we can apply C-deformation and
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C-confluence to M, with C = Ag (¢, R) (cf. §4.2). It will follow from the proof of Theorem 7.7 that
this confluence does not depend on the chosen point ¢ € X (K).

THEOREM 7.6 (Propagation theorem, first form). Let X be an affinoid. Then, if ¢ € Q;(X) —
p(Q1(X)), the natural restriction functor

URes? : [ o-Mod(H g (X))™ — og-Mod(H g (X))*™ (7.2.1)
U U

is an equivalence, where U runs over the set of all open neighborhoods of q. The analogous fact is
true for (o,0)-modules without supposing that q ¢ pu(Q).

Proof. By Lemma 4.3, Res?q} is fully faithful. Indeed for all modules M, N over U, by admissi-
bility, there exists a number R, with |¢ — 1| max(|co|, Ro) < R < rx, such that, for all ¢ € X(K),
the algebra C := Ag(c, R) trivializes both M and N. The essential surjectivity of | J;, Res?q} will
follow from Theorem 7.7 below. O

THEOREM 7.7 (Propagation theorem, second form). Let X = D% (co, Ro) — Ui D™ (¢, R;). Let
g€ Q(X)—p(Qi1(X)). Let
V(g T) = A(T) - Y(T), A(T) € GLy(Hxc(X)) (7.22)

be a Taylor admissible g-difference equation (cf. Definition 7.1). Then there exists a matrix A(Q,T)
uniquely determined by the following properties:

(i) A(Q,T) is analytic and invertible in the domain
R
D—(1, —
< max(|co|, Ro)
(ii) the matrix A(Q,T) specialized at (q,T) is equal to A(T);

(iii) for all ¢ € D~ (1, R/ max(|col, Rp)), the Taylor solution matrix Ya(z,y) of (7.2.2) (cf. (5.3.9))
simultaneously satisfies

> x X C A% (7.2.3)

Yalqd - T,y) = Ald',T) - Ya(T,y). (7.2.4)
Moreover the matrix A(Q,T) is independent of the choice of solution Y4 (x,y).
Proof. By (7.2.4), the matrix A(Q,T) must be equal to
AQ.T)=YA(Q -T,y) - Ya(T,y) L =YA(Q -T,y) - Ya(y, T) = Ya(Q - T,T). (7.2.5)

This makes sense since Y, 7)(7,y) is invertible in its domain of convergence (cf. Lemma 5.16).
Hence A(Q,T) converges in the domain of convergence of Y,(QT,T) and is invertible in that
domain, since Y4(x,y) is. By admissibility, there exists |¢ — 1| max(|co|, Ry) < R < rx such
that Y4 (z,y) converges for all (x,y) € Ug, i.e. for all (z,y) such that |z — y| < R (cf. (5.3.3)).
Then Y4(QT,T) converges for |Q — 1||T| < R. Since |T| < sup.e4 |¢| = max(|col, Rp), it follows
that Y(QT,T) converges for | — 1| < R/ max(|co|, Ro)- O

Remark 7.8. By the propagation theorem, every object of
o-Mod(Hx (X))3™  and of (o,8)-Mod(Hx (X))im
is automatically analytic.

COROLLARY 7.9. Let max(|co|, Ry) < r < rx, and let S C D™ (1,r/max(|co|, Ro)), such that
S° # (. For all ¢ € S° one has the following diagram in which all functors are equivalences
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by §4.2.2
o-Mod(Hi (X)) Z22 (5 5)-Mod (Hi (X))

Res{sq}l/z o lees{g} (7.2.6)
0, Mod(Hic (X)) =" (0,,5,)-Mod (Hyc (X))

By considering the union for all r (cf. (7.1.4)) one has the following statement. If 7, :=
lg — 1| max(|co|, Ro), one then has the equivalences given in the diagram below.

U O'—MOd(HK (X))aDd—nELT) (2.4.9) U (O’, 5)_M0d (HK (X))aDd—n%Lr)

r>Tq r>Tq

D™ (1,r) D™ (1,r)
UT>,,_q Res {0} ll © 2lUT>,rq Res {0} (727)

~

o-Mod(Hg (X))2dm

F()I'get 6‘1 (O-q’ (5q)_M0d(HK (X))adm
In particular, if ¢,¢' € D™ (1,1) — ppeo verify max(|g — 1|,|¢" — 1|) max(|co|, Ry) < 7, then,
by the formalism introduced in §4.2, if D := D7 (1,r/max(|co|, Ro)), one has an equivalence

Requ, o (Requ)_1 : crq-l\/[od(HK(X))M — Jq/—Mod(HK(X))M. (7.2.8)

The same statement holds for (o, §)-modules without assuming that q,q" ¢ ppe.
DEFINITION 7.10. In the notation of Corollary 7.9 (cf. (7.2.8)), if ¢,¢" ¢ ppe, we set
Ta; — r] ~ r
Def % := Resy) o (Res) ™" : 0-Mod(Hc (X)) = o -Mod (H g (X)), (7.2.9)

We denote again by Dequa},', without assuming that ¢,q’ € ppeo, the analogous functor for (o, d)-

modules. Moreover, if g ¢7Q(X ) — Mpoo, then we set
Confy® := Defg?y o (Forget 6,) " : o-Mod(H e (X)) = §1-Mod (H (X)), (7.2.10)

By Remark 7.5, the functor Confy® : (0g,d,)-Mod(Hx (X)) = o-Mod(H g (X))I of dia-
gram (7.2.6) coincides with ConfgJ (cf. Definition 4.6), where C is equal to Ak (c,r), where r is as
in Corollary 7.9, and where ¢ € X(K) is arbitrarily chosen.

7.2.1 Root of unity. 1If g € ppeo, then the categories Uq-MOd(HK(X))g} and o,-Mod (H i (X)) 2dm
are not defined. In this case we cannot expect any equivalence between (o4, d,)-Mod(H (X))2dm
with a full subcategory of o4-Mod(H (X)) because the first category is K-linear and the second is
not. In this case we will see in Proposition 8.6 that the functor ‘Forget d,” is not very interesting
since it sends every (o4, d4)-module with Frobenius structure into the trivial o,-module (i.e. a direct
sum of the copies of the unit object).

7.2.2 Starting from a Taylor admissible o4-module M over B, one can compute the differential
equation Conquay(M) € 01-Mod(B) by the relation

Al(q,T) -1 A(P?" . T) -1
GLT) = tim 22D M AT M

q—1 qg—1 n—-+oo | ’
where A(¢?",T) = A(q,¢*" 'T)A(q,q""~2T)--- A(q,T). The propagation theorem provides the
convergence of this limit in M, (B). The reader may have the feeling that this limit should be
easy to compute, but (without introducing the Taylor solution) the convergence of this limit and

(7.2.11)
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its explicit computation are highly non-trivial facts. It is surprising to see that the admissibility
condition, which is not a strong assumption, actually implies such a deep fact.

Remark 7.11. It should be possible to generalize the main theorem to other kinds of operators,
different from o,. In other words it should be possible to ‘deform’ differential equations into ‘o-
difference equations’, where ¢ in an automorphism different from o, but sufficiently close to the
identity. We will describe this phenomenon in a forthcoming work [Pul08].

7.3 Extending the confluence functor to the case | — 1| =|q| =1
Let ¢ € Q(X) — u(Q(X)) be such that ¢k € Q;(X), for some ky > 1.7 By composing with the
evident functor

o-Mod(Hk (X)) — o k-Mod(Hk (X)), (7.3.1)
one defines ko-Taylor admissible objects of o4,-Mod(H i (X)) as objects whose image is Taylor ad-
missible in o x,-Mod(Hx (X)). Since the sequence {g"P"},>0 tends to 1, then, for ko sufficiently

large, ¢*0 satisfies the condition of §5.2, in order that quo verifies equality (5.2.1). We obtain then
a confluence functor:

og-Mod (H e (X))Fo-adm 5, -Mod (H g (X)), (7.3.2)

The converse of this fact (i.e. the deformation of a differential equation into a g-difference
equation with |¢| = 1 and |¢ — 1| large) remains an open problem.

Remark 7.12. Notice that there exist equations in o,-Mod(H k(X)) which are not ko-Taylor
admissible, for all kg > 1. For example consider the rank one equation o, — a, with a € K, |a| > 1.
Suppose also that |g — 1| < |p|"/®=Y, in order that liminf,, \[n];\l/" = |p|"/®=1 . Then the radius is
small and one can compute it explicitly by applying [DV04, Proposition 4.6]. One has

Ray((M, o)), p) = |a| " p| Y~ V]g - 1|p < |¢ - 1]p

and
Ray((M, o, ), p) = la| 7 |p| /=D |g" — 1]p < |g* — 1]p.

7.4 Propagation theorem over ’H;{ and Rk

The propagation theorem is true over every base ring B appearing in this paper, up to a correct
definition for the notion of ‘Taylor admissible’. We state here the results for H}( and R.

ProPOSITION 7.13. Let again B := H}{, or B:= Rg,let 0 < r <1, and let S C D (1,7r)

be a subset, with S° # (). Let M € U—MOd(B)g] (i.e. in particular M is admissible). Then M is
the restriction to S of an analytically C-constant module over all the disk D~ (1,r). Moreover, the
restriction functor is an equivalence:

] Resg ") ]
! ) —=2  5-Mod(B)¢'. (7.4.1)

U—Mod(B)D,(LT — S

In particular solvable modules extend to the whole disk D~ (1,1). The analogous assertion holds for
(0,0)-modules, without supposing that S° # (:

eSDi(l,r)
(0.0)Mod(B)S] | |~ (0,6)-Mod(B)}. (7.4.2)

"For an annulus centered at 0, the condition ¢" € Q1(A) = D™ (1,1) is equivalent to § € ]leg.
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Proof. By Lemma 4.3, it suffices to prove the essential surjectivity of Resg_(l’”. The proof is
straightforward and essentially the same as the proof of the propagation theorem (Theorem 7.6). [

COROLLARY 7.14. Let q,¢' € D™ (1,1) — ppeo. Let 7 € R satisty

max(|g —1|,|¢' —1]) <r < 1. (7.4.3)
Then one has an equivalence
D Ta);
o Mod(Rg )" —2% 5 -Mod (R ). (7.4.4)

The same equivalence holds between (o, 5,)-Mod(R )" and (o, 6,)-Mod(R k), without assum-
ing that q ¢ ppe. Moreover, if ¢ ¢ ppe, and if |¢ — 1| < r, then we have an equivalence

(UQJ 5q)—M0d(RK) [T] FOLGH&;)

o-Mod(R ). (7.4.5)

As usual we set Conf:fay := Def ™ o (Forget 84)"'. The analogous statement holds for H}{.

7.4.1 Unipotent equations. We shall compute the deformation DeflTZy of the differential module

U,, defined by the equation

010 0 1 4 - lpea b
0 01 0 0 1 & - Ay
01 (Yy,,) = Yu,.. Yu.(r,y)=1: : , (7.4.6)
000 - 1 0 0 1 4
000 --- 0 0 0 0 1
where £, := [log(z) — log(y)]"/n!. One has
z n n g log(q)n_k
og (bn(z,y)) = [log(gz) —log(y)]" /n! = (log(q) + log(x) —log(y))" /n! = Zm e
i=0 ’
The matrix of agm is then
1 log(q) log(q)?/2 -+ log(q)™!/(m —1)!
0 1 log(q) log(q)™~2/(m — 2)!
A(g,T) = | : : : (7.4.7)
0 0 1 log(q)
0 0 1

7.5 Classification of solvable rank one g-difference equations over R __

In this section we classify rank one solvable g-difference equations over R by applying the defor-
mation Def}zy to the classification of the differential equations obtained in [Pul07]. We recall the
classification of the rank one solvable differential equations over Rk, := U 5o Rk, (see below).

~

We fix a Lubin-Tate group ®p isomorphic to G,, over Z,. We recall that &p is defined by a
uniformizer w of Z,, and by a series P(X) € XZ,[[X]], satisfying P(X) = w- X (mod X?Z,[[X]])
and P(X) = X? (mod pZ,[[X]]). By simplicity we assume p = w, in order that &p = G,,. Such a
formal series is called a Lubin-Tate series. We fix now a sequence m := (7 )m>0, Tm € leg, such
that P(mp) = 0, mg # 0 and P(mp4+1) = 7, for all m > 0. The element (7, )m>0 is a generator of the
Tate module of &p which is a free rank one Z,-module. We set K, := K(7,) and K, := Us>0 K.
We denote by ks and ko the respective rgsidual fields. The tower K C Ky C K7 C --- does not
depend on the choice of 7, nor on &p = G,,. One has K, = K (&), where & is a primitive p**1th
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root of unity. For example, one can choose &p = G,;,, hence P(X) = (X +1)?—1, and 7, = & — 1,
where &, is a compatible sequence of primitive p™*1th root of 1, i.e. 55 =1 and &, = &,_1, for all
m > 0. One has the following facts.

(i) Every rank one solvable differential module over Ry has a basis in which the associated
operator is

s J o
L(ag, f(T)) := 6, — (ao — Zws_j Z fi_(T)p]_18T710g(fi_(T))>, (7.5.1)
§=0 i=0

where ag € Zp, and f(T) = (f5 (T),..., [, (1)) is a Witt vector in W, (T 'O [T71]),
with Kg = K(7y). Notice that even if 7; does not belong to K, the resulting polynomial
> 5=0Ts—j S o fi (TP " Or10g(f; (T)) has, by assumption, coefficients in K.

(ii) The Taylor solution at oo of the differential module in this basis is given by the so-called
mr-exponential attached to f~(7):

S - T
T - epm (£ (T),1) 1= T - exp (Z Mo ¢]p(j )>, (7.5.2)
j=0
where (¢, (T),...,¢5 (1)) E_(T_IOKS [T—1])¥*! is the phantom vector of £~ (T'), namely one
has ¢ (T) = oD f (T
(iii) The correspondence f~(T) — eps(f~(T'),1) is a group morphism

W, (T 0k [T1]) 2220 1 4 2 7105 [T (7.5.3)

Notice that if L(0, f~(T)) has its coefficients in Rx (C Rk,) then also eys(f~(7'),1) lies in
1+ T71Ok[[T71]] (because it is its Taylor solution at co).

(iv) Conversely, L(ag, f~(T')) is solvable for all pairs (ag, f~ (1)) € Zp, x Ws(T 'O, [T71]).

(v) The operator L(ag, f~(T')) has a (strong) Frobenius structure (cf. Definition 8.5) if and only
if ag € Z(p) = Zp N Q.

(vi) The operators L(ag, fi (T')) and L(bo, f, (T')) (with coefficients in Rx(C R, )) define isomor-
phic differential modules (over Ry) if and only if ag — by € Z and the Artin—Schreier equation

Flg=(T) —g~(T) = f1 (T) = f5 (T) (7.5.4)
has a solution g—(7) in W,(k*#((t))), where ¢ is the reduction of T, and F is the Frobenius of
W, (k¥2((t))) (sending (o, - --,gs) into (g5, ...,g5)). This happens if and only if the equation
L0, f; (T) — f5 (T')) is trivial over Ry, and also if and only if eps(f; (1) — f5 (T),1) is
overconvergent.8

By deformation, every solvable g-difference equation, with |¢ — 1| < 1, has a solution at oo of
the form T% - e,s(f~(7T'),1). Its matrix in this basis is then

Alq,T) = eps (F7(qT), 1) [eps (F(T), 1) = eps (F~(¢T) = F7(T), 1)

The deformation guarantees that A(q,T) € Ry. This is confirmed by the fact that f~(¢7T) and
F7(T) have the same reduction in Wy (k2((t))), and hence e,s(f~(¢T) — £~ (T),1) € Rk by point
vi) of the previous classification.

®Indeed the overconvergence of e,= (f; (T) — f5 (T), 1) is independent of the residual field; for this reason we can look
for solution of the Artin-Schreier-Witt equation (7.5.4) with coefficients in the more general field k¢ instead of k.
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8. Quasi-unipotence and p-adic local monodromy theorem
In this section we show how to deduce the g-analog of the p-adic local monodromy theorem

(cf. [And02, Ked04, Meb02]) by deformation.

Let K be a complete discrete valued field with perfect residue field (this hypothesis is necessary
to have the p-adic local monodromy theorem (cf. Theorem 8.12)). Let 6} C Rx be the so-called
bounded Robba ring,

g}f{ = {Z a;T" € Ry

1€Z

sup |a;| < —l—oo,iligloo la;| = 0}.

Then, since K is discrete valued, (5}0 |- (0,1)) is a Henselian valued field, with residue field k((t)).
It has two topologies arising from | - [(o,1), and from the inclusion in Rf. It is not complete with

respect to either of these two topologies, but SL is dense in Rx. One has the inclusions

Hi C &l C Rk (8.0.1)

8.1 Frobenius functor and Frobenius structure

Let ¢ : K — K be an absolute Frobenius (i.e. a ring morphism lifting of the pth power map of k).
Since R is not a local ring, and does not have a residue ring, we need a particular definition.

DEFINITION 8.1. An absolute Frobenius on Ry (respectively H} ) EL) is a continuous ring mor-
phism, again denoted by ¢ : R — R, extending ¢ on K and such that (3" a;T%) = 3~ ¢(a;)p(T)?,
where p(T) = 3, bT" € Ry (respectively (T € H}(, o(T) € 5;[() verifies |b;| < 1, for all ¢ # p,
and |b, — 1] < 1.

DEFINITION 8.2. We denote by ¢ the particular absolute Frobenius on R given by the choice

o(T) :=T7, ¢(f(T)):= f2(T7), (8.1.1)
where f?(T) is the series obtained from f(7T") by applying ¢ : K — K to the coefficients.

Let B be one of the rings H}{, 5}{, or Rg. For all ¢ € D™(1,1), the following diagrams are

commutative.
B
Tqp l ®
B ¢

DEFINITION 8.3 (Frobenius functor). Let S C D~ (1,7), 0 <r < 1. Let

Y.
o & (8.1.2)
6

B

Oq p(Sl

O<—Ww
O<~—w

/

o= min(r'/P, - p|7h). (8.1.3)
The Frobenius functor (cf. Definition 6.9)

¢* : (0,6)-Mod(B)) — (0, 6)-Mod(B)}, (8.1.4)
respectively

¢* : o-Mod(B)!) — o-Mod(B)!', (8.1.5)
is defined as ¢* (M, o™, M) = (¢*(M), U‘b*(M),éf*(M)), where:
(i) ¢*(M):= M ®g ¢4 B is the scalar extension of M via ¢;
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(ii) the morphism o® ™) is given by Jf*(M) = a};é ® 05’,
& (M)
qr— qu\g ® 041 S T—— Aut§™(¢*(M)); (8.1.6)
(iii) the derivation is given by
57 M = (p. M) @ Idg + Idy ® 67 (8.1.7)

(iv) a morphism « : M — N is sent into a ® 1 : ¢*(M) — ¢*(N).

Remark 8.4. The fact that the functor ¢* sends (o, 5)-M0d(B)[§] into (o, 5)—Mod(B)[§l] with this
particular value of 7 (cf. (8.1.3)) follows from the fact that this result is true for differential equations
(cf. [Pul05, Appendix] and [CMO02, Proposition 7.2]), and from the confluence.

8.1.1 We observe that the pull-back ¢*(M) is actually a o-module over S¥/? := {q € K | ¢
€ S}. Indeed ¢*(M) is canonically endowed with the action of a;b: /(;VI )= 0}1\4®aq1 /ot ¢F(M) — ¢*(M),

for all roots ¢/P of . This fact was used in [ADV04] to define the so-called confluent weak Frobenius
structure (cf. Definition 8.27).

If M € (o, 5)-M0d(H}{)[§], then we can consider its Taylor solution at 1:
Y(T,1) = V(T - 1)' € GLy(Ak(1,1)), Vi € My(K).
i>0
Then the Taylor solution of ¢*(M) is given by
YOTP, 1) :=> (Vi) (TP — 1)'. (8.1.8)
i>0

The matrices of ¢*(o,) and ¢*(d1) are the following. Let e = {ey,...,e,} be a basis of M. Let
o — A(q,T) and 61 — G(1,T) be the operators associated to quw and 0M in this basis. Then the
operators associated to ¢*(M) in the basis e ® 1 are

o, — A?(¢",TP), 6 —p-G¥(1,TP), (8.1.9)
where, according to (2.1.7), one has A(¢?,T) = A(q,q"?~'T)--- A(q, qT)A(q, T).

~

8.1.2 Frobenius structure. The functor ¢* : §;-Mod(Rx ) —=— §;-Mod (R )Y is an equiva-
lence (cf. [CM02, Corollary 8.14]). By deformation ¢* is hence an auto-equivalence of J-MOd(RK)[SH
(if S° # () and (o, 5)—Mod(RK)£g1] (without assuming S° # ().

DEFINITION 8.5 (Frobenius structure). Let B be one of the rings Hi, 5}0 or Rig.Let S CD™(1,1)
be a subset. Let M be a discrete o-module (respectively (o,d)-module) over S. We will say that
M has a Frobenius structure of order h > 1, if there exists a B-isomorphism (¢*)"(M) = M of
o-modules over S (cf. §8.1.1), where (¢*)" := ¢* 0 --- 0 ¢*, h-times. We denote by

o-Mod(B)Y,  (respectively (o,6)-Mod(B)') (8.1.10)

the full subcategory of O‘-MOd(B)g] (respectively (o, 5)—Mod(B)£g1]) whose objects have a Frobenius
structure of some unspecified order.

If M has a Frobenius structure, then » = 7’ (cf. (8.1.3)) and hence M is solvable:
o-Mod(B) ¢ o-Mod(B). (8.1.11)
Hence objects in a—Mod(B)(S¢) and (o, 5)—Mod(B)(S¢) are, in particular, admissible.
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If Y(T,1) is the Taylor solution of M € (o, 5)—Mod(H}<)[SH at 1, then the fact that M has a

Frobenius structure of some order h > 1 is equivalent to the existence of a matrix H(7T') € GLn(Hk)
such that

Y (17" 1) = H(T) - Y(T, 1). (8.1.12)

Indeed Ak (1,1) is an Hk-discrete o-algebra over D7 (1,1) trivializing M (cf. Definition 3.2). In
particular the equivalences Dequ?,' and Conf;Fay send objects with Frobenius structure into objects
with Frobenius structure.

PROPOSITION 8.6. Let £ be a p™th root of unity, and let ¢ € Q1 — pu(Q1). Let M € Jq—Mod(H}{)(‘b).

Then Def;ﬂzy(M) € ag—Mod(H}() is trivial (i.e. isomorphic to a direct sum of copies of the unit
object).

Proof. Let Y(T,1) € GLn(H}{) be the Taylor solution at 1 of M in some basis e. Then, by (8.1.12),
there exists H(T) such that Y¥"(T?",1) = H(T) - Y(T,1). Hence, one also has Y*"" (T?"" 1) =
H,(T) - Y(T,1), for some H,(T) € GL,(HL). Since oc (V" (TP"™" 1)) = Y™ (T*"" 1), it follows
that in the basis H,(T) - e the matrix of o¢ is trivial: A(£,T") = Id (cf. §3.2.1). O

8.2 Special coverings of ’H}{

We recall briefly the notions of special coverings. The residue field of S;r( is k((t)) (with respect to

the norm | - [(g1)). On the other hand, the residue ring of H}( (with respect to the Gauss norm
| lc0,1)) 18 K[t, t71]. One has the following diagram.

) C
e S ek

l o l (8.2.1)
Kt € k()
We denote by Ok [T, T~ the weak completion of O[T, T~!], in the sense of Monsky and Wash-
nitzer [MW68]. One has
Hi = Ok [T, T 00, K. (8.2.2)
Let us look at the residual situation. The morphism
n:=Spec(k(t) — Gpi= Spec(k[t,t™]) (8.2.3)

gives rise, by pull-back, to a map

{ finite étale } pull-back {ﬁnite étales } (8.2.4)

coverings of 7] coverings of G, 1

It is known (cf. [Kat86, 2.4.9]) that this map is surjective, and moreover that there exists a full
sub-category of the right-hand category, called special coverings of Gy, 1, which is equivalent, via
pull-back, to the category on the left-hand side. Special coverings are defined by the property that
they are tamely ramified at co, and that their geometric Galois group has a unique p-Sylow subgroup
(cf. [Kat86, 1.3.1]).

On the other hand, if 7 € O is a uniformizing element, then both (O, (7)) and
K

(O[T, T~Y]T, (7)) are Henselian couples in the sense of [Ray70, ch. II] (cf. [Mat02, §5.1]).
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One can show that the preceding situation lifts to characteristic 0. One has the equivalences

special —®&l [ finite unramified) —oRx special
—_— _ .
extensions of H}( ~ extensions of S;r{ extensions of R

~

—®K | © 2T—®K

{ special extensions}_(gmf}({ finite unramified }

of O[T, T~ extensions of Oy (8.2.5)

—®k © Zl_®k
special pull-back | finite étale
coverings of G, ~ coverings of 7

where, by special extension of O [T, T~ (respectively H}{, Rxk), we mean a finite étale Galois

extension of Ok|[T ,T_l]T (respectively H}{, Ry) coming, by Henselianity, from a special cover
of GmJg.

LEMMA 8.7. Let F/k((t)) be a finite Galois extension with Galois group G. Let ST(F)/H}{ be the
corresponding special extension of H}{. Then (ST(F))¢ = H}(.

Proof. By [SGA03, Exposé V, Corollary 3.4], (ST(F))¢/ H}{ is a special extension. The assertion is
then easy since, by the above equivalence, there is bijection between special sub-algebras of ST(F)
over H}{ and sub-extensions of F/k((t)). O

8.2.1 Extension of o, to Special extensions.

LEMMA 8.8 [ADV04, §11.3]. Let F/k((t)) be a finite separable extension. Let F1 /Oy [T, T~1]1 be the
corresponding special extensions. The automorphism o4 of O [T, T _1]T extends to an automorphism
F'. The extension is unique up to Ok [T, T_l]T-automorphisms of FT. The same statement holds
for the extensions (H}()’/Hk, (6})’/6}, (Ri)' /Ry corresponding to F/k((t)). In particular there
exists a unique extension of o, to F7, (H}()’, (E;r()’, (Ri)" inducing the identity on F.

Proof. The proof results from the formal properties of Henselian couples (cf. [Ray70]). O

By uniqueness the extension of o, commutes with the action of Gal(k((t))*P /k((t))).

Remark 8.9. Every finite extension of C((T)) is of the form C((T™/™)). Up to change of variable
we have an isomorphism C((7"™/™)) = C((Z)). Analogously it can be seen that a finite unramified
extension of SIT< is (non-canonically) isomorphic to £, for some finite K’/K. In this case the link
between the variable Z and the variable T' is rather complicated and essentially unknown. One of
the problems of the theory is that the extended automorphism does not send Z into qZ. The general

‘confluence’ theory introduced in §4 will be crucial in solving this problem.

8.3 Quasi-unipotence of differential equations and canonical extension

In this section we recall some known facts on p-adic differential equations.

DEFINITION 8.10. We denote by H}{ (respectively 5}{, 7%;) the union of all finite special (respec-

tively unramified, special) extensions of H}( (respectively S;r(, Rk) in an algebraically closure of
the field of fractions of R.
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DEFINITION 8.11. Let B be one of the rings H}{, 5;(, Rr.Let S C D™ (1,1) be a subset (respectively
S C D (1,1), with S° # (). A discrete (o,0)-module on S (respectively discrete o-module on S)
over B is called quasi-unipotent if it is trivialized by the discrete (o, d)-algebra

Bllog(T)]. (8.3.1)

We observe that M is trivialized by B[log(7')], if and only if M is trivialized by B'[log(T)], where
B’ is a (finite) special extension of B. Indeed the entries of a fundamental matrix of solutions of M
in B[log(7)] all lie in a finite extension.

THEOREM 8.12 (The p-adic local monodromy theorem, cf. [And02, Ked04, Meb02]). Objects in
51-M0d(RK)(¢) become quasi-unipotent possibly after a suitable extension of the field of constants
K. In other words, if M € §;-Mod(R)?), then there exists a finite extension K'/K such that

M ®k K’ is quasi-unipotent (i.e. trivialized by H}{/ [log(T)]).

THEOREM 8.13 [Mat02, Corollary 7.10, Theorem 7.15]. If a differential equation M € §;-Mod(R k)
is quasi-unipotent, then it has a Frobenius structure. Moreover, the scalar extension functor

@R : 61-Mod(H})® — §,-Mod(Rx)(® (8.3.2)
is essentially surjective.

THEOREM 8.14 [Mat02, Theorem 7.15]. There exists a full sub-category ofél—Mod(H}()(‘b), denoted
by 51-M0d(H}{)Sp, which is equivalent to 6;-Mod(R)?) via the scalar extension functor (8.3.2).

Objects in (51—Mod(H}r{)Sp category are trivialized by H}{[log(T)].

DEFINITION 8.15 (Canonical extension). Objects in 51-M0d(H}{)Sp will be called special objects.
We will denote by

51-Mod(R)(® 2 5, -Mod(H} ) ¢ 6-Mod(H,)(@ (8.3.3)
the section of the functor (8.3.2), whose image is the category of special objects (cf. Theorem 8.14).
We will call it the canonical extension functor.

COROLLARY 8.16 [And02, Corollaire 7.1.6]. Let M € §;-Mod(Rx)(®), then, up to replacing K by a
finite extension K'/K, M decomposes in a direct sum of submodules of the form N ® U,,, where N
is a module trivialized by a special extension of Ry, and U, is the m-dimensional object defined
by the operator (cf. §7.4.1)

010 0
001 0

o1 — . (8.3.4)
000 -~ 1
000 -~ 0

Remark 8.17. The log(T") appearing in (8.3.1) is actually added uniquely to trivialize the module
of the form U,,, for m > 2 (cf. §7.4.1).
LEMMA 8.18. Let N € 51—Mod(H}{)Sp be a special object trivialized by H}{. Let Y = (Wi5) €

GLn(H}() be a fundamental matrix solution of N. Let (ET) (respectively R') be the smallest special

extension of 6} (respectively Ry ), such that N ® E} is trivialized by (£')" (N ® Ry is trivialized
by R'). Then one has

ENY = LByl R = Ril{ij}ig): (8.3.5)
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In other words, the smallest special extension of E} (respectively Ry ) trivializing N is generated
by the solutions of N.

Proof. Since N is trivialized by (£T), one has 5;[{[{@]}”] C (€Y. Hence the differential field
5;(,[{@-,]-}2-,]-] is an unramified extension, and is then a special extension. Since ()’ is minimal,
5}([{@]}”] = (ET). The case over Rx follows from the case over 5;[(. O

COROLLARY 8.19. We preserve the notation of Lemma 8.18. There exists a unique automorphism
of 5}{[{@]}”] extending o4, and inducing the identity on the residue field. We denote it again by
og-

Proof. By Lemma 8.18, 5}{[{37”}”] is a special extension (i.e. Henselian). Hence, by §8.2.1, the
extension of o, to 5;[{[{@]}”] is unique. O

COROLLARY 8.20. Let S C D (1,1) The scalar extension functor

—@Rk : (0,6)-Mod(H})Y — (5,6)-Mod(Rx) (8.3.6)

is essentially surjective. Moreover there exists a full sub-category of (o,d)-Mod H (¢), which we
K/S

call (o, 5)—Mod(H}<)§p, equivalent via @Rk to (o, 5)-M0d(RK)(S¢). The same statement is true for
o-modules under the assumption S° # ().

Proof. By Proposition 7.13, we can assume that S = D7 (1,1). By Theorem 8.13 there exists a
basis of M in which the matrix G(1,T) of §}! lies in Mn(H}{) Moreover, Can(M, M) is Taylor
admissible, since all solvable differential equations are Taylor admissible. By Proposition 7.13, for
allg € D7(1,1), the matrix A(q,T) := Yo (¢T',T') belongs also to GLn(H}{). This proves the essential
surjectivity. The fully faithfulness follows by deformation of Theorem 8.14 (cf. Corollary 7.9). [

8.3.1 It is not clear to us if the smallest special extension of H}{ trivializing a given M €
51—Mod(H}()Sp is generated (over H}{) by the entries of a fundamental matrix of solution of M. So
we are obliged to give the following definition.

DEFINITION 8.21. We denote by C‘% the sub-algebra of H}{ generated, over H , by the entries of

every fundamental solution matrix of each object in 51-M0d(H}()Sp which is trivialized by Hk.

With the notation of Corollary 8.20, the inclusions (o, 5)—Mod(Hk)§p C (o, 5)—Mod(H}<)(S¢) -

(o, 5)—Mod(H}<)[SH are strict (the same holds for (o, d)-modules). For example the equation 61(y) =
aoy, with ag € Zy — Zy), is solvable, but without Frobenius structure (cf. §7.5). On the other hand
an object with Frobenius structure could have non-zero p-adic slope at 17 (hence irregular at o),
hence it is not special. Unfortunately we have no examples of non-special equations with Frobenius

structure, but trivialized by (f]\é;[log(T)].

8.4 Quasi-unipotence of o-modules and (o, d)-modules with Frobenius structure

This section is devoted to proving the following theorem.

THEOREM 8.22 (The p-adic local monodromy theorem (generalized form)). Let S C D7(1,1) be
a subset (respectively S° # (). Then every object M € (o, 5)—Mod(RK)Eg¢) (respectively M €

a—Mod(RK)gz))) is quasi-unipotent, after replacing K, if necessary, by a finite extension K'/K
depending on M.
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This result simplifies and generalizes the analogous result of [ADV04]. The proof is obtained by
deformation of the p-adic local monodromy theorem of differential equations (cf. Theorem 8.12).

The proof is essentially the following. Assume that S = {q}, with ¢ ¢ pp~. By canonical
extension (cf. Corollary 8.20) M is trivialized by R [log(T)] if and only if Can(M) is trivialized by

H}{ log(T")] (or equivalently by CSt[log(T)]). Hence we can assume that M € aq—Mod(H}{)Sp. Firstly
apply the confluence functor to obtain a differential equation Conf;ray(M, U}]\/I). We prove then in

Lemma 8.23 below that Conf;Fay(M,Jg/I) is C%[log(T)]-extensible to D~(1,1) (cf. Definition 4.4).

?’z‘? [log(T)] (Confgay(l\/[, 0}1\4)) over

H}{ (cf. §4). This ¢-difference module is quasi-unipotent since, by definition, it has the same solutions

Hence we obtain, by deformation, another ¢-difference module Def

in C%t[log(T)] of tll\ciquasi—unipotent differential equation Conf;ray (M, U}]\/I). We show then that there
is an embedding C%[log(T)] € Agms(1,1) commuting with d1, ¢, and with o, for all ¢ € D7(1,1)
(cf. Lemma 8.24). This proves that the restriction of Defle;y to the category of objects trivialized

by CS{log(T)] coincides with Defiz?[log(T)}

C = Agk(1,1) (cf. Remark 7.5) or equivalently C = Ayus(1,1) (cf. Corollary 8.26’). Hence

(cf. §§4.2.3 and 4.2.1), because DeflTZy = Def?,, with

Def; KT (ConfT2y (M, oM)) = Def T (ConfT (M, o)) = (M, oM). (8.4.1)
In particular (M, J}I\/I) is trivialized by C¢[log(7T)] and is hence quasi-unipotent.

LEMMA 8.23. Let M € 51—M0d(H}<)Sp. Assume that K is sufficiently large so that M is quasi-uni-
potent. Let (H}r{)’ be the smallest special extension ofH}{ such that M is trivialized by (H}{)’[log(T)].

Let Y € GLn(H}{ [log(T)]) be a fundamental matrix solution of the differential equation M. Then
there exists a finite extension K'/K such that the matrix

A(q,T) = 0,(Y)- Y1 (8.4.2)

belongs to GLn(H}(,), for all g € D, (1,1). In particular the operator o, acting on SIT< stabilizes both
H}{ and C¢, and hence M is C¢t[log(T)]-extensible to the whole disk D™ (1,1) (cf. Definition 4.4).

Proof. We can suppose that K = K'. By Corollary 8.16, and by canonical extension (cf. Defini-
tion 8.15), one can assume that M = N, or M = U,,, where N is trivialized by a Galois étale
extension (H}{)’ of H., and where U,, is defined over H}{ as in Corollary 8.16. The case M = U,,
is trivial, since both the matrices of (5{] ™ and of afl]’" can be described explicitly as in §7.4.1. Let
now M = N (i.e. M is trivialized by H}r{) In this case the solution matrix ¥ lies in GLn((H}{)’ ).
The special extension (H}()’ / H}( corresponds via the equivalence of § 8.2 to a finite Galois extension
F/k((t). Let G := Gal(F/k((t))); then G acts on (H}{)’ by H}{—automorphisms, and moreover the

fixed points under this action are exactly the elements of H}r{ (cf. Lemma 8.7). After enlarging K,
if necessary, for all v € G, one has

v(Y)=Y -H,, with H, € GL,(K). (8.4.3)

Indeed by Lemma 8.18 the corresponding Galois extension (5}{)’ /E} is generated by the entries

of Y. Hence (5}&)’ /5;[( is a Picard—Vessiot extension of 5;& with differential Galois group G. It
follows then by Picard-Vessiot theory that Hy, € GL,(K) (cf. [vdPS03, Observation 1.26]). Since
o4 commutes with every v € G(cf. §8.2.1), one finds

Y(A(q, T)) = (oY) - YY) =0,(Y) - H,- (Y - H,) ' = A(q, T). (8.4.4)
Hence A(q,T) belongs to Hi_, for all lg — 1| < 1. O
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LEMMA 8.24. Let Aga(1,1) := Ugr/k—ginite Ar’(1,1). There exists an embedding Cétflog(T)] €
Agae(1,1) commuting with the actions of 1, of ¢, and of o4, for all ¢ € Dy, (1,1). In other
words Apae(1,1) is a C¢t[log(T)]-(o, §)-algebra over the disk D
diagram of discrete H}{ — (0, 6)-algebras over D™ (1,1)

g (1, 1), and one has the following

Agag(1,1) D a\efg C 7/{\1; C g}; C Ry
U U U U (8.4.5)

Ag(1,1) > H}{ C 5}{ c Rk

Proof. In the following we assume K to be sufficiently large in order that every special object
appearing in the proof is quasi-unipotent. Let M € 51-M0d(H}{)Sp be a special differential equa-

tion trivialized by H}{. Let (C%)’ be the smallest sub—H}{—algebra of H}r{ trivializing M. By def-
inition (C%) is generated over H}( by the entries {y; ;}:; of a matrix solution Y of M in H}{.
We consider H}{[log(T)], (C) [log(T)], C&tllog(T)], Ak(1,1) as differential algebras (we forget
the actions of o, in a first time). We have an embedding H}([log(T )] € Agk(1,1) commuting
with 41 sending the symbol log(T) into the power series Y-, (=1)"""(T — 1)"/n € Ag(1,1).
We extend this embedding to (CS)'[log(T)] as follows. Since the differential equation M has its
coefficients in H}( we can consider its Taylor solutions Y (7', 1) at the point 1. Since M is solvable,
then Y(T,1) € GL,(Ak(1,1)). Let now Fg := Frac(H}{) be the field of fractions of H}{. Since
Fr is a field, then (up to enlarged K) we can apply the Picard—Vessiot theory to obtain an iso-
morphism Fx [{7i;}ij] — Fr[{vi;(T,1)}i;], sending y;; into y;;(T,1), and commuting with d;.
Clearly this isomorphism identifies (C%) = H}{[{ﬂw}”] with H}{[{yi,j(T, D}l € Ar(1,1).
If M’ is another differential equation, and if H}{[{@]}”] is the corresponding Picard-Vessiot
extension identified with H}([{y;j(T, 1}l € Ag(1,1), then the embedding corresponding to
M @ M’ extends these two embeddings since the entries of a solution of M & M’ are the fami-
lies {¥; 5, %k}whk and {y; ;(7T,1), y;%k(T, 1)}i,j.hk respectively. It is hence clear that this family of
embeddings are compatible, so that we obtain an embedding C% C Ag(1,1) commuting with 07,
and consequently C‘;}[log(T)] C Ag(1,1) also commutes with d;. Notice that log(7") is algebraically
free over H}{ and hence over CS¢ which is union of finite algebras over H}{ (cf. Lemma 8.7).
We can now check that this embedding commutes with o, (respectively ¢), by looking to its
action on the entries {y; ;};; and {y; j(T,1)}; ;. Hence it is enough to prove that the isomorphism
5}([{@]}”] e S}r{[{ym(T, 1)}i,;] commutes with o, (respectively ¢). Observe that, if we fix an
embedding of Fr[{y; ;(T,1)};;] in a fixed algebraic closure of gL, then Sk[{yi,j(T, 1)}ij] is, by
definition, the smallest field containing 5}{ and {y; ;(T,1)}; ;. The actions of 01,04, are defined
on EL[{yi,j (T,1)}; ;] as the extensions of 1,04, on Fr[{yi;(T,1)};;]. This extension exists since
H}{[{ym(T, 1)}¢,j]ﬂ5}< = H}{[{@J}i,j]ﬂé’}{ = H}{ (cf. Lemma 8.7), and since 01, 04, ¢ act on Y (T, 1)
by multiplication by matrices with coefficients in H}( (cf. [Bouh9, §6, no. 1, Proposition 1]). By
Lemma 8.19, there exists a unique extension of o to 5;[([{@] }i;], and of course a unique extension
of ¢ since 5%[{37”}”]/6} is unramified. Hence the isomorphism S}{[{ﬂzj}”] = 5}{[{yi7j(T, 1)} 4]
commutes with o, and ¢. O

Remark 8.25. The same statement holds for Ag(c, 1) instead of Ag(1,1), providing that |c| = 1,
ce K, and ¢(c) =c.
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Proof of Theorem 8.22. By Proposition 7.13, one has (o, 5)—Mod(RK)(S¢) = (o, 5)-M0d(RK)](3¢2(1 1)

(respectively J-MOd(RK)g¢) = U—Mod(RK)g?(l 1)). On the other hand, (o, 5)—Mod(RK)1(j¢z(1 =

(
a—Mod(RK)g)z(l’l) (cf. (2.4.3)). Moreover, if ¢ € D7(1,1) — ppee, then (o, 5)—Mod(RK)](3¢2(l’l) =

(04,04)-Mod(Ri)® (respectively O‘-MOd(RK)](:(fz(LI) = 0,-Mod(Rk)®). Hence, without loss of
generality, we can assume that M is a Taylor admissible (o, d,)-module, with Frobenius structure.

The proof follows now by the discussion after Theorem 8.22. O
COROLLARY 8.26. Let S C D™(1,1) — ppe (respectively S C D7(1,1)). We have the equalities

(1,1) Lemma 8.24 CZ [log(T)]
- q

ConfqTay Rem. 7.5 Confj;‘K(l’l) = Conf:;“’(alg Conf , (8.4.6)

where the first three equalities hold for these functors on U—MOd(H}{)g] (respectively (o,9)-
Mod(H}{)gl]), while, in the last equality, one considers the restrictions of these functors to the full
subcategory of a—Mod(H}{)g] (respectively (o, 5)—Mod(H}<)E]) of objects trivialized by CSt[log(T)].
In particular the last equality holds on a—Mod(Hk)gp (respectively (o, 5)—Mod(H}()§p). The same
relation holds for deformation functors.

Proof. By Remark 7.5 the restriction of Conf;ray to the category of solvable objects coincides with

Conf;‘K(l’l). A solvable object over H}( is trivialized by Agas(1,1) if and only if it is trivialized by
Ak (1,1). Indeed both these conditions are verified if and only if its Taylor solution at 1 converges

on D7(1,1). Hence Conf;lK(l’l) = Conf;‘lmlg(l’l) on solvable objects. Now, by Theorem 8.22, special
objects are trivialized by C[log(T")] hence by Agae(1,1) (cf. Lemma 8.24). O

8.5 The confluence of André-Di Vizio
In this last section we prove that the restriction of Conf:fay to Uq-Mod(RK)(¢) is isomorphic to the
functor ‘Conf’ defined in [ADV04, §15.1]. In all this last section ¢ € D™ (1,1) — ppeo

We recall that an antecedent of a o4,-module M over Ry is a og-module M; such that ¢*(M;)
is isomorphic to M as o4,-module. The antecedent is unique up to isomorphisms, because this
fact is true for differential equations (cf. Remark 8.4). In order to preserve the notation of [ADV04],
we fix an s > 1, and we call M; the sth antecedent of M, i.e. ® : (¢*)%(M;) — M.

The following definition was given in [ADV04] under the assumption |¢ — 1| < [p|"/®~Y. The
same definition holds for ¢ € D7(1,1) — p,,

DEFINITION 8.27 [ADV04, Definition 12.11]. Let s € Nsg. A confluent weak frobenius structure

(CWEFS) on a ogmodule My := (Mo,a}]\/[‘)) € 04,Mod(Rk) is a sequence {a;\g;"m bmso of P -
difference operators on My, together with a family of isomorphisms
P 2 ((67)°(Mo), (67)°(0_ ity )) = (Mo, oy ), (8.5.1)

of ¢P""-difference modules (identifying (Mj, a;\g;"m) to the sth antecedent of (Mg, quwo)), such that:

(i) the operators Alq\g?m = (Jg/i;”m —1dMo) /(¢?"™ — 1) converge to a derivation AM= on Mpy;

(ii) if Moo := (Mg, AM=) is this differential module, then the sequence of isomorphisms (8.5.1)
converges to a Frobenius isomorphism @, : ¢*(My) = Mo.

We denote by
04-Mod (R ¢ )cont(®) (8.5.2)
the category whose objects are families of operators (M, {qu\ﬁ?‘m }m>0) on My admitting the existence

of a family {®,, },,>0 making it on a confluent weak Frobenius structure on (M, alqvlo). A morphism
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a (MO,{JMﬁ}mx)) — (No,{agp’l‘n}m>0) is an Rg-linear morphism « : My — Ny verifying

simultaneously « o Jg/lm = Ug?m o a, for all m > 0.

8.5.1 Construction of CWFSs. A g-difference module (Mp, 02/10) admits infinitely many conflu-
ent weak Frobenius structures (CWFS), even if (M, MO) admits a (strong) Frobenius structure.
Indeed if a CWFS (M, {UMTm Fm=0, {@m}m>o) on (My,o}'0) is given, we now give an algorithm to
produce infinitely many CWFSs on (Mo, 0). Let {tby, : Mg = Mo }m>0 be a sequence of R k-linear
automorphisms of Mg such that lim,, v, = IdMo. Define

M/, X _
T p¥n 1= Ym0 0 M oty @ i= 1y 0 By, 0 [0 (Ymgr)] (8.5.3)
One easily checks that (Mo, {aqpénm b { @), }m) is again a CWFS on (Mg, o). Notice that this
new CWEFS is not always isomorphic to the first one (even if ¢y = IdMO) Indeed, by definition,
an isomorphism is a single arrow « : Mg — My satisfying simultaneously « o Jg/lm = U;V[sm o,

for all m > 0. Nevertheless, since lim,, ¢, = IdM°, the limit differential equation is the same
for all CWFSs defined in this way (cf. Remark 8.29). We observe Inoreover that 1, defines an

isomorphism of ¢?""-difference modules between (M, alq\g;”m) and (MO, U ); this agrees with the
uniqueness of the antecedent by Frobenius. If V,,, is the solution of (Mo, aqpsm) in GL,(Rx/[log(T))),
and if By, (T") € GL,(Rk) is the matrix of 1), then the solution of (M, aé\gi"m) is given by By, (T) Y.

Remark 8.28. Assume that My admits a (strong) Frobenius structure. The constancy of the solution
does not follow from the preview definition. Indeed a solution of (Mj, MO) with values in C is a

morphlsm a @ Mg — C satisfying « o O'MO = ag o (cf §3). The fact that « is a solution of

(Mg, oM 0,°) does not imply that a commutes also with O‘q . Indeed the data (M, {J T tm>0) 1S

not necessarily a discrete o-module over S = {¢?"" },,,>0, because the map S — Aut®™ (MO) sending
q into qu\ﬁ;”m is not supposed to have any coherency (cf. Remark 2.5(3)). To obtain the constancy

of the solutions we need to rigidify these constructions by introducing the notion of C-constant
o-module (cf. Remarks 0.2 and 0.1, and Example 2.6).

8.5.2 We have an evident fully faithful functor
xfﬁ” : Jq—MOd(RK)(¢) — Jq—Mod(RK)Conf(¢) (8.5.4)
defined by
X5 (Mo, 7) 1= (Mo, {(0)"" Jzo0), (8.5.5)

where s is sufficiently large to have an isomorphism @ : (¢*)*(Mj, JéVIO) = (Mp, J}IVIO), and &, := O,
for all m > 0. On the other hand we have another functor (cf. [ADV04, §12.3])

Lim®) : 6,-Mod(R g )@ — §-Mod (R )@ (8.5.6)
sending (M, {qu\g;”m b0, {®um }m>0) into its limit differential equation (Mg, AM=). We have actually

Lim'®) o x\¥) = Conf ™. (8.5.7)

Indeed if (Mo, ) has a (strong) Frobenius structure, then (Mj, {( 0P 50) is a (solvable)
Taylor adm1551ble o-module over S := {¢”"" },;n>0 (cf. Definition 7.4). Hence by §7.2.2, the differ-
ential equation ConfTay(Mo, MO) is given by the limit AMe = lim,, . Aq m, of Definition 8.27.

Moreover, since the operator J;\/I;”m is determined by the knowledge of the solutions of (Mj, aqpénm) in
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GLn(@[log(T)]), then X((;ﬁ) (Mo, U}]\/IO) is the uniqgue CWFS on (M, J}IVIO) such that the fundamental

matrix solution of (Mp, ') in GLyn(Rx[log(T)]) (or equivalently its Taylor solution in Ag(1,1),
M
)

cf. Lemma 8.24) is simultaneously a solution of every (M, T oo )

Remark 8.29. It is not clear whether the limit differential equation (Mg, AM>) depends on the par-
ticular CWFS on (M, 02/10) or, analogously, if there exists two non-isomorphic g-difference modules
endowed with CWFS giving the same limit differential equation. Indeed both these phenomena arise
in the category o,-Mod(R k)" defined below (cf. Definition 8.31).

LeEMMA 8.30. If K is algebraically closed, then the functor X((Iqj) is isomorphic to the functor Df,znf(‘z’) o

8.5.7
Vg(f ) of [ADV04, Corollary 14.8]. Hence the functor Confgay(( 2:1) Lz’mgﬁ) o Xfﬁ”) is isomorphic to

the confluence functor Conf := Limgﬁ) o Df,znf(¢) o g(f) as it was defined in [ADV04, § 15.1].

Proof. As explained in the introduction, Vg(f )(M, a}]vl) (respectively Vd((b)(M, 6M)) is the (dual of the)
space of solutions of (M, Ué\/l) (respectively (M, d)) in @[log(T )]. By definition D((f) o Vcl(¢) =~ 1d,
and D[(,f) o V[,(f) =~ Id. Then D¢(1¢) o U(j)) = Conf?[bg(n] is the functor sending (M, Ué\/l) into
the differential equation having the same solutions in Rxl[log(T")]. By definition (cf. [ADV04,

Proposition 12.17]) one has Df;‘;“f(‘i’) o X((](b) o D((,f). This proves that the functor Conf of [ADV04] is

equal to Conf;zK llog(T)], By Corollary 8.26 we conclude. U

8.5.3 Lemma 8.30 clarifies the nature of the functor Conf of [ADV04] (cf. Corollary 8.26).
Indeed Conf is equal to Conf:fay, and sends a ¢-difference equation into the differential equation

having the same Taylor solutions (or equivalently having the same ‘étale’ solutions in k\;[log(T)], cf.
Lemma 8.24 and Corollary 8.26). This functor actually does not depend on the existence of a Frobe-
nius structure and exists in the more general context of admissible modules. This generalizes the
constructions of [ADV04] to all ¢ € D(1,1) — pp=, removing also the assumption K = K&,
Notice that the equivalence provided by the propagation theorem requires only the definition
and the formal properties of the Taylor solution Y (z, y). For this reason the equivalences Conquay and

Dequa},' are not a consequence of the previously developed theory. Conversely our confluence implies
the main results of [ADV04] and also of [DV04].

8.5.4 A conjecture of [ADV0/]]. Section 8.5.1 proves that the fully faithful functor ngﬁ) is not
an equivalence. This answers a question asked in [ADV04, Corollary 14.8, and after|. Nevertheless
observe that the existence of a CWFS on (Mo,aév[o) is equivalent to the existence of a strong
Frobenius structure on it. This was first proved for rank one equations (cf. [ADV04, Proposition 7.3];
the case with rational coefficient follows actually from §7.5; indeed every rank one equation with
rational exponent has a (strong) Frobenius structure). The general case is proved as follows (cf.

Corollary 8.33).
DEFINITION 8.31. We define

o-Mod (R )™ (8.5.8)

as the category whose objects are R-modules M together with a family of o,-semi-linear auto-
morphisms {aé\gsm : M 5 M},>o (without any condition of compatibility) such that the limit

UMSm - Id
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converges to a connection 5} on M. Morphisms between (M, {qu\gsm }m>0) and (N, {O‘}I\Ipsm tm>0) are

R i-linear morphisms « : M — N satisfying simultaneously « o O‘[ll\gsm = Ué\Lsm o a, for all m > 0.
Remark 8.32. We have a functor
Limeg : 04-Mod(Rg )™ — §;-Mod(Rk) (8.5.10)

sending (M, {alq\ﬁsm }m>0) into its limit differential equation. Indeed if o : M — N satisfies simulta-

neously a o Jl\gsm = Ul\i,sm oa, for all m > 0, then, by passing to the limit, one has « o 511\4 = 511\1 oaq.

We have then the following commutative diagram of categories:

Limeso

- Mod (R )l — > o) -Mod(R i) —2> §1-Mod(R )

y © U © U (8.5.11)
o4-Mod(R )@ & 04-Mod(R ¢ ) (@) pr 61-Mod (R )@

where 7 > |¢ — 1|, and where x, sends (M, Ué\/l) into (M, {(Jé\d)psm}m%). By §7.2.2, as above
Limes 0 xq = Confl™ : g,-Mod(Ri )l = §;-Mod(R)I"! € §;-Mod(R). (8.5.12)

COROLLARY 8.33. Let ¢ € D™(1,1) — ppeo. Let (M,quv{) € 0,-Mod(R)l', with r > |g — 1|. Then
(M, 02" admits a CWFS if and only if it admits a (strong) Frobenius structure.

Proof. Assume that Lime,oxq(M, J}]\/I) lies in 6;-Mod (R )(?). By (8.1.12), DeflTZyoLimooqu(M, Ué\/l)
lies in aq—Mod(RK)(¢). Now since DeflTZy 0 Limeo 0 Xq = DeflTZy o Conquay = Id, then DeflTZy o Limeg 0
Xq(M, a}]vl) is isomorphic to (M, 02/[), and hence has (strong) Frobenius structure. O

8.6 The theory of slopes

In a sequence of papers, Christol and Mebkhout developed a theory of slopes for p-adic differential
equations over the Robba ring. We summarize the main properties in the following theorem.

THEOREM 8.34 (cf. [CMO02]). Let M be a solvable differential module over Ry . There exists a unique
decomposition of M, called break decomposition

M= P M), (8.6.1)
z€R>(

satisfying the following properties. Let t, be a generic point for the norm |- |, (cf. (6.1.1)). Then
there exists € > 0 such that:

(i) for all p € |1 — &, 1], M(x) is the biggest submodule of M trivialized by Ak (t,, p*™);
(ii) for all p € ]1 —¢,1[, and for all y < x, M(z) has no solutions in Ak (t,, pY*).
The number Irr(M) := -z -rankg, (M(2)) is called the p-adic irregularity of M, and it lies in N.

The fact that Irr(M) is integer is known as the Hasse—Arf property. This theorem has an analo-
gous in the theory of representations of the Galois group of a local field.

PROPOSITION 8.35 (cf. [Kat88]). Let Z, P be the inertia and the wild inertia subgroups of G :=
Gal(k((t)*P /k((t))). Denote by {Z(*)},>¢ the ‘upper numbering filtration’ of Z. Let V be a Z[1/p]-
representation of G, such that P acts through a finite discrete quotient. Then V admits a break de-
composition V. = P, o V(r) of G-submodules V(z) such that V(0) = VP and for
all x > 0:
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(i) (V@)™ =0
(ii) for all y > x, (V(a:))z(y) = V(x).
The number Swan(V) := > - rankg V() is called the Swan conductor of V, and it lies in N.

For a very inspiring overview about this analogy we refer to [And04].

Different authors (cf. [Tsu98b, Mat02, Cre00]) proved that the equivalence functor introduced by
Fontaine (cf. [Fon90, Tsu98a]), associating to a finite representation of G, a (¢, V)-module over E}
(and hence a differential module over R g ), preserves the break decompositions. The Swan conductor
of a representation equals the irregularity of the corresponding differential equation.

In [And02] André stated a family of axiomatic conditions in a general Tannakian category in
order to have a theory of slopes. The previous two cases respect the formalism of [And02].

In a second paper he conjectured (cf. [And04, Conjecture 4.2]) that a similar theory of slopes
should exist also for aq—Mod(RK)(¢) and asked if this ‘new’ theory of slopes is compatible with that
of Christol and Mebkhout on 6;-Mod(Rx)(®) (via the confluence), and hence with the ramification
theory on Rep i, (Zyais () X Ga) (via the Fontaine’s functor T of the introduction). He suggested to
proceed in analogy with the theory of Christol and Mebkhout (cf. [CM02]), reproducing their proofs
in the context of g-difference equations in order to obtain a statement analogous to Theorem 8.34.
Finally he asked whether this ‘new’ theory of slopes on o,-Mod(R raig) (@) is compatible or not with
the theory of slopes of Christol and Mebkhout in §;-Mod(R jcalz)?) via the equivalence Conf that
he obtained in [ADV04] for |q — 1] < [p|"/®~1).

Afterwards, at the end of 2005, he actually obtained such a theory of slopes for o,-Mod (R Kalg)(¢),
with |¢ — 1] < |p|"/?®=Y, and established the two corollaries below in this case. These verifications
will be included in a forthcoming paper of André. This part was given by André at the 24th Nordic
and 1st Franco-Nordic Congress of Mathematicians (6 to 9 January 2006, Reykjavik, Iceland).

The next corollaries prove the above conjecture in the more general context of o-modules. We
prove it for all |¢ — 1] < 1, without any assumptions about the Frobenius structure, and without
assuming K = K22 The equivalence established by Corollary 7.14 gives in fact the following
analog of Theorem 8.34 for o-modules and (o, §)-modules. Thanks to Proposition 7.13, without loss
of generality, we can reduce this statement to the case S = {¢}.

COROLLARY 8.36. Let |¢ — 1| < 1, ¢ € K (respectively q & py). Let M € (0,8,)-Mod(Rz)!!
(respectively M € o,-Mod (R )!!). Then M admits a break decomposition M = D.>o M(z), where
M(x) is characterized by the following properties (analogs to (i) and (ii) of Theorem 8.34). There
exists € > 0 such that:
(i) for all p € ]1 —e,1[, M(x) is the biggest submodule of M trivialized by A (t,, p*);

(ii) for all p € ]1 —¢,1[, and for all y < x, M(z) has no solutions in Ak (t,, p*™).

This decomposition is compatible with the confluence, ie. M(z) = Deffzy(Confgay(M)(m)). In
particular the irregularity Irry, (M) := > -, - rankg, M(x) is a natural number.

Proof. The slopes and the irregularity are defined, by Christol and Mebkhout [CMO02], by means of
the generic radius of the Taylor solutions. The K-linear equivalences Conquay and Def}:zy preserve,
by definition, the generic Taylor solution. It follows immediately that the g-difference equation
inherits then, via the equivalence Confgay, the slopes of the attached differential equation, together
with their formal properties (break decomposition, Hasse-Arf property, . ..). U

COROLLARY 8.37. With the notation of [ADV04] and [And04], if K = K®2 is algebraically closed,
the functor D((;(f) : 0g-Mod(R jarg ) ) — Rep g (Ziaig () X Ga) preserves the slopes (by Corol-
lary 8.36 on the left-hand side, and by the Swan conductor on the right-hand side).
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Proof. One has D((,qs) = Dl(f) oConf;fay. Since Dc(l(z)) and Conf™ preserve the slopes, so does D[(,f). O
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