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p-adic confluence of q-difference equations

Andrea Pulita

Abstract

We develop the theory of p-adic confluence of q-difference equations. The main result is
the fact that, in the p-adic framework, a function is a (Taylor) solution of a differential
equation if and only if it is a solution of a q-difference equation. This fact implies an
equivalence, called confluence, between the category of differential equations and those
of q-difference equations. We develop this theory by introducing a category of sheaves
on the disk D−(1, 1), for which the stalk at 1 is a differential equation, the stalk at q is
a q-difference equation if q is not a root of unity, and the stalk at a root of unity ξ is a
mixed object, formed by a differential equation and an action of σξ.
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Introduction

The main aim of this paper is to provide a theory of confluence for q-difference equations in the
p-adic framework.

A motivation: the rough idea of the confluence
Heuristically we say that a family of q-difference equations {σq(Yq) = A(q, T ) · Yq}q∈D−(1,ε)−{1}
(where σq is the automorphism f(T ) �→ f(qT )) is confluent to the differential equation δ1(Yq) =
G(1, T ) · Yq, with δ1 := T d/dT , if one has

lim
q→1

G(q, T ) = G(1, T )

where G(q, T ) = (A(q, T )− I)/(q−1) is the matrix of the q-derivation ∆q := (σq−1)/(q−1) acting
on M, and moreover if, in some suitable meaning,

lim
q→1

Yq = Y1. (0.1)

Roughly speaking, in this paper we show that in the p-adic framework, if a differential equation
is given, then, for ε sufficiently small, one may choose the family {G(q, T )}q in order to have
Yq = Y1, for all q ∈ D−(1, ε). Conversely if q0 is not a root of unity, and if a single equation
σq0

(Yq0
) = A(q0 , T ) · Yq0

is given, then, under some assumptions on the radius of convergence of
its generic Taylor solution Yq0

, one can find a differential equation and family as above with the
property that Yq = Yq0

= Y1, for all q ∈ D+(1, |q0 − 1|). In this sense, in the p-adic context,
the solutions of q-difference equations are not simply a discretization of the solutions of differential
equations, but they are actually equal. We want now to state these facts more precisely.

The work of André and Di Vizio
In [ADV04] André and Di Vizio initiated the study of the phenomena of confluence in a p-adic
setting. For K a complete discrete valuation field of mixed characteristic, they found an equivalence
between the category of q-difference equations with Frobenius structure over the Robba ring RKalg

(here called σq-Mod(RKalg)(φ)), and the category of differential equations with Frobenius structure
over the Robba ring RKalg (here called δ1-Mod(RKalg)(φ)).
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One of the restrictions of [ADV04] is that the number q is required to satisfy |q− 1| < |p|1/(p−1).
Indeed, in the annulus |q − 1| = |p|1/(p−1) one encounters the pth root of unity and, if ξp = 1, then
the category σξ-Mod(RKalg)(φ) is different in nature from the category of differential equations,
since it is not Kalg-linear (that is, the ring of automorphisms of the unit object is strictly larger
than Kalg).

The equivalence of [ADV04] is obtained as follows. In [And02] one proves that the
Tannakian group of δ1-Mod(RKalg)(φ) is Ikalg((t)) × Ga, where k is the perfect residue field of K,
and Ikalg((t)) is the absolute Galois group of kalg((t)). On the other hand in [ADV04] one shows that
σq-Mod(RKalg)(φ) has the same Tannakian group Ikalg((t))×Ga. By composition with the respective
Tannakian equivalences (Tq and T1 below), one then obtains the so-called confluence functor Confq
(in the notation of [ADV04] one has T1 = V(φ)

d and Tq = V(φ)
σq ):

σq-Mod(RKalg)(φ)
Confq

∼=
��

Tq

∼=
�����������������

δ1-Mod(RKalg)(φ)

T1

∼=
�����������������

Rep
Kalg(Ikalg((t)) ×Ga)

(0.2)

The strategy of [ADV04] consists in showing that, as in the case of differential equations
(cf. [And02]), every object M in σq-Mod(RKalg)(φ) is quasi-unipotent, i.e. becomes unipotent after
scalar extension to a special extension of RK (cf. § 8.3). Once a basis of M is fixed, this means that
M admits a complete basis of solutions Ỹ ∈ GLn(R̃K [log(T )]), where R̃K is the union of all special
extensions of RK (it is a sort of lifting of k((t))alg). We will call étale solutions the solutions of M in
R̃K [log(T )]. The proof of this relevant result needs a substantial effort, and is actually not less com-
plicated than the classical p-adic local monodromy theorem for differential equations itself (i.e. the
fact that T1 is an equivalence). Thanks to the fact that this important, but also very peculiar, class
of q-difference and differential equations are trivialized by R̃K [log(T )], one can define T1 (respec-
tively Tq) as the functor associating to a differential (respectively q-difference) equation (M, δM1 )
(respectively (M, σM

q )) the Kalg-vector space T1(M, δM1 ) (respectively Tq(M, σM
q )) of its ‘étale’ solu-

tions in R̃K [log(T )].1 The action of Ikalg((t)) × Ga on the space of the ‘étale’ solutions arises from

its action on R̃K [log(T )] by RK-linear automorphisms commuting with δ1 and σq on R̃K [log(T )].
Hence one sees for the first time in [ADV04] the fact that the ‘étale’ solutions of a q-difference

equation with Frobenius structure are also the ‘étale’ solutions of a differential equation. Moreover
the functor Confq is nothing but the functor sending a q-difference equation (with (strong) Frobenius
structure) into the differential equation having the same solutions.

In the present paper we prove that this ‘permanence’ of the solutions holds also for Taylor
solutions (see below). We then develop a p-adic theory of confluence using, as a unique tool, this
fact, here called propagation principle. We prove indeed that this principle is sufficient to define the
confluence and deformation equivalences, over almost all p-adic ring of functions, with very basic
assumptions on the equations. This theory requires only the definition and the formal properties
of the generic Taylor solution Y (x, y). For this reason it is not a consequence of the previously
developed theory (as presented in [ADV04] and [DV04]). Conversely we deduce, as a special case,
the confluence of [ADV04] by comparing Taylor solutions and ‘étale’ solutions (cf. the end of the
introduction).

1Following the definition in § 3.2, V
(φ)
d (M) := (M ⊗RK R̃K [log(T )])δ1=0 is actually the dual of the space of

solutions Homδ1
RK

(M, R̃K [log(T )]) (respectively same remark for V
(φ)
σq (M) := (M ⊗RK R̃K [log(T )])σq=Id and

Hom
σq

RK
(M, R̃K [log(T )])).
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The generic q-Taylor solution
Let now K be an arbitrary ultrametric complete valued field of mixed characteristic (0, p). Let
X = D+(c0, R0)−

⋃
i=1,...,n D−(ci, Ri) be an affinoid, where D−(c,R) denotes the open disk centered

at c of radius R. Let HK(X) be the ring of analytic elements on X. Consider a q-difference equation

σq(Y ) = A(q, T ) · Y, A(q, T ) ∈ GLn(HK(X)) (0.3)

on X. Denote by (M, σM
q ) the q-difference module over X defined by this equation.

A major difference between the complex and the p-adic settings is that in the latter there are
disks (not centered at 0) which are q-invariant. A disk D−(c,R) ⊂ X(K) is q-invariant (i.e. the map
x �→ qx is a bijection of D−(c,R)) if and only if |q−1||c| < R, and |q| = 1 (cf. Lemma 5.1). Starting
from this consideration, in [DV04] Di Vizio defines, for q-difference equations, the q-analog of the
generic Taylor solution of a differential equation (cf. Definition 5.11):

Y (x, y) :=
∑
n�0

Hn(q, T )
(x− y)q,n

[n]!q
, (0.4)

where Hn(q, T ) is obtained by iterating the equation (0.3): dn
q (Y ) = Hn(q, T ) · Y , where

dq :=
σq − 1

(q − 1)T
.

For a large class of equations it happens that, for all c ∈ X(K), the series Y (x, c) represents a
function which converges on a disk D−(c,R), with |q − 1||c| < R. More precisely Y (x, y) converges
in a neighborhood of the diagonal of the type UR := {(x, y) ∈ X ×X | |x− y| < R}, with

|q − 1| · sX < R, (0.5)

where sX := supc∈X |c| as shown in the following picture (one easily sees that sX = max(|c0|, R0)).

�

�

X

X

�
�
�
�
�

•
•

UR

diagonal

����

���

We call such equations Taylor admissible. The matrix function Y (x, y) : UR → GLn(K) is
invertible and satisfies the cocycle conditions: Y (x, y)·Y (y, z) = Y (x, z) and Y (x, y)−1 = Y (y, x), for
all (x, y), (y, z), (x, z) ∈ UR. Moreover Y (qx , y) = A(q, x)Y (x, y) and, for all c ∈ X(K), the matrix
Y (x, c) ∈ GLn(AK(c,R)) is a fundamental basis of solutions of the equation (0.3). In particular the
q-difference algebra AK(c,R) of analytic functions over the disk D−(c,R) trivializes (M, σM

q ).
The following fact is the main point of this paper (cf. Theorem 7.7). If now q′ �= q belongs to

the disk D−(q,R/sX) = D−(1, R/sX ), then the matrix

A(q′, x) := Y (q′x, y) · Y (x, y)−1 = Y (q′x, y) · Y (y, x) = Y (q′x, x) (0.6)

is an analytic function of x on all of X. Indeed (q′x, x) ∈ UR, for all x ∈ X, and hence the matrix
A(q′, x) maps x �→ (q′x, x) �→ Y (q′x, x) = A(q′, x). One shows easily that A(q′, x) ∈ GLn(HK(X)),
for all q′ ∈ D−(1, R/sX ), since Y (x, y) is invertible. This fact implies that Y (x, y) is simultaneously
the Taylor solution of every equation of the family {σq′(Y ) = A(q′, T )Y }q′ , for all q′ ∈ D−(1, R/sX ).
Equivalently, this means that the q-difference module (M, σM

q ) is canonically endowed with an action
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of σq′ , for all q′ ∈ D−(1, R/sX ). This remarkable fact will be called the propagation principle. As
one can see, this happens actually under the following weak assumptions on (M, σM

q ):

(i) q is not a root of unity; (0.7)
(ii) Y (x, y) converges on some UR with |q − 1| · sX < R � rX ; (0.8)

where rX = min(R0, R1, . . . , Rn) is a number depending on the geometry of X. The category of
q-difference modules (M, σM

q ) satisfying these two properties for a suitable unspecified R satisfying
|q − 1|sX < r � R � rX will be denoted by σq-Mod(HK(X))[r].

The assumption |q − 1|sX < R assures that the image of the map x �→ (qx , x) : X �→ X ×X is
contained in UR. The bound R � rX assures that the function Y (x, y) does not converge outside
X. Indeed the properties of Y (x, y) outside X are not invariant under HK(X)-base changes in M.
Finally condition (ii) also assures that the map x �→ qx is a bijection of X globally fixing each
individual hole of X (cf. § 5.2). Since rX � sX , we are assuming implicitly that |q − 1| < 1. But no
restrictive assumptions on X or on K are made.

Obviously this process works just as well if the initial function Y (x, y) is the generic Taylor
solution of a differential equation. The category of differential equations whose Taylor solution
converges on UR, for an unspecified R satisfying r � R � rX , will be denoted by δ1-Mod(HK(X))[r].

Discrete and analytic σ-modules
Let Q(X) be the set of q ∈ K for which x �→ qx is a bijection of X. Then Q(X) is a topological
subgroup of K×, and the disk D−(1, R/sX ), with R � rX , is an open subgroup of Q(X). The group
Q(X) acts continuously on HK(X) via q �→ σq. The data of M, together with the simultaneous
σq-semi-linear action of σM

q , for all q ∈ D−(1, R/sX ), is then a semi-linear representation of the
subgroup D−(1, R/sX ) ⊆ Q(X). This representation has the following three remarkable properties.

(a) The map (q′, x) �→ A(q′, x) is analytic in (q′, x). In particular, the representation is continuous.

(b) The group D−(1, R/sX ) depends on R, and hence on M.

(c) The matrix Y (x, y) is simultaneously the generic Taylor solution of the q-difference module
(M, σM

q ), for all q ∈ D−(1, R/sX ).

Inspired by the first two properties we define a new class of objects called discrete or analytic
σ-modules as follows. Consider a subset S ⊂ Q(X). A discrete σ-module on S is nothing but an
HK(X) semi-linear representation of the group 〈S〉 generated by S. If S = U is an open subset of
Q(X), we define analytic σ-modules on U to be a discrete σ-modules over U together with a certain
condition of analyticity of σM

q with respect to q. These categories are denoted by σ-Mod(HK(X))disc
S

and σ-Mod(HK(X))anU respectively. In this paper the words discrete or analytic will refer to the
discreteness or analyticity of σM

q with respect to q. We heuristically imagine the analytic σ-modules
as semi-linear representations of the (co-variant) sheaf of groups U �→ 〈U〉.
Remark 0.1. It is important to notice that morphisms between analytic σ-modules over U are
morphisms of representations. More precisely, once a basis of M (respectively N) is fixed, we have
a family of operators {σq(Y ) = A(q, T )Y }q∈〈U〉 (respectively {σq(Y ) = Ã(q, T )Y }q∈〈U〉) such that
A(q, T ) (respectively Ã(q, T )) depends analytically on (q, T ).2 A morphism α : M → N then must
simultaneously commute with σM

q and σN
q , for all q ∈ 〈U〉. In other words the matrix B of α

must simultaneously verify A(q, T )B = σq(B)Ã(q, T ), for all q ∈ 〈U〉. Actually there are non-
isomorphic analytic σ-modules over U defining isomorphic q-difference equations at every q ∈ 〈U〉
2The data of an analytic σ-module is actually nothing but ‘a family of q-difference equations depending analytically
on q’.
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(see Example 2.6). This is analogous to having non-isomorphic sheaves having isomorphic stalks at
every point.

Taylor admissible σ-modules

We now want to analyze property (c): the constancy of the solutions. If S �⊆ µp∞ (where µp∞ :=
{ξ ∈ Kalg | ξpn

= 1,∃n � 1}), we call Taylor admissible σ-modules over S those σ-modules for
which the q-Taylor solution Y (x, y) is the same for all q ∈ 〈S〉, and satisfy the condition (ii), for all
q ∈ S (cf. (0.8)). If S = U is open, by the propagation principle, Taylor admissible σ-modules are
automatically analytic on U (cf. Remark 7.8). This category is denoted by σ-Mod(HK(X))adm

U ⊆
σ-Mod(HK(X))anU . We heuristically imagine Taylor admissible σ-modules as semi-linear represen-
tations of the (co-variant) sheaf of groups U �→ 〈U〉, which are locally constant.

Taylor admissibility is a particular case of a more classical notion. If C/HK(X) is an algebra
admitting an action of the group 〈S〉 extending that on HK(X), then a semi-linear representation
of 〈S〉 over HK(X) is called C-admissible if it is trivialized by C. For a discrete σ-module M over S
to be trivialized by C means exactly that there exists Y ∈ GLn(C) which is a simultaneous solution
of all operators defined by M. If M is trivialized by C we will say that M is C-constant. We observe
that if S = qZ, then C is nothing but a q-difference algebra over HK(X). So the constancy of the
solutions does not depend on the analyticity of M; rather it is a discrete fact.

In § 3 we define discrete σ-algebras, and we develop a basic differential/difference Galois theory
for discrete σ-algebras. The analog of the Picard–Vessiot theorem providing the existence of a
discrete σ-algebra trivializing a given discrete σ-module is missing. We are thus obliged to work
with the category of discrete σ-modules trivialized by a fixed discrete σ-algebra C. In § 4 we develop
formally the theory of C-confluence and C-deformation, which will also depend on the chosen discrete
σ-algebra C.

Remark 0.2. Notice that solutions will be defined formally as morphisms M → C commuting
simultaneously with the actions of σq for all q ∈ S (cf. § 3.2). This fact, together with Remark 0.1,
explains why the notion of C-constant σ-module implies the constancy of the solutions (with respect
to q).

The confluence functor

Let (M, σM) be an analytic σ-module over U . By analyticity we also have an action of the Lie algebra
of 〈U〉 (here systematically identified with K · δ1). In other words the following limit converges to
a connection δM1 : M→ M (cf. § 2.4):

δM1 := lim
q∈〈U〉,q→1

σM
q − 1
q − 1

∈ Endcont
K (M), (0.9)

where q runs over the (open) group 〈U〉 generated by U . In terms of matrices, the matrix G(1, T )
of δM1 is

G(1, T ) = q
∂

∂q
(A(q, T ))|q=1

(cf. Equation (2.4.5)). By continuity, morphisms of analytic σ-modules also commute with the
connection (cf. Remark 2.5(1)). Hence we obtain a functor called ConfU : σ-Mod(HK(X))anU −→
δ1-Mod(HK(X)), sending (M, σM) into (M, δM1 ) (cf. Remark 2.13). This functor is not an equivalence,
but it does induce an equivalence:

ConfTay
U : σ-Mod(HK(X))[r]U

∼−→ δ1-Mod(HK(X))[r], (0.10)
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where ConfTay
U simply denotes the restriction of ConfU to the category

σ-Mod(HK(X))[r]U ⊆ σ-Mod(HK(X))adm
U

of Taylor admissible σ-modules verifying condition (ii) with r � R � rX (cf. (0.8)), where r > 0
is large enough to have U ⊂ D−(1, r/sX ) (cf. Corollary 7.9). The propagation principle gives a
quasi-inverse functor (cf. Remark 2.13 for a formal presentation).

On the other hand let q ∈ U−µp∞ . An analytic σ-module over U defines a q-difference module by
forgetting the action of σM

q′ , for all q′ �= q. Again the propagation principle provides an equivalence

ResU
q : σ-Mod(HK(X))[r]U

∼−→ σq-Mod(HK(X))[r], (0.11)

where r � rX is sufficiently large to have U ⊆ D−(1, r/sX ) (cf. Corollary 7.9). We call the composite
equivalence ConfTay

q . Thus we have

ConfTay
q := ConfTay

U ◦ (ResU
q )−1 : σq-Mod(HK(X))[r] ∼−→ δ1-Mod(HK(X))[r]. (0.12)

The equivalence ConfTay
q sends a q-difference equation satisfying conditions (i) and (ii) (cf. (0.7)

and (0.8)), into the differential equation having the same generic Taylor solution.

Roots of unity and q-tangent operators
In this last equivalence the number q must not belong to µp∞ . If q′ = ξ, with ξpn

= 1, the
category of σξ-difference equations is not K-linear and cannot be equivalent to the category of
differential equations. Nevertheless, if, for q /∈ µp∞ , the radius R of the q-Taylor solution is large,
the propagation principle gives an operator σM

ξ : M → M acting on M. The idea is to replace the
category σξ-Mod(HK(X)) with another category. The expected object ‘at ξ’ should also be endowed
with an action of the Lie algebra, as we have just done in the case ξ = 1. For all q ∈ 〈U〉 the action
of the Lie algebra of 〈U〉 is given by the limit

δMq := lim
q′→q

σM
q′ − σM

q

q′ − q ∈ Endcont
K (M),

for q, q′ ∈ 〈U〉, as shown in the following diagram.

Endcont
K (M)

•IM�
���δ
M
1

•σMq�
��
δMq

•σMq′
			


δMq′

Clearly δMq = σM
q ◦ δM1 , so to give δMq is equivalent to give δM1 . In a root of unity the ‘limit object’

is a mixed data (M, σM
ξ , δ

M
1 ), i.e. a connection δM1 on M together with an action of σM

ξ on M. We
call these new objects (σξ, δξ)-modules. In the sequel every terminology is given simultaneously for
σ-modules and (σ, δ)-modules. The additional data of δMξ makes the category of (σξ, δξ)-modules
K-linear. Moreover δMξ preserve the information in a neighborhood of ξ indeed we find equivalences

ConfTay
ξ := ConfTay

U ◦ (ResU
ξ )−1 : (σξ, δξ)-Mod(HK(X))[r] ∼−→ δ1-Mod(HK(X))[r], (0.13)

DefTay
ξ,q := ResU

q ◦ (ResU
ξ )−1 : (σξ, δξ)-Mod(HK(X))[r] ∼−→ (σq, δq)-Mod(HK(X))[r]. (0.14)

If q is not a root of unity, then the data of δM1 is superfluous; indeed if the module is Taylor admissible
the propagation principle allows one to reconstruct δM1 from σM

q .
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We notice that in the classical setting over the complex numbers C, understanding of the case
q = ξ ∈ µp∞ remains an open problem.

Quasi-unipotence and comparison with André–Di Vizio’s confluence
Up to a correct definition for the notion of Taylor admissibility, the previous theory can be general-
ized to more general rings of functions. From § 7.4 on we obtain the theory over RK . We prove that
every q-difference equation with Frobenius structure over RK is quasi-unipotent (i.e. is trivialized
by R̃K [log(T )]), for all q ∈ D−(1, 1) − µp∞ , generalizing the main result of [ADV04]. We actually
prove this theorem in the more general context of σ-modules, and (σ, δ)-modules. We deduce it
by the Quasi-unipotence of p-adic differential equations with Frobenius structure over RK , and by
deformation. The idea is the following. As already mentioned, we are obliged to work with σ-modules
trivialized by a fixed discrete σ-algebra C, and the C-confluence and C-deformation functors
depend on C. In the ‘quasi-unipotent’ context this algebra is C := R̃K [log(T )], while in the context
of the propagation theorem C := AK(c,R), for an arbitrary point c ∈ X, and suitable R > 0. To
compare Taylor solutions to the ‘étale solutions’ in GLn(R̃K [log(T )]), the idea is to find a discrete
σ-algebra of functions over a disk containing R̃K [log(T )]. Actually such an algebra does not exist.
Thus we use a theorem of Matsuda [Mat02] (cf. Theorem 8.13) providing an equivalence between
δ1-Mod(RK)(φ) with the sub-category of δ1-Mod(H†

K)(φ) formed by special objects. Special objects
are trivialized by a special extension of H†

K (cf. § 8.3). The ring AK(1, 1) is a discrete σ-algebra

over H†
K . We then prove that the algebra C̃ét

K [log(T )] generated over H†
K by all the ‘étale solu-

tions’ of special objects admits an embedding C̃ét
K [log(T )] ⊂ AKalg(1, 1) commuting with δ1, with

the Frobenius, and with σM
q , for all q ∈ D−(1, 1) − µp∞ (cf. Lemma 8.24). This will prove that the

C-confluence and the C-deformation functors defined by using C = AK(1, 1) or C = R̃K [log(T )]
are actually the same (cf. Corollary 8.26). Moreover it proves also that the confluence of André–Di
Vizio coincides with our ConfTay

q (cf. § 8.5), and thus it is independent on the Frobenius.

Structure of the paper
Section 1 is devoted to notation. In § 2, we give definitions and basic facts on discrete/analytic
σ-modules and (σ, δ)-modules. In § 3 we define discrete σ-algebras and (σ, δ)-algebras, and we give
the abstract definition of solutions. In § 4 we give the formal notion of confluence. In § 5 we intro-
duce generic Taylor solutions and in § 6 the generic radius of convergence. In § 7 we define Taylor
admissible objects and obtain the main propagation theorem (Theorem 7.7). In the last (§ 8) we
apply the previous theory to the Robba ring and to the p-adic local monodromy theorem.

Index of categories

σ-Mod(B)disc
S 878

σq-Mod(B) 878
(σ, δ)-Mod(B)disc

S 879
(σq, δq)-Mod(B) 879
δ1-Mod(B) 879
σ-Mod(B)anU 880
σ-Mod(RK)anU 880
σ-Mod(RK)disc

S 880
σ-Mod(H†

K)anU 880
σ-Mod(H†

K)disc
S 880

(σ, δ)-Mod(B)anU 881
σ-Mod(B,C)const

S 884

(σ, δ)-Mod(B,C)const
S 884

σ-Mod(B,C)an,const
U 884

(σ, δ)-Mod(B,C)an,const
U 884

σq-Mod(B,C)S 885
σq-Mod(B,C)anU 885
σ-Mod(RK)[r]S 898
σ-Mod(H†

K)[r]S 898
(σ, δ)-Mod(RK)[r]S 898
(σ, δ)-Mod(H†

K)[r]S 898
σ-Mod(HK(X))[r]S 899
σ-Mod(HK(X))adm

S 899

(σ, δ)-Mod(HK(X))[r]S 899
(σ, δ)-Mod(HK(X))adm

S 899
σ-Mod(RK)adm

S 899
σ-Mod(H†

K)adm
S 899

σ-Mod(RK)(φ)
S 906

σ-Mod(H†
K)(φ)

S 906
δ1-Mod(H†

K)Sp 909
σ-Mod(H†

K)Sp
S 910

(σ, δ)-Mod(H†
K)Sp

S 910
σq-Mod(RK)conf(φ) 913
σq-Mod(RK)conf 915
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1. Notation

We refer to [DM82] for the definitions concerning Tannakian categories. In the sequel when we say
that a given category C is (or is not) K-linear, we mean that the ring of endomorphisms of the unit
object is (or is not) exactly equal to K. We set R� := {r ∈ R | r � 0}, and δ1 := T d/dT .

1.1 Rings of functions

Let R > 0 and c ∈ K. The ring of analytic functions on the disk D−(c,R) is

AK(c,R) :=
{∑

n�0

an(T − c)n
∣∣∣∣ an ∈ K, lim inf

n
|an|−1/n � R

}
. (1.1.1)

Its topology is given by the family of norms |∑ ai(T − c)i|(c,ρ) := sup |ai|ρi, for all ρ < R. Let
∅ �= I ⊆ R�0 be some interval. We denote the annulus relative to I by CK(I) := {x ∈ K | |x| ∈ I}.
By C(I), without the index K, we mean the annulus itself and not its K-valued points. The ring of
analytic functions on C(I) is

AK(I) :=
{∑

i∈Z
aiT

i

∣∣∣∣ ai ∈ K, lim
i→±∞

|ai|ρi = 0, for all ρ ∈ I
}
. (1.1.2)

We set |∑i aiT
i|ρ := supi |ai|ρi < +∞, for all ρ ∈ I. The ring AK(I) is complete for the topology

given by the family of norms {| · |ρ}ρ∈I . Set Iε := ]1− ε, 1[, 0 < ε < 1. The Robba ring is defined as

RK :=
⋃
ε>0

AK(Iε), (1.1.3)

and is complete with respect to the limit Frechet topology.

1.2 Affinoids

Definition 1.1. A K-affinoid is an analytic subset of P1 defined by

X := D+(c0, R0)−
n⋃

i=1

D−(ci, Ri), (1.2.1)

for some 0 < R1, . . . , Rn � R0, c0, . . . , cn ∈ K, c1, . . . , cn ∈ D−
K(c0, R0). We denote by X the K-

affinoid itself, and for all ultrametric valued K-algebras (L, | · |), we denote by X(L) its L-rational
points.

Let Hrat
K (X) be the ring of rational fractions f(T ) in K(T ), without poles in X(Kalg), and let

‖ · ‖X be the norm on Hrat
K (X) given by ‖f(T )‖X := supx∈X(Kalg) |f(x)|. We denote by

HK(X) (1.2.2)

the completion of (Hrat
K (X), ‖ · ‖X). It is known that if ρ1, ρ2 ∈ |Kalg|, and if X = D+(0, ρ2) −

D−(0, ρ1), then HK(X) = AK([ρ1, ρ2]). Let now ε > 0. If X = D+(c0, R0)−
⋃n

i=1 D−(ci, Ri), we set
Xε := D+(c0, R0 + ε)−⋃n

i=1 D−(ci, Ri − ε). We then set

H†
K(X) :=

⋃
ε>0

HK(Xε). (1.2.3)

The ring H†
K(X) is complete with respect to the limit topology. Let X1 := {x | |x| = 1} we set

HK := HK(X1), H†
K := H†

K(X1). (1.2.4)
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1.3 Norms
Every semi-norm | · |B on a ring B will be extended to a semi-norm on Mn×n(B) = Mn(B), by
setting |(bi,j)i,j |B := maxi,j |bi,j|B.

Definition 1.2. Let X be an affinoid. A bounded multiplicative semi-norm on HK(X) is a function
| · |∗ : HK(X) → R�0, such that |0|∗ = 0, |1|∗ = 1, |f − g|∗ � max(|f |∗, |g|∗), |fg|∗ = |f |∗|g|∗, and
| · |∗ � C‖ · ‖X , for some constant C > 0.

1.3.1 Let (L, | · |)/(K, | · |) be an extension of valued fields. Let c ∈ X(L), then | · |c : f �→
|f(c)|L is a bounded multiplicative semi-norm on HK(X). If D+(c,R) ⊆ X, then |f |(c,R) :=
supx∈D+

Lalg (c,R) |f(x)| is a bounded multiplicative semi-norm on HK(X). Moreover if f =
∑

i�0

ai(T − c)i, ai ∈ L, is the Taylor expansion of f at c ∈ X(L), then |f |(c,R) = supi |ai|Ri.

Definition 1.3. Let f(T ) =
∑

i∈Z ai(T − c)i, ai ∈ K, be a formal power series. We set |f |(c,ρ) :=
supi |ai|ρi; this number can be equal to +∞.

Definition 1.4. Let r �→ N(r) : R�0 → R�0 be a function. The log-function attached to N is
defined by Ñ(t) := log(N(exp(t))), that is

Ñ : R ∪ {−∞} exp−−→∼ R�0
N−→ R�0

log−−→∼ R ∪ {−∞}.

We will say that N has a given property logarithmically if Ñ has that property.

Definition 1.5. Let f(T ) =
∑

i�0 ai(T − c)i, ai ∈ K, be a formal power series. The radius of
convergence of f(T ) at c is Ray(f(T ), c) := lim infi�0 |ai|−1/i. If F (T ) = (fh,k(T ))h,k is a matrix,
then we set Ray(F (T ), c) := minh,k Ray(fh,k(T ), c).

Lemma 1.6 [CR94, ch. II]. Let f(T ) ∈ K[[T − c]]. Suppose that |f |(c,ρ0) < ∞, for some ρ0 > 0.
Then one has the following:

(i) for all ρ < ρ0 one has Ray(f(T ), c) � ρ, and |f |(c,ρ) <∞;

(ii) the function ρ �→ |f |(c,ρ) : [0, ρ0] −→ R�0 is log-convex, piecewise log-affine and log-increasing,
as shown in the following picture:

�

�

���
���

�
�
�
�
��

log(ρ0)
log(ρ)

log(|f |(c,ρ))

← log(0)

(iii) one has |f(T )|(c,ρ) = sup|x−c|�ρ,x∈Kalg |f(x)|Kalg = limr→ρ− sup|x−c|=r,x∈Kalg |f(x)|Kalg ;

(iv) all zeros of f(T ) are algebraic moreover f(T ) has a zero ζ ∈ Kalg, with |ζ − c| = ρ < ρ0, if and
only if the previous graph has a break at log(ρ).

1.4 Generic points
Let (Ω, | · |)/(K, | · |) be a complete field such that |Ω| = R�0, and that kΩ/k is not algebraic.

Proposition 1.7 [CR94, 9.1.2]. For every disk D+(c, ρ), c ∈ K, there exists a point tc,ρ ∈ Ω, called
a generic point of D+(c, ρ) such that |tc,ρ − c|Ω = ρ, and that D−

Ω(tc,ρ, ρ) ∩Kalg = ∅.
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1.4.1 A generic point defines a bounded multiplicative semi-norm onHK(X), and hence defines a
Berkovich point (cf. [Ber90]). The reader knowing the language of Berkovich will not find difficulties
in translating the contents of this paper into the language of Berkovich.

For all f(T ) ∈ HK(D+(c, ρ)), one has

|f(tc,ρ)|Ω = |f(T )|(c,ρ) = sup
|x−c|�ρ

x∈Kalg

|f(x)| = lim
r→ρ−

sup
|x−c|=r

x∈Kalg

|f(x)|. (1.4.1)

Hence, although the point tc,ρ is not uniquely determined by the fact that D−
Ω(tc,ρ, ρ) ∩Kalg = ∅,

the norm | · |(c,ρ) (i.e. the Berkovich point | · |(c,ρ)) does not depend on the choice of tc,ρ.

By point (iii) of Lemma 1.6, if ρ ∈ |K| (respectively ρ ∈ |Kalg|; ρ /∈ |Kalg|), then one also has

|f(tc,ρ)| = max
|x|=ρ
x∈K

|f(x)|

respectively

|f(tc,ρ)| = max
|x|=ρ

x∈Kalg

|f(x)|; |f(tc,ρ)| = lim
r→ρ−

max
|x−c|=r∈|Kalg|

x∈Kalg

|f(x)|.

Proposition 1.8 [Ber90]. Let X = D+(c0, R0) −
⋃

i=1,...,n D−(ci, Ri) be an affinoid. Let tci,Ri ∈
X(Ω) be the generic point of D+(ci, Ri). Then, for all f ∈ HK(X), one has

‖f(T )‖X = max(|f(tc0,R0)|Ω, . . . , |f(tcn,Rn)|Ω). (1.4.2)

Lemma 1.9. Let X = D+(c0, R0)−
⋃

i=1,...,n D−(ci, Ri) be an affinoid. Let rX := min(R0, . . . , Rn).
Then ∥∥∥∥ d

dT
f(T )

∥∥∥∥
X

� r−1
X ‖f(T )‖X .

Proof. This follows easily from the Mittag–Leffler decomposition of f(T ) together with the obser-
vations that ‖f(T )‖X = maxi=0,...,n(|f(tci,Ri)|) (cf. (1.4.2)), and |f ′(tci,Ri)| � R−1

i |f(tci,Ri)|, for
all i.

2. Discrete or analytic σ-modules and (σ, δ)-modules

Definition 2.1. Let B be one of the rings of § 1.1. We denote by

Q(B) = {q ∈ K | σq : f(T ) �→ f(qT ) is an automorphism of B}, (2.0.1)
Q1(B) = Q(B) ∩D−(1, 1). (2.0.2)

We will write Q and Q1 when no confusion is possible.

Notice that Q(B) ⊂ (K×, | · |) is a topological group and always contains a disk D−(1, τ0), for
some τ0 > 0. One has Q(AK(I)) = Q(RK) = Q(H†

K) = {q ∈ K | |q| = 1}. One sees easily that
Q(HK(X)) ⊂ {q ∈ K | |q| = 1} (cf. § 5.2, and Lemma 5.1).

Definition 2.2. Let S ⊆ Q be a subset. We denote by 〈S〉 the subgroup of Q generated by S. Let
µ(Q) be the set of all roots of unity belonging to Q. Then we set

S◦ := S − µ(Q). (2.0.3)

2.1 Discrete σ-modules
By assumption, every finite dimensional free B-module M has the product topology.
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Definition 2.3 (Discrete σ-modules). Let S ⊂ Q be an arbitrary subset. An object of

σ-Mod(B)disc
S (2.1.1)

is a finite dimensional free B-module M, together with a group morphism

σM : 〈S〉 −→ Autcont
K (M), (2.1.2)

sending q �→ σM
q , such that, for all q ∈ S, the operator σM

q is σq-semi-linear, that is

σM
q (fm) = σq(f ) · σM

q (m), (2.1.3)

for all f ∈ B, and all m ∈ M. Objects (M,σM) in σ-Mod(B)disc
S will be called discrete σ-modules

over S. A morphism between (M, σM) and (N, σN) is a B-linear map α : M→ N such that

α ◦ σM
q = σN

q ◦ α, (2.1.4)

for all q ∈ S. We will denote the K-vector space of morphisms by Homσ
S(M,N).

Notation 2.4. If S = {q} is reduced to a point, then the category of discrete σ-modules over {q} is
the usual category of q-difference modules. We will therefore use a simplified notation:

σq-Mod(B) := σ-Mod(B)disc
{q} . (2.1.5)

Remark 2.5. (1) Conditions (2.1.3) and (2.1.4) for q ∈ S imply the same conditions for every q ∈ 〈S〉.
(2) If M �= 0, the map σM : 〈S〉 → Autcont

K (M) is injective. Indeed, since B is a domain and M
is free, the equality σM

q (fm) = σM
q′ (fm), for all f ∈ B, for all m ∈ M, implies that σq(f)σM

q (m) =
σq′(f)σM

q′ (m), and hence the contradiction: σq(f) = σq′(f), for all f ∈ B.

(3) The morphism σM on 〈S〉 is determined by its restriction to the set S. Conversely, if a map
S → Autcont

K (M) is given, then this map extends to a group morphism 〈S〉 → Autcont
K (M) if and

only if the following conditions are verified:

(i) σM
q ◦ σM

q′ = σM
q′ ◦ σM

q , for all q, q′ ∈ S;

(i) If n,m ∈ Z, and q1, q2 ∈ S, such that qn
1 = qm

2 , then (σM
q1

)n = (σM
q2

)m;

(iii) If 1 ∈ S, then σM
1 = Id.

2.1.1 Matrices of σM. Let e = {e1, . . . , en} ⊂ M be a basis over B. If σM
q (ei) =

∑
j ai,j(q, T ) ·ej ,

then in this basis σM
q acts as

σM
q (f1, . . . , fn) = (σq(f1), . . . , σq(fn)) ·A(q, T ), (2.1.6)

where A(q, T ) := (ai,j(q, T ))i,j . By definition A(1, T ) = Id, and one has

A(qq ′, T ) = A(q′, qT ) · A(q, T ). (2.1.7)

In particular A(qn, T ) = A(q, qn−1T ) · A(q, qn−2T ) · · ·A(q, T ).

2.1.2 Internal Hom and ⊗. Let (M, σM), (N, σN) be two discrete σ-modules over S. We define
a structure of discrete σ-module on HomB(M,N) by setting σHom(M,N)

q (α) := σN
q ◦ α ◦ (σM

q )−1, for
all q ∈ S, and all α ∈ HomB(M,N). We define on M⊗B N a structure of discrete σ-module over S
by setting σM⊗N

q (m⊗ n) := σM
q (m)⊗ σN

q (n), for all q ∈ S, and all m ∈M, n ∈ N.

2.1.3 If S◦ �= ∅ (cf. (2.0.3)), then the category σ-Mod(B)disc
S is K-linear. If B is a Bezout ring

(i.e. every finitely generated ideal of B is principal), then σ-Mod(B)disc
S is Tannakian (cf. [ADV04,

12.3]). The ring HK(X) is always principal. If K is spherically closed, then AK(I), RK , H†
K are

Bezout rings.
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2.1.4 As already mentioned in the introduction, the following is an example of two non-isomorphic
analytic σ-modules over X (cf. Definition 2.9), having isomorphic ‘stalks’ at every q ∈ U ⊂ Q(X).
This is analogous to having non-isomorphic sheaves having isomorphic stalks at every point.

Example 2.6. Let X = {|x| = 1}, then Q(X) = {x ∈ K | |x| = 1}. Let U := D−(1, 1), and let π ∈ K
satisfy |π| = |p|1/(p−1). Put then A(q, x) := exp(π(q − 1)x), and Ã(q, x) := exp(πq(q − 1)x). Let M
(respectively N) be the discrete σ-module over U defined by the family {σq(Y ) = A(q, x) · Y }q∈U

(respectively {σq(Y ) = Ã(q, x) · Y }q∈U ). In this fixed basis of M and N, the matrices of every
isomorphism between (M, σM

q ) and (N, σN
q ) are of the form B(q, x) = λ · exp(π(1− q)x) ∈ HK(X)×,

with λ ∈ K×. Hence for all q ∈ U the equation σq(Y ) = A(q, x)Y is isomorphic to σq(Y ) = Ã(q, x)Y .
But since B(q, x) depends on q, M and N are not isomorphic as analytic σ-modules over U .

2.2 Discrete (σ, δ)-modules
Let S ⊂ Q(B) be an arbitrary subset.

Definition 2.7 (Discrete (σ, δ)-modules). An object of

(σ, δ)-Mod(B)disc
S (2.2.1)

is a discrete σ-module over S, together with a connection3 δM1 : M → M. Objects (M, σM, δM1 ) of
(σ, δ)-Mod(B)disc

S will be called discrete (σ, δ)-modules over S. A morphism between (M, σM, δM1 )
and (N, σN, δN1 ) is a morphism α : (M, σM)→ (N, σN) of discrete σ-modules satisfying

α ◦ δM1 = δN1 ◦ α. (2.2.2)

We will denote the K-vector space of morphisms by Hom(σ,δ)
S (M,N).

Notation 2.8. By analogy with (2.1.5), if S = {q}, then we set

(σq, δq)-Mod(B) := (σ, δ)-Mod(B)disc
{q} . (2.2.3)

If q = 1 we denote it by δ1-Mod(B).

As already mentioned in the introduction, we introduce the operator

δMq := σM
q ◦ δM1 . (2.2.4)

For all f ∈ B, all m ∈ M, and all q ∈ 〈S〉, one has that

δMq (f ·m) = σq(f) · δMq (m) + δq(f) · σM
q (m). (2.2.5)

Moreover, for all α ∈ Hom(σ,δ)(M,N), and all q ∈ 〈S〉, one has α ◦ δMq = δNq ◦ α. Heuristically we
imagine M as endowed with the map q �→ δMq : 〈S〉 → Endcont

K (M). This justifies notation (2.2.1)
and (2.2.3).

2.2.1 Matrices of δMq . Let e = {e1, . . . , en} ⊂ M be a basis over B. Let A(q, T ) ∈ GLn(B) be the
matrix of σM

q in the basis e (cf. (2.1.6)). If δMq (ei) =
∑

j gi,j(q, T ) · ej , and if G(q, T ) = (gi,j(q, T ))i,j ,
then δMq acts in the basis e as

δMq (f1, . . . , fn) = (δq(f1), . . . , δq(fn)) ·A(q, T ) + (σq(f1), . . . , σq(fn)) ·G(q, T ). (2.2.6)

One has moreover the rule

G(q′ · q, T ) = G(q′, qT ) · A(q, T ). (2.2.7)

3That is, δM
1 verifies δM

1 (fm) = δ1(f) · m + f · δM
1 (m), for all f ∈ B, for all m ∈ M. Recall that δ1 := T d/dT .
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2.2.2 Internal Hom and ⊗. Let (M, σM, δM), (N, σN, δN) be two discrete (σ, δ)-modules over S.
We define a structure of discrete (σ, δ)-module on HomB(M,N) by setting

δHom(M,N)
q (α) := (δNq ◦ α− σHom(M,N)

q (α) ◦ δMq ) ◦ (σM
q )−1. (2.2.8)

This definition gives the relation δNq (α◦m) = σH
q (α)◦δMq (m)+δHq (α)◦σM

q (m), for all α ∈ HomB(M,N),
and all m ∈ M, where H := HomB(M,N). We define on M⊗B N a structure of discrete (σ, δ)-module
over S by setting

δM⊗N
q (m⊗ n) := δMq (m)⊗ σN

q (n) + σM
q (m)⊗ δNq (n), (2.2.9)

for all q ∈ S, and all m ∈ M, n ∈ N.

2.2.3 If B is Bezout, then (σ, δ)-Mod(B)disc
S is K-linear and Tannakian.

2.3 Analytic σ-modules
Analytic σ-modules are defined only if the ring B is equal to one of the following rings: AK(I),
HK(X), H†

K(X), HK , H†
K , RK . Notice that if U ⊂ Q(B) is an open subset, then the subgroup

〈U〉 ⊆ Q(B) generated by U is open, i.e. 〈U〉 contains a disk D−
K(1, τ), for some τ > 0.

Definition 2.9. Let B := HK(X). Let (M, σM) be a discrete σ-module over U . Let A(q, T ) ∈
GLn(B) be the matrix of σM

q in a fixed basis. We will say that (M, σM) is an analytic σ-module if,
for all q ∈ U , there exist a disk D−(q, τq) = {q′ | |q′ − q| < τq}, with τq > 0, and a matrix Aq(Q,T )
such that:

(i) Aq(Q,T ) is an analytic element on the domain (Q,T ) ∈ D−(q, τq)×X;
(ii) for all q′ ∈ D−

K(q, τq), one has Aq(Q,T )|Q=q′ = A(q′, T ).

This definition does not depend on the choice of basis e. We define

σ-Mod(B)anU (2.3.1)

as the full sub-category of σ-Mod(B)disc
U , whose objects are analytic σ-modules. Let I ⊂ R�0 be an

interval. We give the same definition over the ring B := AK(I), namely, if C(I) := {|T | ∈ I}, the
point (i) is replaced by:

(i′) Aq(Q,T ) is an analytic function on the domain (Q,T ) ∈ D−(q, τq)× C(I).
Example 2.10. The discrete σ-modules appearing in Example 2.6 are actually analytic.

2.3.1 Analyticity of Hom(M,N) and M⊗N. If (M, σM) and (N, σN) are two analytic σ-modules
over U , then (Hom(M,N), σHom(M,N)) and (M⊗N, σM⊗N) are analytic. This follows from the explicit
dependence of the matrices of σHom(M,N) and σM⊗N on the matrices of σM and σN.

2.3.2 Discrete and analytic σ-modules over AK(I), RK and H†
K(X). If I1 ⊂ I2, then the

restriction functor σ-Mod(AK(I2))anU → σ-Mod(AK(I1))anU is faithful. Indeed the equality f|I1 = g|I1
implies that f = g, for all f, g ∈ AK(I2) (analytic continuation [CR94, 5.5.8]).

Definition 2.11. Let S ⊆ Q be a subset, and let U ⊆ Q be an open subset. We set

σ-Mod(RK)anU :=
⋃
ε>0

σ-Mod(AK(]1− ε, 1[))anU , (2.3.2)

σ-Mod(RK)disc
S :=

⋃
ε>0

σ-Mod(AK(]1− ε, 1[))disc
S . (2.3.3)

Similarly, one can define σ-Mod(H†
K(X))anU and σ-Mod(H†

K(X))disc
S .
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Remark 2.12. Since U is open, one has U◦ �= ∅ (cf. (2.0.3)). By § 2.1.3, if B is one of the previous
rings (and if it is a Bezout ring), then σ-Mod(B)anU is K-linear and Tannakian.

2.4 Analytic (σ, δ)-modules
We maintain the previous notation. In § 2.4.1 below we define a fully faithful functor

(Forget δ)−1 : σ-Mod(B)anU −→ (σ, δ)-Mod(B)disc
U , (2.4.1)

which is a ‘local’ section of the functor Forget δ : (σ, δ)-Mod(B)disc
U −→ σ-Mod(B)disc

U . The essential
image of the functor (Forget δ)−1 will be denoted by

(σ, δ)-Mod(B)anU . (2.4.2)

By definition, the functor which ‘forgets’ the action of δ is therefore an equivalence

(σ, δ)-Mod(B)anU
Forget δ−−−−−→∼ σ-Mod(B)anU . (2.4.3)

Notice that a morphism between analytic (σ, δ)-modules is, by definition, a morphism of discrete
(σ, δ)-modules.

2.4.1 Construction of δ. Let (M, σM) be an analytic σ-module. We shall define a (σ, δ)-module
structure on M. It follows from Definitions 2.9 and 2.11 that the map q �→ σM

q : 〈U〉 → AutK(M) is
derivable, in the sense that, for all q ∈ 〈U〉, the limit

δMq := q · lim
q′→q

σM
q′ − σM

q

q′ − q =
(
q
d

dq
σM

)
(q) (2.4.4)

exists in Endcont
K (M), with respect to the simple convergence topology (cf. (2.4.5)). Moreover, for

all q ∈ 〈U〉, the rule (2.2.5) holds, and δMq = σM
q ◦ δM1 .

Let α : (M, σM) → (N, σN) be a morphism of analytic σ-modules, that is α ◦ σM
q = σN

q ◦ α, for
all q ∈ U . Passing to the limit in the definition (2.4.4), one shows that α commutes with δMq , for all

q ∈ U . Hence the inclusion Hom(σ,δ)
U (M,N) ⊆ Homσ

U (M,N) is an equality. If e = {e1, . . . , en} ⊂ M
is a basis in which the matrix of σM

q is A(q, T ), then the matrix of δMq is (cf. (2.2.6), Definition 2.9
and 2.11)

G(q, T ) := q · lim
q′→q

A(q′, T )−A(q, T )
q′ − q = (∂Q(Aq(Q,T )))|Q=q

, (2.4.5)

where ∂Q is the derivation Qd/dQ , and Aq(Q,T ) is the matrix of Definition 2.9.

Remark 2.13. By the above definitions, there is an obvious functor

ConfU : σ-Mod(B)anU → δ1-Mod(B), (2.4.6)

obtained by composing (Forget δ)−1 (cf. (2.4.3)) with Forget σ : (σ, δ)-Mod(B)anU −−→ δ1-Mod(B).

3. Solutions (formal definition)

3.1 Discrete σ-algebras and (σ, δ)-algebras
Let S ⊆ Q(B) be a subset.

Definition 3.1 (Discrete σ-algebra over S). A B-discrete σ-algebra over S, or simply a discrete
σ-algebra over S, is a B-algebra C such that:
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(i) C is an integral domain, and the structural morphism B→ C is injective;

(ii) there exists a group morphism σC : 〈S〉 → AutK(C) such that σC
q is a ring automorphism

extending σB
q , for all q ∈ 〈S〉;

(iii) one has Cσ
S = K, where Cσ

S := {c ∈ C | σq(c) = c, for all q ∈ S}.
We will call Cσ

S the sub-ring of σ-constants of C. We will write σq instead of σC
q , when no confusion

is possible.

Observe that no topology is required on C. The word discrete is employed, here and later on,
to emphasize that we do not ask for ‘continuity’ with respect to q. Notice also that if a discrete
σ-algebra C is free and of finite rank as B-module, then it is a discrete σ-module.

3.1.1 If S◦ �= ∅ (cf. (2.0.3)), then Bσ
S = K, and B itself is a discrete σ-algebra over S. On the

other hand, if S = {ξ} is reduced to a root of unity ξ ∈ µ(Q), since Bσ
S = Bσξ �= K, it follows that

B itself is not a discrete σ-algebra over S. Hence there is no discrete σ-algebra over S = {ξ}. To
deal with this problem we introduce the following definition.

Definition 3.2 (Discrete (σ, δ)-algebra over S). A discrete (σ, δ)-algebra C over S is a B-algebra
such that:

(i) C satisfies properties (i) and (ii) of Definition 3.1;

(ii) there exists a derivation δC1 , extending δ1 = T d/dT on B, and commuting with σC
q , for all

q ∈ 〈S〉;
(iii) one has C(σ,δ)

S = K, where C(σ,δ)
S := {f ∈ C | f ∈ Cσ

S, and δ1(f) = 0}.

We will call C(σ,δ)
S the sub-ring of (σ, δ)-constants of C. We will write δ1 instead of δC1 , if no confusion

is possible.

The operator δCq := σC
q ◦δC1 satisfies property (2.2.5). Since B(σ,δ)

S = K, it follows that B is always
a (σ, δ)-algebra over S, for an arbitrary subset S ⊆ Q(B), even for S = {ξ}, with ξ ∈ µ(Q(B)).

3.2 Constant solutions

Definition 3.3 (Constant solutions on S). Let (M, σM) (respectively (M, σM, δM)) be a discrete
σ-module (respectively (σ, δ)-module) over S, and let C be a discrete σ-algebra (respectively (σ, δ)-
algebra) over S. A constant solution of M, with values in C, is a B-linear morphism

α : M −→ C

such that α ◦ σM
q = σC

q ◦ α, for all q ∈ S (respectively α simultaneously satisfies α ◦ δM1 = δC1 ◦ α,

and α ◦ σM
q = σC

q ◦ α, for all q ∈ S). We denote by Homσ
S(M,C) (respectively Hom(σ,δ)

S (M,C)) the
K-vector space of the solutions of M in C.

3.2.1 Matrices of solutions. Let M be a discrete σ-module (respectively (σ, δ)-module). Let C
be a discrete σ-algebra (respectively (σ, δ)-algebra) over S. Recall that, if S = {ξ}, with ξn = 1,
then there is no discrete σ-algebra, over S (cf. § 3.1.1).

Let e = {e1, . . . , en} be a basis of M, and let A(q, T ) (respectively G(q, T )) be the matrix of σM
q

(respectively δMq ) in this basis (cf. (2.2.6)). We identify a morphism α : M → C with the vector
(yi)i ∈ Cn, given by yi := α(ei). In this way constant solutions become solutions in the usual vector
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form. Indeed σq(y1)
...

σq(yn)

 = A(q, T ) ·

y1
...
yn

 , for all q ∈ S, (3.2.1)

respectively δq(y1)
...

δq(yn)

 = G(q, T ) ·

y1
...
yn

 , for all q ∈ S. (3.2.2)

Definition 3.4. By a fundamental matrix of solutions of M (in the basis e) we mean a matrix
Y ∈ GLn(C) satisfying simultaneously

σq(Y ) = A(q, T ) · Y, for all q ∈ S, (3.2.3)

respectively satisfying simultaneously

σq(Y ) = A(q, T ) · Y, for all q ∈ S,
δ1(Y ) = G(1, T ) · Y. (3.2.4)

3.2.2 Unit object and σ-constants. Let I = B be the unit object. By the description given
above, every solution α ∈ Homσ

S(I,C) (respectively α ∈ Hom(σ,δ)
S (I,C)) can be identified with

y := α(1) ∈ Cσ
S (respectively y := α(1) ∈ C(σ,δ)

S ). We obtain Cσ
S
∼= Homσ

S(I,C) (respectively
C(σ,δ)

S
∼= Hom(σ,δ)

S (I,C)). In particular Bσ
S (respectively B(σ,δ)

S ) is identified with Endσ
S(I) (respectively

End(σ,δ)
S (I)), and the category is K-linear if and only if Bσ

S = K (respectively B(σ,δ)
S = K).

3.2.3 Dimension of the space of solutions. Let F := Frac(C) be the fraction field of C, then
both σq and δ1 extend to F (cf. [vdPS03, Ex. 1.5]).

Lemma 3.5 (Wronskian lemma). Let M be a (σ, δ)-module (respectively σ-module) over S, and let
C be a discrete (σ, δ)-algebra (respectively σ-algebra) over S. One has

dimKHom(σ,δ)
S (M,C) � rkB(M). (3.2.5)

(respectively if S◦ �= ∅ (cf. (2.0.3)), then dimKHomσ
S(M,C) � rkB(M).)

Proof. One has dimKHom(σ,δ)
S (M,C) � dimKHomδ1(M,C) � rkB(M). On the other hand, if q ∈ S◦,

then Homσq(M,C) � rkB(M) (cf. [DV02, Lemma 1.1.11]). Hence

dimKHomσ
S(M,C) � dimKHomσq(M,C) � rkB(M).

4. C-constant confluence

In this section we state the formal results regarding confluence. We introduce the notion of C-
constant modules. As explained in the introduction, this notion is an adaptation of the notion
of C-admissibility in the sense of representation theory. On the other hand it can be interpreted
as a generalization of the Galois theory for differential and q-difference equations. According to
this point of view, in our context we have the problem that the analog of the Picard–Vessiot
algebra trivializing a given object M does not exist for arbitrary objects M. Also the uniqueness
of the Picard–Vessiot algebra remains an open problem. We avoid these problems by working with
the category of modules trivialized by a given algebra C which is fixed once and for all. We hope
that this problem will be overcome in the future; the recent work of C. Hardouin and M. Singer
seems to be a first progress in this direction [HS08].
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4.1 C-constant modules
Let B be one of the rings of §§ 1.1 and 1.2, let S ⊂ Q(B) be a subset, and let U ⊂ Q(B) be an open
subset.

Definition 4.1 (C-constant modules). Let M be a discrete σ-module over S. We will say that M
is C-constant on S, or equivalently that M is trivialized by C, if there exists a discrete σ-algebra C
over S such that

dimKHomσ
S(M,C) = rkBM. (4.1.1)

We give the analogous definition for (σ, δ)-modules. The full sub-category of σ-Mod(B)disc
S (respec-

tively (σ, δ)-Mod(B)disc
S ), whose objects are trivialized by C, will be denoted by

σ-Mod(B,C)const
S (respectively (σ, δ)-Mod(B,C)const

S ). (4.1.2)

The full subcategory of σ-Mod(B,C)const
U (respectively (σ, δ)-Mod(B,C)const

U ) whose objects are an-
alytic will be denoted by

σ-Mod(B,C)an,const
U (respectively (σ, δ)-Mod(B,C)an,const

U ). (4.1.3)

Notice that M is trivialized by C if there exists Y ∈ GLn(C), n := rkBM, such that Y is
simultaneously a solution, for all q ∈ S, of the family of equations (3.2.3) (respectively both the
conditions of (3.2.4)). Roughly speaking, M is C-constant on S if it admits a basis of q-solutions in
GLn(C) which ‘does not depend on q ∈ S’.

Lemma 4.2. Let M, N be two discrete σ-modules (respectively (σ, δ)-modules). If M, N are both
trivialized by C, then M⊗N, Hom(M,N), M∨, N∨ are trivialized by C.

Proof. The fundamental matrix solution of M⊗N (respectively Hom(M,N)) is obtained by taking
products of entries of the two matrices of solutions of M and N respectively. Hence ‘it does not
depend on q ∈ S’. The assertion on M∨, N∨ is a particular case of the previous one.

Lemma 4.3. Let S′ ⊆ S be a non-empty subset. Let C be a discrete (σ, δ)-algebra over S. Then the
restriction functor ResS

S′ , sending (M, σM, δM1 ) into (M, σM
|〈S′〉

, δM1 ),

ResS
S′ : (σ, δ)-Mod(B,C)const

S −→ (σ, δ)-Mod(B)disc
S′ , (4.1.4)

is fully faithful and its image is contained in the category (σ, δ)-Mod(B,C)const
S′ . The same fact is

true for discrete σ-modules under the assumption (S′)◦ �= ∅.
Proof. The proof is the same in both cases: here we give the proof in the case of (σ, δ)-modules. We
must show that the inclusion Hom(σ,δ)

S (M,N) → Hom(σ,δ)
S′ (M,N) is an isomorphism, for all M,N in

(σ, δ)-Mod(B,C)const
S . In other words, we have to show that if α : M → N commutes with σq′ , for

all q′ ∈ S′, then it commutes also with σq, for all q ∈ S. One has

Hom(σ,δ)
S (M,N) = Hom(σ,δ)

S (M⊗N∨,B) = Hom(σ,δ)
S (M⊗N∨,C) ∩HomB(M⊗N∨,B), (4.1.5)

Hom(σ,δ)
S′ (M,N) = Hom(σ,δ)

S′ (M⊗N∨,B) = Hom(σ,δ)
S′ (M⊗N∨,C) ∩HomB(M⊗N∨,B).

Observe that M ⊗ N∨ is the dual of the ‘internal hom’ Hom(M,N). By Lemma 4.2, M ⊗ N∨ is
trivialized by C. The restriction of M⊗N∨ to S′ is obviously C-constant on S′, since it is trivialized
by C. This implies that

Cn = Hom(σ,δ)
S (M⊗N∨,C) = Hom(σ,δ)

S′ (M⊗N∨,C). (4.1.6)

This shows that a morphism with values in B ⊆ C commutes with all σq and δq, for all q ∈ S, if
and only if it commutes with all σq and δq, for all q ∈ S′. Hence

Hom(σ,δ)
S (M⊗N∨,B) = Hom(σ,δ)

S′ (M⊗N∨,B). (4.1.7)
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4.1.1 Restriction to roots of unity. By the previous lemma, if ξ ∈ S ∩ µ(Q), then

ResS
{ξ} : (σ, δ)-Mod(B,C)const

S −→ (σξ, δξ)-Mod(B) (4.1.8)

is again fully faithful. On the other hand, if S◦ �= ∅, then the restriction

Res S
{ξ} : σ-Mod(B,C)const

S −→ σξ-Mod(B) (4.1.9)

is not fully faithful, since σ-Mod(B,C)const
S is K-linear, while σξ-Mod(B) is not K-linear (i.e. K ⊂

End(I), but K � End(I); cf. § 1).

4.1.2 The case of an open subset. We observe that if U is open, then the condition U◦ �= ∅ is
automatically verified. Hence, by Lemma 4.3, if S ⊂ U is a (non-empty) subset, the restriction

ResU
S : (σ, δ)-Mod(B,C)an,const

U −→ (σ, δ)-Mod(B,C)const
S (4.1.10)

is fully faithful. The same is true for σ-modules, under the assumption S◦ �= ∅. In particular, if
U ′ ⊂ U is an open subset, then the restriction functor is fully faithful:

ResU
U ′ : (σ, δ)-Mod(B,C)an,const

U −→ (σ, δ)-Mod(B,C)an,const
U ′ , (4.1.11)

ResU
U ′ : σ-Mod(B,C)an,const

U −→ σ-Mod(B,C)an,const
U ′ .

4.2 C-constant deformation and C-constant confluence
In this section we give the formal definition of the confluence and deformation functors. As usual
S ⊆ Q(B) is an arbitrary subset, and U ⊆ Q(B) is an open subset.

Definition 4.4 (Extensible objects). Let q ∈ S. Let C be a discrete σ-algebra over S. A q-difference
module M is said to be C-extensible to S if it belongs to the essential image of the restriction functor

ResS
{q} : σ-Mod(B,C)const

S −→ σq-Mod(B).

The full sub-category of σq-Mod(B) whose objects are C-extensible to S will be denoted by
σq-Mod(B,C)S . If U is open, and if q ∈ U , we will denote by

σq-Mod(B,C)anU (4.2.1)

the full sub-category of σq-Mod(B)U whose objects belong to the essential image of
σ-Mod(B,C)an,const

U . We give analogous definitions for (σ, δ)-modules.

Lemma 4.3 and Definition 4.4 easily give the following formal statement.

Corollary 4.5. With the notation of Lemma 4.3, one has an equivalence

ResS
{q} : (σ, δ)-Mod(B,C)const

S
∼−→ (σq, δq)-Mod(B,C)S . (4.2.2)

The same fact is true for σ-modules, under the additional hypothesis that q ∈ S◦.

Definition 4.6. (1) Let S ⊆ Q(B) be a subset and let q, q′ ∈ 〈S〉. We will call the C-constant
deformation functor, denoted by

DefCq,q′ : (σq, δq)-Mod(B,C)S
∼−→ (σq′ , δq′)-Mod(B,C)S , (4.2.3)

the equivalence obtained by composition of the restriction functor (4.2.2):

DefCq,q′ := ResS
{q′} ◦ (Res S

{q})
−1. (4.2.4)

(2) We will call the C-constant confluence functor, the equivalence

ConfCq := DefCq,1 : (σq, δq)-Mod(B,C)S
∼−→ δ1-Mod(B,C)S . (4.2.5)
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(3) Suppose that q ∈ S◦ and q′ ∈ S, then we will again call the C-constant deformation functor,
denoted again by

DefCq,q′ : σq-Mod(B,C)S −→ σq′-Mod(B,C)S , (4.2.6)

the functor obtained by composition of the restriction functor (4.2.2): DefCq,q′ := ResS
{q′}◦(ResS

{q})
−1.

If q′ ∈ S◦, then DefCq,q′ is an equivalence.

It follows from Corollary 4.5 that, if q, q′ ∈ U , one has an equivalence, again called DefCq,q′ ,

DefCq,q′ : (σq, δq)-Mod(B,C)anU −→∼ (σq′ , δq′)-Mod(B,C)anU . (4.2.7)

The same fact is true for analytic σ-modules under the condition q, q′ /∈ µ(Q).

4.2.1 Notice that the functor ResS
{q} does not depend on C, but (ResS

{q})
−1 is a particular section

of ResS
{q} with values in the category of objects trivialized by C (cf. Corollary 4.5). Hence (ResS

{q})
−1,

ConfCq and DefCq,q′ actually depend on C.

4.2.2 According to Definition 4.4 (cf. Equations (2.1.5) and (2.2.3)), if q ∈ U ⊂ U ′, then, by
Lemma 4.3 (cf. § 4.1.2), the following restriction functors are fully faithful immersions:

ResU ′
U : σ-Mod(B,C)U ′ −→ σ-Mod(B,C)U ,

ResU ′
U : σ-Mod(B,C)an,const

U ′ −→ σ-Mod(B,C)an,const
U ;

respectively

ResU ′
U : (σ, δ)-Mod(B,C)U ′ −→ (σ, δ)-Mod(B,C)U , (4.2.8)

ResU ′
U : (σ, δ)-Mod(B,C)an,const

U ′ −→ (σ, δ)-Mod(B,C)an,const
U .

We can then consider the following diagram in which we heuristically imagine categories appearing
in the first two lines as the stalks at q of suitable corresponding stacks over Q(X).

⋃
U σ-Mod(B,C)an,const

U

Equation (2.4.3)

⋃
U Res U

{q}
��

�

⋃
U (σ, δ)-Mod(B,C)an,const

U

 ⋃U Res U
{q}

��⋃
U σq-Mod(B,C)U

iσ
��

�

⋃
U (σq, δq)-Mod(B,C)U

Forget δq

��

i(σ,δ)

��
σq-Mod(B) (σq, δq)-Mod(B)

Forget δq

��

(4.2.9)

Here U runs over the set of open neighborhoods of q, and iσ and i(σ,δ) are the trivial inclusions
of full sub-categories. In the sequel we will study the full subcategory of σq-Mod(B) (respectively
(σq, δq)-Mod(B)) formed by Taylor admissible objects this category is contained in the essential
image of iσ (respectively i(σ,δ)) (see Theorem 7.6). In this case we will obtain an analogous diagram
(see Corollary 7.9) in which i(σ,δ) is an equivalence (for all q ∈ U), and iσ is an equivalence only if
q is not a root of unity.

If q is not a root of unity, then all the arrows of this diagram will be equivalences, hence giving
δq is superfluous. If q is a root of unity, then the right-hand side vertical arrows will be equivalences,
while the arrow on the left-hand side will not. In this last case the q-tangent operator δq is necessary
to preserve the information in the neighborhood of q. In this case the good notion of stalk at q of an
analytic σ-module is the notion of (σq, δq)-module and not simply that of σq-module.
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One may have the feeling that the functor ‘Forget δq’ contains ‘information’ if q is a root of
unity, but we will see (Proposition 8.6) that, if B = RK or if B = H†

K , then this functor sends every
(σ, δ)-module with Frobenius structure into a direct sum of copies of the unit object.

4.2.3 Dependence on C. Let C1 ⊆ C2 be two algebras as above. Then clearly DefC2
q,q′ extends

DefC1
q,q′ to the larger category of modules trivialized by C2. One of the main problems of the theory

is that, if there are no inclusions between C1 and C2, then it is not clear whether there exists a
discrete σ-algebra (respectively (σ, δ)-algebra) C3 containing both C1 and C2. For this reason, if
the same object is trivialized by C1, and also by C2, it is not clear whether its deformations with
respect to C1 and C2 are equal. We will encounter this problem in § 8.4.

5. Taylor solutions

In this section B = HK(X), for some affinoid X = D+(c0, R0) −
⋃n

i=1 D−(ci, Ri), and S = {q} ∈
Q(HK(X)) ⊆ {q ∈ K | |q| = 1} is reduced to a point. Let (Ω, | · |)/(K, | · |) be an arbitrary extension
of complete valued fields. Let c ∈ X(Ω) and let ρc,X > 0 be the largest real number such that
D−

Ω′(c, ρc,X) ⊆ X(Ω′), for all complete valued field extensions (Ω′, | · |)/(Ω, | · |). One has

ρc,X = min(R0, |c− c1|, |c− c2|, . . . , |c− cn|). (5.0.1)

Notice that c can be equal to a generic point (cf. Proposition 1.7). We want to find solutions of
q-difference equations converging in a disk centered at c, i.e. matrix solutions in the form (3.2.3),
with values in the σq-algebra C := AK(c,R), for some 0 < R � ρc,X .

5.1 The q-algebras Ω{T − c}q,R and Ω[[T − c]]q
Unless we explicitly state the contrary, we will not assume that q /∈ µ(Q). The following results
generalize the analogous constructions of [DV04] to the case of a root of unity.

Lemma 5.1. Let 0 < R � ρc,X . The algebra AΩ(c,R) is an HΩ(X)-discrete σ-algebra over S = {q},
if and only if both of the following conditions hold:

|q − 1||c| < R and |q| = 1. (5.1.1)

Definition 5.2. Let q ∈ K× be an arbitrary number. Following [DV04] and [ADV04] we set

(T − c)q,n := (T − c)(T − qc)(T − q2c) · · · (T − qn−1c), (5.1.2)

[n]q := 1 + q + q2 + · · ·+ qn−1, (5.1.3)

[n]!q :=
(q − 1)(q2 − 1)(q3 − 1) · · · (qn − 1)

(q − 1)n
. (5.1.4)

5.1.1 The q-binomial. For all q ∈ K×, we define the q-binomial
(n

i

)
q

by the relation

(1− T )(1 − qT ) · · · (1− qn−1T ) =
n∑

i=0

(−1)i
(
n

i

)
q

qi(i−1)/2T i, (5.1.5)

where, if i = 0, the symbol qi(i−1)/2 is by definition equal to 1. This extends the definition given in
[DV04] (cf. Equation (5.1.7) below) to the case of a root of unity. If 1 � i � n− 1, by induction one
has (

n

i

)
q

=
(
n− 1
i− 1

)
q

+ qi

(
n− i
i

)
q

= qn−i

(
n− 1
i− 1

)
q

+
(
n− i
i

)
q

. (5.1.6)
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If q is not a root of unity, then one can write(
n

i

)
q

=
[n]q · [n− 1]q · · · [n− i+ 1]q

[i]!q
. (5.1.7)

If q is an mth root of unity, then [n]!q = 0, for all n � m. The family {(T − c)q,n}n�0 is adapted
to the q-derivation

dq :=
σq − 1

(q − 1)T
=

∆q

T
(5.1.8)

in the sense that for all n � 1 one has dq((T −c)q,n) = [n]q ·(T −c)q,n−1. One always has the relation
dq(fg) = σq(f)dq(g) + dq(f)g. More generally our definition of q-binomials allows us to generalize
the proof of [DV04, Lemma 1.2, (1.2.2)] to the case of a root of unity. We obtain the formula

dn
q (fg)(T ) =

n∑
i=0

(
n

i

)
q

dn−i
q (f)(qiT )di

q(g)(T ). (5.1.9)

5.1.2 The following lemma extends [DV04, § 1.3] to the case of a root of unity.

Lemma 5.3. Let (Ω, | · |)/(K, | · |) be a complete extension of valued fields. Let |q−1||c| < R, |q| = 1,
and let f(T ) =

∑
n�0 an(T − c)n ∈ AΩ(c,R). Then the following hold:

(a) f(T ) can be written uniquely as the series of functions

f(T ) =
∑
n�0

ãn(T − c)q,n ∈ AΩ(c,R), (5.1.10)

with ãn ∈ Ω satisfying supn |ãn|ρn <∞, for all ρ < R;

(b) for all |q − 1||c| < ρ < R one has |f(T )|(c,ρ) = supn�0 |an|ρn = supn�0 |ãn|ρn;

(c) one has Ray(f(T ), c) = lim infn |an|−1/n = lim infn |ãn|−1/n;

(d) if moreover q /∈ µ(Q), then one has the so-called q-Taylor expansion (cf. [DV04])

f(T ) =
∑
n�0

dn
q (f)(c)

(T − c)q,n

[n]!q
. (5.1.11)

Proof. SinceAΩ(c,R) = lim←−r→R−HΩ(D+(c, r)), we need only prove the proposition forHΩ(D+(c, r)),
with |q − 1||c| < r < R. We recall that a series of functions

∑
n�0 fn, fn ∈ HK(D+(c, r)), converges

to a function f ∈ HK(D+(c, r)) if and only if limn |fn|(c,r) = 0. Writing (T−qic) = (1−qi)c+(T−c),
one sees easily that (T − c)q,n =

∑n
i=0 b̃n,i(T − c)i, with b̃i,j satisfying (i) b̃0,0 = 1, (ii) b̃0,i = 0 for

all i � 1, (iii) b̃n,n = 1 for all n � 0, (iv) b̃n,i = 0 for all i > n, and (v) for all 0 � i < n:

b̃n,i = cn−i ·
∑

0�k1<···<kn−i�n−1

(1− qk1)(1 − qk2) · · · (1− qkn−i). (5.1.12)

In other words [1, (T − c)q,1, (T − c)q,2, . . . , (T − c)q,n]t = B̃ · [1, (T − c), (T − c)2, . . . , (T − c)n]t

where B̃ = (̃bn,i)n,i=0,...,n is an (n + 1) × (n + 1) lower triangular matrix satisfying (i)–(v). Since
|qi−1| � |q−1|, one also has the property (vi) |̃bn,i| � (|q−1||c|)n−i < rn−i, for all 0 � i < n. Hence
for all n � 0, one has (T − c)q,n = (T − c)n + gn(T ), with |gn(T )|(c,r) < rn, so |(T − c)q,n|(c,r) =
|(T − c)n|(c,r) = rn. It is easy to prove that also the matrix B := B̃−1 = (bn,i)n,i=0,...,n satisfies the
properties (i)–(vi). Consider now f(T ) =

∑
n�0 an(T − c)n. Writing fm(T ) :=

∑m
n=0 an(T − c)n =∑m

n=0 an
∑n

i=0 bn,i(T − c)q,i and rearranging terms one finds fm(T ) =
∑m

n=0 ãn,m(T − c)q,n, with
ãn,m =

∑m−n
k=0 an+kbn+k,n. By property (vi) and by the assumption that limn |an|rn = 0 the sum
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ãn :=
∑

k�0 an+kbn+k,n converges in Ω. Moreover

|ãn|rn � max
k�0
|an+k||bn+k,n| · rn � max

k�0
|an+k|rn+k. (5.1.13)

This proves that limn |ãn|rn = 0, and hence that the series of functions
∑

n�0 ãn(T − c)q,n is conver-
gent inHΩ(D+(c, r)). If f0

m(T ) :=
∑m

n=0 ãn(T−c)q,n, one sees that |f0
m−fm|(c,r) � supk�0 |am+k|rm+k

which tends to 0, so limm f0
m(T ) = limm fm(T ) = f(T ) in HΩ(D+(c, r)). Now the inequality (5.1.13)

shows that maxn�0 |ãn|rn � maxn�0 |an|rn, and a symmetric argument using the matrix B̃ instead
of B proves the opposite inequality so maxn�0 |ãn|rn = maxn�0 |an|rn = |f(T )|(c,r). This last equal-
ity shows the uniqueness of the coefficients {ãn}n since if

∑
n�0 ãn(T − c)q,n =

∑
n�0 ã

′
n(T − c)q,n,

then
∑

n�0(ãn − ã′n)(T − c)q,n = 0, and hence supn(|ãn− ã′n|rn) = 0, so that ãn = ã′n, for all n � 0.
Clearly the radius of convergence of f(T ) is equal to both supn�0{r � 0 | |an|rn is bounded} and
supn�0{r � 0 | |ãn|rn is bounded}. Hence, by classical arguments on the radius of convergence, one
has Ray(f(T ), c) = lim infn |an|−1/n = lim infn |ãn|−1/n. The assertion (d) is proved in [DV04].

Remark 5.4. If f(T ) =
∑

n�0 fn(T − c)q,n, and if g(T ) =
∑

n�0 gn(T − c)q,n, then f(T )g(T ) =∑
n�0 hn(T − c)q,n, where hn = hn(q; c; f0, . . . , fn; g0, . . . , gn) is a polynomial in {q, c, f0, . . . , fn, g0,

. . . , gn}. Indeed one has (T − c)q,n · (T − c)q,m =
∑n+m

k=max(n,m) α
(n,m)
k (T − c)q,k, with α

(n,m)
k =

α
(n,m)
k (q, c) ∈ Ω. This also shows that if vq,c(f) := min{n | fn �= 0}, then one has

vq,c(fg) � max(vq,c(f), vq,c(g)). (5.1.14)

If moreover q /∈ µ(Q), then, by using equations (5.1.9) and (5.1.11), one has

hn =
n∑

j=0

j∑
s=0

[n]!q[j]!q[s+ n− j]!q
([s]!q)2[n− j]!q

· qs(s−1)/2(q − 1)scsfs+n−jgj . (5.1.15)

5.1.3 The algebras Ω[[T − c]]q and Ω{T − c}q,R. We have the following definitions.

Definition 5.5. For all q ∈ Q(X) we set

Ω[[T − c]]q :=
{∑

n�0

fn(T − c)q,n

∣∣∣∣ fn ∈ Ω
}
, (5.1.16)

Ω{T − c}q,R :=
{∑

n�0

fn(T − c)q,n

∣∣∣∣ fn ∈ Ω, lim inf
n
|fn|−1/n � R

}
. (5.1.17)

We define a multiplication on Ω[[T − c]]q and Ω{T − c}q,R by the rule given in Remark 5.4.

Lemma 5.6. The algebras Ω[[T − c]]q and Ω{T − c}q,R are commutative Ω-algebras, for all q ∈ Q.

Proof. We prove only the associativity, the other verifications being similar. We have to prove that
(fg)h = f(gh). By Lemma 5.3 the assertion is proved if f, g, h ∈ Ω{T − c}q,R, with |q − 1||c| < R,
since in this case Ω{T − c}q,R

∼= AΩ(c,R). On the other hand one can assume that f, g, h are
polynomials since, by Remark 5.4, the nth coefficient of (fg)h and of f(gh) is a polynomial in q
and in the first n coefficients of f, g, h.

Remark 5.7. If there exists a (smallest) integer k0 such that |qk0 − 1||c| < R, then one shows that
Ω{T − c}q,R =

∏k0−1
i=0 AΩ(qic, R̃), where R̃ depends explicitly on R, c and q (cf. [DV04, Proposi-

tion 15.3]). In this case Ω{T − c}q,R is not a domain and hence is not a HΩ(X)-discrete σ-algebra
over S = {q}.
Remark 5.8. If x, y are variables, then Ω[[x−y]]q is not an algebra, but merely a vector space. Indeed
the multiplication law involves y in the coefficients ‘hn’ of Remark 5.4. This minor mistake occurs
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occasionally in [DV04], but it is an irrelevant inaccuracy and does not jeopardize any proposition
of [DV04]. Indeed the matrix Y (x, y) always seems to be used there under the assumption (5.5.6)
(cf. Lemma 5.16).

5.2 q-invariant affinoids

Let |q| = 1, q ∈ K. Let X := D+(c0, R0) −
⋃n

i=1 D−(ci, Ri), c1, . . . , cn ∈ D+
K(c0, R0), c0 ∈ K, be a

K-affinoid. Then X is q-invariant if and only if |q− 1||c0| < R0, and the map x �→ qx permutes the
family of disks {D−(ci, Ri)}i=1,...,n. This happens if and only if for all i = 1, . . . , n there exists (a
smallest) ki � 1, such that |qki−1||ci| < Ri, and moreover the family of disks {D−(qkci, Ri)}k=1,...,ki

is finite and contained in {D−(ci, Ri)}i=1,...,n. If k0 is the minimum common multiple of the ki, then
x �→ qk0x leaves every disk globally fixed and, by Lemmas 5.1 and 5.3, one has

‖dqk0 (f)‖X � r−1
X ‖f‖X , (5.2.1)

for all f ∈ H(X) (cf. Lemma 1.9). Indeed by the Mittag–Lefler decomposition [CR94], we reduce
to showing that every series f =

∑
j�−1 aj(T − ci)j , such that |aj |Rj

i tends to zero, satisfies
|dqk0 (f)|(ci,Ri) � R−1

i · |f |(ci,Ri), and this is true by Lemma 5.3.

Such a bound does not exist for dq itself. One can easily construct counterexamples via the
Mittag–Leffler decomposition.

5.3 The generic Taylor solution

We recall the definition of the classical Taylor solution of a differential equation.

Definition 5.9. Let δ1−G(1, T ), be a differential equation. Let G[n](T ) be the matrix of (d/dx)n.
We set

YG(1,T )(x, y) :=
∑
n�0

G[n](y)
(x− y)n

n!
. (5.3.1)

By induction on the rule G[n+1] = G′
[n] + G[n]G[1], one finds ‖G[n]‖X � max(‖G[1]‖X , r−1

X )n,
hence

Ray(YG(T, c), c) = lim inf
n

( |G[n](c)|Ω
|n!|

)−1/n

� |p|1/(p−1)

max(r−1
X , ‖G[1]‖X)

. (5.3.2)

In other words YG(x, y) is an analytic function over a neighborhood UR of the diagonal of the type

UR := {(x, y) ∈ X ×X | |x− y| < R}, (5.3.3)

for some R > 0.

Lemma 5.10. One has YG(x, x) = Id, and, for all (x, y) ∈ UR

(d/dy)(YG(x, y)) = −YG(x, y) ·G[1](y), (5.3.4)

YG(x, y)−1 = YG(y, x), (5.3.5)
YG(x, y) · YG(y, z) = YG(x, z), (5.3.6)
(d/dx)(YG(x, y)) = G[1](x) · YG(x, y). (5.3.7)

Proof. See [CM02, p. 137] (cf. Lemma 5.16). The proof is analogous to that of Lemma 5.16.

Definition 5.11. Let q ∈ Q − µ(Q). Consider the q-difference equation

σq(Y ) = A(q, T ) · Y, A(q, T ) ∈ GLn(HK(X)). (5.3.8)
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Let Hn be defined by dn
q (Y ) = Hn · Y . We formally set

YA(q,T )(x, y) =
∑
n�0

Hn(y)
(x− y)q,n

[n]!q
. (5.3.9)

We will omit the index A(q, T ) if no confusion is possible. Observe that YA(q,T )(x, y) is a symbol
and does not necessarily define a convergent function.

Example 5.12. With the notation of Example 2.6, the generic Taylor solution of the equations
σq(Y ) = A(q, x)Y and σq(Y ) = Ã(q, x)Y are YA(q,x)(x, y) = exp(π(x − y)) and Y

Ã(q,x)
(x, y) =

exp(πq(x− y)) respectively. Notice that YA(q,x)(x, y) is constant with q.

Definition 5.13. For all (not necessarily bounded nor multiplicative) semi-norms | · |∗ on HK(X)
extending the absolute value of K we set

Ray(YA(q,T )(x, y), | · |∗) := lim inf
n

(|Hn(y)|∗/|[n]!q|)−1/n. (5.3.10)

If YA(q,T )(x, y) is a convergent function on some neighborhood of the diagonal of X ×X, then, for
|f(T )|∗ := |f(c)|Ω, c ∈ X(Ω), one finds Definition 1.5, namely Ray(Y (x, y), | · |c) = Ray(Y (x, c), c).
In this case we will write Ray(Y (x, y), c) := Ray(Y (x, y), |·|c) (cf. § 1.3.1). IfX ′ ⊆ X is a sub-affinoid
we simply write Ray(Y (x, y),X ′) := Ray(Y (x, y), ‖ · ‖X′).

5.4 Transfer principle
As in the differential setting, if X ′ := D+(c′0, R′

0) −
⋃s

i=1 D−(c′i, R
′
i) ⊆ X is a q-invariant sub-

affinoid of X, such that every disk D−(c′i, R
′
i) is also q-invariant, then the estimate (5.2.1) holds

(cf. Remark 7.12). Then, by induction on the rule Hn+1 = dq(Hn) + σq(Hn)H1, one shows that
‖Hn‖X′ � max(‖H1‖X′ , r−1

X′ )n, hence

Ray(Y (x, y),X ′) := lim inf
n

(‖Hn‖X′/|[n]!q|)−1/n = inf
c∈X′(Ω)

Ray(Y (x, y), c)

= min
c∈{tc′

0
,R′

0
,...,tc′s,R′

s
}
Ray(Y (x, y), c) �

lim infn |[n]!q|1/n

max(r−1
X′ , ‖H1‖X′)

, (5.4.1)

where (Ω, |·|)/(K, |·|) is sufficiently large to contain {tc′0,R′
0
, . . . , tc′s,R′

s
} (cf. § 1.4). As suggested by the

referee, one can prove the second and the third equalities using a q-analog of a theorem of Dwork and
Robba (cf. [DV04]). One may also observe that, since ‖Hn(T )‖X′ � |Hn(c)|Ω, for all c ∈ X ′(Ω), then
Ray(Y (x, y),X ′) � infc∈X′(Ω) Ray(Y (x, y), c). The converse of this inequality is proved as follows.
By the properties of the Shilow boundary one has ‖Hn(T )‖X′ = maxi=0,...,s′ |Hn(tc′i,R′

i
)|. Hence

(‖Hn(T )‖X′/|[n]!q|)−1/n = mini=0,...,s′ |Hn(tc′i,R′
i
)|/|[n]!q|−1/n, and since ‘lim inf’ commutes with the

‘minimum over a finite set’, then Ray(Y (x, y),X ′) = mini=0,...,s′ Ray(Y (x, y), tc′i,R′
i
). Now since we

have chosen Ω such that tc′i,R′
i
∈ X ′(Ω), then

min
i=0,...,s′

Ray(Y (x, y), tc′i,R′
i
) � inf

c∈X′(Ω)
Ray(Y (x, y), c).

This proves the required equalities.
In particular if X ′ = D+(c, ρ) ⊆ X, with |q − 1||c| < ρ � ρc,X , is a q-invariant disk, then

Ray(Y (x, y), c) is greater than or equal to

Ray(Y (x, y),D+(c, ρ)) = min
c′∈D+

Ω(c,ρ)
Ray(Y (x, y), c′)

= Ray(Y (x, y), tc,ρ) �
lim infn([n]!q)

1/n

max(ρ−1, |H1|(c,ρ))
. (5.4.2)
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Notice that if |q − 1||c| < Rc := Ray(Y (x, y), c), then Y (x, c) ∈ Mn(AΩ(c,Rc)), but Y (x, c) is
invertible only in GLn(AΩ(c, R̃)), with R̃ := min(ρc,X , Ray(Y (x, y), c)) (cf. Lemmas 5.15 and 5.16).

5.5 Properties of the generic Taylor solution
The formal matrix solution YA(x, y) is not always a function in a neighborhood of type UR of the
diagonal of X ×X. But if for all c ∈ X(Kalg) one has |q − 1||c| < R � min(ρc,X , Ray(Y (x, y), c)),
then, by Lemma 5.3, and by the transfer principle (cf. Equation (5.4.2)), YA(x, y) actually defines
an invertible function on UR (cf. Lemmas 5.15 and 5.16). If X = D+(c0, R0)−

⋃n
i=1 D−(ci, Ri), the

condition |q − 1||c| < R � min(ρc,X , Ray(Y (x, y), c)), for all c ∈ X(Kalg), implies that

|q − 1| sup(R0, |c0|) = |q − 1|max
c∈X
|c| < R � min

c∈X
ρc,X = min(R0, . . . , Rn) = rX . (5.5.1)

In particular, since rX = min(R0, . . . , Rn) � sup(|c0|, R0), this is possible only if

|q − 1| < 1, i.e. if q ∈ Q1(X). (5.5.2)

Hypothesis 5.14. From now on, without explicit mention to the contrary, we will assume that

q ∈ Q1(X). (5.5.3)

Lemma 5.15. Let q ∈ Q1(X)−µ(Q1(X)). Let f(x, y) be an analytic function in a neighborhood of
type UR ⊂ X ×X of the diagonal of X ×X. Assume that4

|q − 1|max(|c0|, R0) < R � rX . (5.5.4)

If moreover f(x, y) satisfies f(x, qy) = a(y) ·f(x, y), with a(y) ∈ HK(X)×, then f(x, y) is invertible.

Proof. Since f is an analytic function, it is sufficient to prove that f has no zeros in UR. We need
only show that, for all c ∈ X(Ω), the function gc(y) := f(c, y) has no zeros in D−(c,R). One has
dq(gc(y)) = h(y) · gc(y), with h(y) = (a(y) − 1)/((q − 1)y). Assume that gc(c̃) = 0, for some c̃ ∈
D−(c,R) = D−(c̃, R), then, by Lemma 5.3, gc(y) =

∑
n�0 ak(y− c̃)q,n, with a0 = 0. Since q /∈ µ(Q),

we have [n]qan = 0 if and only if an = 0. Hence, by Remark 5.4 one has vq,c̃(dq(gc)) = vq,c̃(gc) − 1.
On the other hand, vq,c̃(hgc) � vq,c̃(gc), which contradicts dq(gc) = hgc.

Lemma 5.16. Let q ∈ Q1(X)− µ(Q1(X)), and let

σx
q : f(x, y) �→ f(qx , y), σy

q : f(x, y) �→ f(x, qy),

dx
q :=

σx
q − 1

(q − 1)x
, dy

q :=
σy

q − 1
(q − 1)y

.
(5.5.5)

Suppose that YA(x, y) converges on UR, with (cf. § 5.5)

|q − 1|max(|c0|, R0) < R � rX . (5.5.6)

Then YA(x, y) is invertible on UR and satisfies YA(x, x) = Id and

dy
q YA(x, y) = −σy

q (YA(x, y)) ·H1(y), (5.5.7)

σy
qYA(x, y) = YA(x, y) ·A(q, y)−1, (5.5.8)

YA(x, y) · YA(y, z) = YA(x, z), (5.5.9)

YA(x, y)−1 = YA(y, x), (5.5.10)
dx

q YA(x, y) = H1(x) · YA(x, y), (5.5.11)

σx
q YA(x, y) = A(q, x) · YA(x, y). (5.5.12)

4That is, assume that |q − 1|max(|c0|, R0) < R � ρc,X for all c ∈ X(Kalg).
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Proof. The relation Y (x, x) = Id is evident, while (5.5.7) is easy to compute explicitly, and is
equivalent to (5.5.8). Since Y (x, y) converges on UR, (5.5.8) implies that the determinant d(x, y)
of Y (x, y) satisfies d(x, qy) = a(y)d(x, y), with a(y) = det(A(q, y)−1) ∈ HK(X)×. By Lemma 5.15,
d(x, y) is then invertible on UR, and hence also Y (x, y) is invertible. By (5.1.9), and since q /∈ µ(Q),
the relation dy

q(Y (x, y)Y (x, y)−1) = 0 gives

dy
q(Y (x, y)−1) = −σy

q (Y (x, y)−1) · dy
q(Y (x, y)) · Y (x, y)−1. (5.5.13)

Hence, for all x, y, z such that |x−y|, |z−y| < R, the relation (5.5.13) together with relation (5.5.7)
give dy

q(Y (x, y) · Y (z, y)−1) = 0. Since q /∈ µ(Q), this implies, by Lemma 5.3, that the function
Y (x, y)Y (z, y)−1 does not depend on y. Specializing for y = x and y = z, one finds Y (x, z) =
Y (z, x)−1 and Y (x, y) · Y (y, z) = Y (x, z). Then, by the above expression for dx

q (Y (y, x)−1) =
dx

q (Y (x, y)), the relations (5.5.11) and (5.5.12) follow from (5.5.10) and (5.5.7).

5.5.1 The case |q−1| = 1, |q| = 1. If for a c ∈ X one has |q−1||c| � Ray(YA(q,T )(x, y), c), then
Lemma 5.16 does not apply (cf. [DV04, § 15]). It may happen (cf. Remark 7.12) that there exists
a (smallest) k0 � 0 such that condition (5.5.6) holds for qk0 instead of q, and for YA(qk0 ,T )(x, y)
instead of YA(q,T )(x, y). There then exists a Taylor solution Yc ∈ Mn(AΩ(c,R)) of the iterated
system σqk0 (Yc) = A(qk0 , T )Yc. In this case, for all c ∈ X(Ω), we can recover a solution Y big

of the system σq(Y big) = A(q, T )Y big itself in the algebra of analytic functions over the dis-
joint union of disks

⋃k0−1
i=0 D−(qic,R). Indeed σq acts on the algebra

∏
i∈Z/k0Z

Mn(AK(qic,R)) by
σq((Mqic(T ))i∈Z/k0Z

) = (Mqi+1c(qT ))i∈Z/k0Z
, and so one has

Y big(T ) = (Y big
qic

(T ))i := (A(qi, q−iT ) · Yc(q−iT ))i∈Z/k0Z
. (5.5.14)

In fact A(qi+1, q−iT ) = A(q, T )A(qi, q−iT ). This and related matters are very well explained
in [DV04].

5.5.2 Notice that the relations of Lemma 5.16 hold for YA(x, y) as a function on UR, and not
for Y big(T ) (cf. (5.5.14)). In other words the expression Y big

A (x, y) has no meaning if |x− y| � R. In
particular the expression (5.5.9), which is the main tool of the propagation theorem (Theorem 7.7),
holds only if |x− y|, |z − y| < R.

5.5.3 The case of a root of unity. If q ∈ µ(Q) is a root of unity, then even when a solution
Y ∈ GLn(AΩ(c,R)) exists, the radius is not defined since we may have another solution with
different radius (cf. Example 5.17 below). For this reason, the radius of convergence of the system
(5.3.8) will be not defined if q ∈ µ(Q).

Example 5.17. Let q = ξ be a pth root of unity, with ξ �= 1. The solutions of the unit object at
tp ∈ Ω are the functions y ∈ AΩ(tp, R) such that y(ξT ) = y(T ). Every function in T p has this
property. For example the family of functions {yα := exp(α(T p − tp))}α∈Ω is such that for different
values of α one has different radii.

5.6 Taylor solutions of (σq, δq)-modules
In this subsection q may be a root of unity. We preserve the previous notation. We consider now a
system (the notion of the solution of such a system has been defined in § 3.2):

σq(Y ) = A(q, T ) · Y, A(q, T ) ∈ GLn(HK(X)),
δq(Y ) = G(q, T ) · Y, G(q, T ) ∈ Mn(HK(X)).

(5.6.1)

It can happen that a solution of σM
q is not a solution of δMq as shown by the following example.

893

https://doi.org/10.1112/S0010437X07003454 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003454


A. Pulita

Example 5.18. Suppose that q ∈ D−(1, 1) is not a root of unity. Let X := D+(0, |p|1/(p−1)),
A(q, T ) := exp((q − 1)T ) ∈ HK(X)×, G(q, T ) := 0. Let c = 0, and R < |p|1/(p−1). Then every
solution y(T ) ∈ AK(0, R) of the operator σq − A(q, T ) is of the form y(T ) = λ · exp(T ), with
λ ∈ K. If δq(y) = 0, then y = 0. Hence, the (σq, δq)-module defined by A(q, T ) and G(q, T ) has no
(non-trivial) solutions in AK(0, R).

To guarantee the existence of solutions we need a compatibility condition between σq and δq,
which should be written explicitly in terms of matrices of σn

q and δn
1 . This obstruction will not

appear in the sequel of the paper since this condition is automatically satisfied by analytic σ-modules
(cf. Lemma 5.19). This will follow from the fact that a solution α : M → AΩ(c,R) is continuous
(see the proof of Lemma 5.19). Observe that Lemma 5.19 below is not a formal consequence of the
previous theory. Indeed, by Definition 3.2, the general (σ, δ)-algebra C has the discrete topology,
hence the morphism α : M→ C defining the solution is not continuous in general.

Lemma 5.19. Let U ⊆ Q(HK(X)) be an open subset, and let M be an analytic (σ, δ)-module on U ,
representing the family of equations {σq(Y ) = A(q, T ) · Y }q∈U , with A(q, T ) ∈ GLn(HK(X)), for
all q ∈ U . Let Yc(T ) ∈ GLn(AΩ(c,R)), |q − 1||c| < R � ρc,X , be a simultaneous solution of every
equation of this family. Then Yc(T ) is also solution of the equation

δq(Y ) = G(q, T ) · Y, (5.6.2)

where G(q, T ) := q(d/dq)(A(q, T )) (cf. (2.4.5)). Hence Yc(T ) is a solution of the differential equation
defined in § 2.4.1,

δ1(Yc(T )) = G(1, T ) · Yc(T ), (5.6.3)
where G(1, T ) = G(q, q−1T ) · A(q, q−1T )−1 ∈Mn(HK(X)) (cf. (2.2.7)).

Proof. In terms of modules, the columns of the matrix Yc(T ) correspond to HK(X)-linear maps
α : M → AΩ(c,R), verifying σq ◦ α = α ◦ σM

q , for all q ∈ U (cf. § 3.2.1). We must show that such
an α also commutes with δq. This follows immediately by the continuity of α. Indeed, the inclusion
HK(X) → AΩ(c,R) is continuous, and hence every HK(X)-linear map HK(X)n → AΩ(c,R) is
continuous.

5.7 Twisted Taylor formula for (σ, δ)-modules, and rough estimate of radius
Let X be a q-invariant affinoid. Let

Dq := σq ◦ d

dT
= lim

q′→q

σq′ − σq

T (q′ − q) =
1

qT
· δq.

For all q ∈ Q(X) and all f(T ) ∈ HK(X), one has

Dq(f · g) = σq(f) ·Dq(g) + Dq(f) · σq(g), (5.7.1)
(d/dT ◦ σq) = q · (σq ◦ d/dT ), (5.7.2)

Dn
q = qn(n−1)/2 · σn

q ◦ (d/dT )n, (5.7.3)

‖Dn
q (f(T ))‖X � |n!|

rn
X

· ‖f(T )‖X (cf. Lemma 1.9). (5.7.4)

Hence, for all c ∈ K,

Dn
q (T − c)i =

i!
(i− n)!

· qn(n−1)/2 · (qnT − c)i−n

if n � i, and Dn
q (T − c)i = 0 if n > i. This shows that if

f(T ) :=
∑
i�0

ai · (T − c)i
(i!) · qi(i−1)/2

∈ AΩ(c,R)
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is a formal series, with |q − 1||c| < R � ρc,X , then an = Dn
q (f)(c/qn), and the usual Taylor formula

can be written as

f(T ) =
∑
n�0

Dn
q (f)(c/qn) · (T − c)n

(n!) · qn(n−1)/2
. (5.7.5)

The following proposition gives the analog of the classical rough estimate for differential and
q-difference equations (cf. [Chr83, 4.1.2] and [DV04, 4.3]).

Proposition 5.20. Let c ∈ X(Ω). Assume that the system (5.6.1) has a Taylor solution Yc ∈
Mn(AΩ(c,Rc)), with |q − 1||c| < Rc � ρc,X . For all q-invariant sub-affinoid X ′ ⊆ X, containing
D+(c, |q − 1||c|), one has

Rc � |p|1/(p−1)

max(r−1
X′ ‖A(q, T )‖X′ , ‖G(q, T )/qT ‖X′)

. (5.7.6)

In particular if X ′ is a disk D+(c, ρ), with |q − 1||c| � ρ � ρc,X , then

Rc � |p|1/(p−1) · ρ
max(|A(q, T )|(c,ρ), |G(q, T )|(c,ρ)/max(1, |c|/ρ)) . (5.7.7)

Proof. The matrix Yc(T ) satisfies σn
q (Yc(T )) = A[n](q, T ) ·Yc(T ), and Dn

q (Yc(T )) = F[n](q, T ) ·Yc(T ),
where F[0] = Id = A[0], A[1] := A(q, T ), F[1] := (1/qT )G(q, T ), and

A[n] := σn−1
q (A[1]) · · · σq(A[1]) · A[1], (5.7.8)

F[n+1] := σq(F[n]) · F[1] +Dq(F[n]) · A[1]. (5.7.9)

Hence one has

Yc(T ) :=
∑
i�0

F[n](c/q
n)

(T − c)n
(n!) · qn(n−1)/2

, (5.7.10)

which is a hybrid between the usual Taylor formula and the Taylor formula for q-difference equations.
Inequalities (5.7.6) then follow from the inequality

|F[n](c/q
n)|Ω � ‖F[n]‖X′ � max

(
‖F[1]‖X′ ,

1
rX′
· ‖A[1]‖X′

)n

. (5.7.11)

If X ′ = D+(c, ρ), then the last term is equal to

1
ρn
·max

( |G(q, T )|(c,ρ)

max(1, |c|/ρ) , |A(q, T )|(c,ρ)

)n

.

Indeed rD+(c,ρ) = ρ, F[1] = (1/qT )G(q, T ), and |T |(c,ρ) = |(T − c) + c|(c,ρ) = max(ρ, |c|), hence

|F[1]|(c,ρ) =
1

|q|max(|c|, ρ) · |G(q, T )|(c,ρ)

and |q| = 1.

6. Generic radius of convergence and solvability

Definition 6.1 (Generic radius of convergence). Let q ∈ Q(X) (respectively q ∈ Q(X) − µ(Q)),
let c ∈ X(Kalg), and let D+(c, ρ), |q − 1||c| < ρ � ρc,X , be a q-invariant disk. Let M be the
(σq, δq)-module (respectively σq-module) defined by the system (5.6.1) (respectively (5.3.8)). Let
Rtc,ρ := Ray(Y (x, y), tc,ρ) = Ray(Y (x, y), | · |(c,ρ)) be the radius of convergence5 of YA(q,T )(T, tc,ρ).

5In the case of the q-difference equation (5.3.8), the radius Rtc,ρ is given by definition (5.3.10). In the case of the
system (5.6.1), the radius Rtc,ρ is given indifferently by definition (5.3.2) or by definition (5.3.10). Indeed under our
assumptions these two definitions are equal since YA(q,T )(x, y) = YG(1,T )(x, y). However observe that the definition
(5.3.10) exists only if q ∈ Q− µ(Q), while definition (5.3.2) preserves its meaning on the root of unity.
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Assume that6

|q − 1||tc,ρ| < Rtc,ρ . (6.0.1)

We define the (c, ρ)-generic radius of convergence of M to be the real number

Ray(M, | · |c,ρ) := min(Rtc,ρ , ρc,X) > |q − 1||c|. (6.0.2)

6.0.1 The assumption (6.0.1) ensures that the disk of convergence of Y (x, y) at y = tc,ρ is
q-invariant. The bound Ray(M, |·|c,ρ) � ρc,X ensures that Y (x, y) is invertible in the disk D−(tc,ρ, R),
for all 0 < R � Ray(M, | · |c,ρ) (cf. Lemma 5.15). We recall that |tc,ρ| = min(|c|, ρ), and that
‖ · ‖D+(c,ρ) = maxy0∈D+

Kalg (c,ρ) | · |y0. Hence, by the transfer principle (cf. § 5.4), one has

Rtc,ρ := Ray(Y (x, y), tc,ρ) = Ray(Y (x, y),D+(c, ρ)) = min
y0∈D+

Kalg (c,ρ)
Ray(Y (x, y), y0). (6.0.3)

The number Ray(M, | · |(c,ρ)) is invariant under change of basis in M, while the number Rtc,ρ =
Ray(Y (x, y), | · |(c,ρ)) depends on the choice of basis. Observe that Ray(M, | · |(c,ρ)) depends on the
affinoid X, and on the semi-norm | · |(c,ρ) defined by tc,ρ, but not on the particular choice of tc,ρ
(cf. § 1.4.1).

Definition 6.2 (Solvability). Let M be a σq-module (respectively a (σq, δq)-module) on HK(X).
We will say that M is solvable at tc,ρ if

Ray(M, | · |(c,ρ)) = ρc,X . (6.0.4)

6.0.2 Continuity and log-concavity of the radius. Notice that every point | · |∗ in the Berkovich
space associated to X is of the form | · |c,ρ, for a suitable ρ � 0, and for a point c in X(L), where
(L, | · |)/(K, | · |) is a sufficiently large extension of complete valued fields. One may verify that
| · |(c,ρ) �→ Ray(M, | · |(c,ρ)) is a well defined function on the Berkovich space (i.e. the radius does not
depend on the chosen c, but only on | · |∗). In a recent preprint [BDV07] it has been proved that
the function | · |∗ �→ Ray(M, | · |∗) is continuous on the Berkovich space. We refer to [BDV07] for a
very inspiring treatment to this subject.

We notice that this generalizes a previous statement [CD94] proving, for all c ∈ X(L), the
continuity of the function ρ �→ Ray(M, | · |c,ρ).

Let now (L, | · |)/(K, | · |) be any extension of complete valued fields. Let c ∈ X(L). The function
ρ �→ Ray(M, | · |c,ρ) defined on [0, ρc,X ] is log-concave (cf. Definition 1.4), and it can be proved that
it is piecewise log-affine. This follows essentially by the definition of the radius (cf. (5.3.10)), and
by Lemma 1.6.

6.1 Solvability over an annulus and over the Robba ring

Let B := AK(I), with I = ]r1, r2[, and let M be a σq-module (respectively a (σq, δq)-module) on
AK(I). For all c ∈ K, |c| ∈ I, one has tc,|c| = t0,|c|. For all affinoid X ⊆ C(I) containing the
disk D−(c, |c|) one has ρc,X = |c|. Then the norm | · |c,|c| : AK(I) −→ R� and the generic radius
Ray(M, | · |(c,|c|)) do not depend on the choice of c or the affinoid X, but only on |c|. Hence, for all
ρ ∈ I, we choose an arbitrary c ∈ Ω, with |c| = ρ ∈ I, and we set

tρ := tc,ρ and Ray(M, ρ) := Ray(M, | · |(c,ρ)). (6.1.1)

To define the radius we need the assumption |q − 1||tρ| < ρtρ,X = ρ (cf. Definition 6.1).

6Observe that ρc,X = ρtc,ρ,X indeed D+(c, r) = D+(tc,ρ, r), for all r � ρ.
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Since |tρ| = ρ, this assumption is equivalent to

|q − 1| < 1. (6.1.2)

Definition 6.3 (Solvability at ρ). Let q ∈ Q1 − µ(Q1) (cf. (2.0.2)). Let M be a σq-module on
AK(I). We will say that M is solvable at ρ ∈ I if

Ray(M, ρ) = ρ. (6.1.3)

6.1.1 Solvability over RK or H†
K . Let q ∈ Q1 − µ(Q1). Let M be a σq-module over RK . By

definition M comes, by scalar extension, from a module Mε1 defined on an annulus C(]1− ε1, 1[). If
ε2 > 0, and if Mε2 is another module on C(]1 − ε2, 1[) satisfying Mε2 ⊗AK(]1−ε2,1[) RK

∼→ M, then
there exists an ε3 � min(ε1, ε2) such that

Mε1 ⊗AK(]1− ε3, 1[) ∼−→ Mε2 ⊗AK(]1− ε3, 1[). (6.1.4)

Hence the limit limρ→1− Ray(Mε, ρ) is independent of the choice of the module Mε.

Definition 6.4. Let q ∈ Q1 − µ(Q1), and let |q − 1| < r � 1. We define

σq-Mod(H†
K)[r], (6.1.5)

as the full subcategory of σq-Mod(H†
K) whose objects satisfy

Ray(M, 1) � r (r > |q − 1|), (6.1.6)

as illustrated below in the log-graphic of the function log(ρ) �→ log(Ray(M, ρ)/ρ) (cf. Definition 1.4).

�
�

�
�
���

�		



•log(r)

log(|q − 1|)

log(ρ)

log(Ray(M, ρ)/ρ)

Objects in σq-Mod(H†
K)[1] will be called solvable.

Definition 6.5. Let q ∈ Q1 − µ(Q1), and let |q − 1| � r � 1. We define

σq-Mod(RK)[r] (6.1.7)

as the full subcategory of σq-Mod(RK) formed by objects M satisfying limρ→1− Ray(M, ρ) � r, and
there exists εq > 0 such that Ray(M, ρ) > |q−1|, for all ρ ∈ ]1− εq, 1[. There are two possible cases,
r > |q − 1| and r = |q − 1|, as illustrated in the following pictures.

�
�

�
�
��
�
�
��

log(1− εq)

log(|q − 1|)
log(r)

log(ρ)

log(Ray(M, ρ)/ρ) �
�

�
�
��		

log(1− εq)

log(r) = log(|q − 1|)

log(ρ)

log(Ray(M, ρ)/ρ)

Objects in σq-Mod(RK)[1] will be called solvable.

Remark 6.6. Notice that in Definition 6.4 the existence of εq > 0 such that Ray(M, ρ) > |q− 1|, for
all ρ ∈ ]1− εq, 1 + εq[ is automatically verified since one assumes r > |q − 1|.
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6.1.2 Analogous definitions for (σq, δq)-modules. In the case of (σq, δq)-modules, the generic
radius of convergence is defined even if q is a root of unity. We then give analogous definitions of
(σq, δq)-Mod(B)[r], for B := RK or B := H†

K , without any restrictions on q.

6.2 Generic radius for discrete and analytic objects over RK and H†K
In this section B = RK or B = H†

K .

Definition 6.7. For all ε > 0 let

Iε :=

{
]1− ε, 1[, if B = RK ,

]1− ε, 1 + ε[, if B = H†
K .

(6.2.1)

Definition 6.8. For all subsets S ⊆ D−(1, 1) = Q1, for all 0 < τ < 1, we set

Sτ := S ∩D−(1, τ). (6.2.2)

Definition 6.9. Let 0 < r � 1. Let S ⊆ D−(1, 1), S◦ �= ∅. We denote by

σ-Mod(B)[r]S (6.2.3)

the full subcategory of σ-Mod(B)S whose objects M have the following properties.

(i) The restriction of M to every q ∈ S belongs to σq-Mod(B)[r]

(ii) For all τ such that 0 < τ < r, there exists ετ > 0 such that the restriction Res〈S〉〈Sτ 〉(M) comes,
by scalar extension, from an object

Mετ ∈ σ-Mod(AK(Iετ ))disc
Sτ

(6.2.4)

such that, for all ρ ∈ Iετ , and for all q, q′ ∈ Sτ , one has (cf. (5.3.9))

YA(q,T )(T, tρ) = YA(q′,T )(T, tρ). (6.2.5)

Objects in σq-Mod(B)[1]S will be called solvable.

Example 6.10. This example justifies the condition (i) given in the preceding definition. Let r :=
ω := |p|1/(p−1), and let S = D−(1, ω). Let M be the discrete σ-module over the Robba ring defined
by the family of equations {σq−A(q, T )}q∈S , where A(q, T ) := exp((q−1− 1)T−1). Then Y (x, y) :=
exp(x−1−y−1) is the simultaneous solution of every equation of this family. Observe that A(q, T ) ∈
RK if and only if |q−1 − 1| < ω, but if |q − 1| tends to ω−, then the matrices A(q, T ) do not all
belong to the same annulus. Indeed A(q, T ) ∈ AK(Iε) if and only if |q−1 − 1| < ω(1− ε).
Remark 6.11. Condition (i) implicitly implies that S ⊆ D−(1, r) if B = H†

K (cf. Definition 6.4), and
S ⊆ D+(1, r) if B = RK (cf Definition 6.5).

6.2.1 Analogous definitions for (σq, δq)-modules. One defines analogously (σ, δ)-Mod(B)[r]S , but
without restrictions on S ⊆ D−(1, r), as the subcategory of (σ, δ)-Mod(B)S , whose objects verify
conditions (i) and (ii), in which equation (6.2.5) is replaced by (cf. definitions (5.3.1) and (5.3.9))

YG(1,T )(T, tρ) = YA(q,T )(T, tρ), (6.2.6)

for all ρ ∈ Iετ , and all q ∈ Sτ .

7. The propagation theorem

7.1 Taylor admissible modules
Definition 7.1 (Taylor admissible discrete modules on S). Let X := D+(c0, R0)−

⋃n
i=1 D−(ci, Ri)

be an affinoid, and let S ⊆ Q1(X) be a subset with S◦ �= ∅ (cf. (2.0.3)). Let (M, σM) be a discrete
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σ-module defined by the family of equations

{σq −A(q, T )}q∈S , A(q, T ) ∈ GLn(HK(X)), ∀q ∈ S. (7.1.1)

We will say that (M, σM) is Taylor admissible on X, with generic radius greater than r, if:

(1) one has S ⊆ D−(1, r/max(|c0|, R0));
(2) there exists a matrix Y (x, y), convergent in UR (cf. (5.3.3)), with R � r satisfying, for all q ∈ S,

the condition (5.5.1), that is
r � R � rX ; (7.1.2)

(3) Y (x, y) is a simultaneous solution of every equation of the family (7.1.1).

The full subcategory of σ-Mod(HK(X))disc
S whose objects are Taylor admissible, with generic radius

greater than r, will be denoted by

σ-Mod(HK(X))[r]S . (7.1.3)
Moreover we set

σ-Mod(HK(X))adm
S :=

⋃
r

σ-Mod(HK(X))[r]S , (7.1.4)

where r � rX runs in the set of real numbers such that S ⊆ D−(1, r/max(|c0|, R0)). We define
analogously the categories (σ, δ)-Mod(HK(X))[r]S and (σ, δ)-Mod(HK(X))adm

S of admissible (σ, δ)-
modules on S. Namely the condition S◦ �= ∅ is suppressed, and if (M, σM, δM1 ) is a discrete (σ, δ)-
module on S defined by a system of equations (cf. (3.2.4)), then the Taylor solution YG(1,T )(x, y) (cf.
(5.3.1)) of the differential equation defined by δM1 satisfies (7.1.2), and moreover is simultaneously
a solution of every equation defined by σM

q , for all q ∈ S.

7.1.1 Taylor admissibility over H†
K(X). We define

σ-Mod(H†
K(X))[r]S (respectively (σ, δ)-Mod(H†

K(X))[r]S ) (7.1.5)

as the full subcategory of σ-Mod(H†
K(X))S (respectively (σ, δ)-Mod(H†

K(X))S) formed by objects
whose restriction belongs to σ-Mod(HK(X))[r]S (respectively (σ, δ)-Mod(HK(X))[r]S ).

Remark 7.2. If X = {|T | = 1}, H†
K(X) = H†

K (cf. (1.2.4)), this definition is equivalent to Defini-
tion 6.9.

7.1.2 Taylor admissibility over RK . We preserve the notation of § 6.2.

Definition 7.3. We will say that an object is Taylor admissible over an annulus C(I) if its restriction
to every sub-annulus C(J), with J compact, J ⊆ I, is Taylor admissible (cf. Definition 7.1).

One defines Taylor admissibility over RK by reducing to the case of modules over a single
annulus C(Iε), for some ε > 0 sufficiently close to 0. One finds in this way exactly Definition 6.9.

Definition 7.4. Let S ⊆ D−(1, 1), with S◦ �= ∅. Let τS := supq∈S |q − 1|. We set

σ-Mod(RK)adm
S := σ-Mod(RK)[τS ]

S . (7.1.6)

We give the same definition for (σ, δ)-modules, without assuming that S◦ �= ∅: (σ, δ)-Mod(RK)adm
S :=

(σ, δ)-Mod(RK)[τS ]
S .

7.2 Propagation theorem
Remark 7.5. We preserve the notation of Definition 7.1. If M is Taylor admissible on X, then, in
particular, M is trivialized by AK(c,R), for all c ∈ X(K). Hence we can apply C-deformation and
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C-confluence to M, with C = AK(c,R) (cf. § 4.2). It will follow from the proof of Theorem 7.7 that
this confluence does not depend on the chosen point c ∈ X(K).

Theorem 7.6 (Propagation theorem, first form). Let X be an affinoid. Then, if q ∈ Q1(X) −
µ(Q1(X)), the natural restriction functor⋃

U

ResU
q :

⋃
U

σ-Mod(HK(X))adm
U −→ σq-Mod(HK(X))adm (7.2.1)

is an equivalence, where U runs over the set of all open neighborhoods of q. The analogous fact is
true for (σ, δ)-modules without supposing that q /∈ µ(Q).

Proof. By Lemma 4.3,
⋃

U ResU
{q} is fully faithful. Indeed for all modules M,N over U , by admissi-

bility, there exists a number R, with |q − 1|max(|c0|, R0) < R � rX , such that, for all c ∈ X(K),
the algebra C := AK(c,R) trivializes both M and N. The essential surjectivity of

⋃
U ResU

{q} will
follow from Theorem 7.7 below.

Theorem 7.7 (Propagation theorem, second form). Let X = D+(c0, R0) −
⋃n

i=1 D−(ci, Ri). Let
q ∈ Q1(X) − µ(Q1(X)). Let

Y (q · T ) = A(T ) · Y (T ), A(T ) ∈ GLn(HK(X)) (7.2.2)

be a Taylor admissible q-difference equation (cf. Definition 7.1). Then there exists a matrix A(Q,T )
uniquely determined by the following properties:

(i) A(Q,T ) is analytic and invertible in the domain

D−
(

1,
R

max(|c0|, R0)

)
×X ⊂ A2

K ; (7.2.3)

(ii) the matrix A(Q,T ) specialized at (q, T ) is equal to A(T );

(iii) for all q′ ∈ D−(1, R/max(|c0|, R0)), the Taylor solution matrix YA(x, y) of (7.2.2) (cf. (5.3.9))
simultaneously satisfies

YA(q′ · T, y) = A(q′, T ) · YA(T, y). (7.2.4)

Moreover the matrix A(Q,T ) is independent of the choice of solution YA(x, y).

Proof. By (7.2.4), the matrix A(Q,T ) must be equal to

A(Q,T ) = YA(Q · T, y) · YA(T, y)−1 = YA(Q · T, y) · YA(y, T ) = YA(Q · T, T ). (7.2.5)

This makes sense since YA(q,T )(x, y) is invertible in its domain of convergence (cf. Lemma 5.16).
Hence A(Q,T ) converges in the domain of convergence of YA(QT , T ) and is invertible in that
domain, since YA(x, y) is. By admissibility, there exists |q − 1|max(|c0|, R0) < R � rX such
that YA(x, y) converges for all (x, y) ∈ UR, i.e. for all (x, y) such that |x − y| < R (cf. (5.3.3)).
Then YA(QT , T ) converges for |Q − 1||T | < R. Since |T | � supc∈A |c| = max(|c0|, R0), it follows
that Y (QT , T ) converges for |Q− 1| < R/max(|c0|, R0).

Remark 7.8. By the propagation theorem, every object of

σ-Mod(HK(X))adm
U and of (σ, δ)-Mod(HK(X))adm

U

is automatically analytic.

Corollary 7.9. Let max(|c0|, R0) < r � rX , and let S ⊆ D−(1, r/max(|c0|, R0)), such that
S◦ �= ∅. For all q ∈ S◦ one has the following diagram in which all functors are equivalences
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by § 4.2.2

σ-Mod(HK(X))[r]S

(2.4.3)

Res S
{q} 

��
�

(σ, δ)-Mod(HK(X))[r]S

 Res S
{q}

��
σq-Mod(HK(X))[r] (σq, δq)-Mod(HK(X))[r]

Forget δq

∼��

(7.2.6)

By considering the union for all r (cf. (7.1.4)) one has the following statement. If τq :=
|q − 1|max(|c0|, R0), one then has the equivalences given in the diagram below.⋃

r>τq

σ-Mod(HK(X))adm
D−(1,r)

(2.4.3)

⋃
r>τq

Res
D−(1,r)
{q} 

��

�

⋃
r>τq

(σ, δ)-Mod(HK(X))adm
D−(1,r)

 ⋃
r>τq

Res
D−(1,r)
{q}

��
σq-Mod(HK(X))adm (σq, δq)-Mod(HK(X))adm

Forget δq

∼��

(7.2.7)

In particular, if q, q′ ∈ D−(1, 1) − µp∞ verify max(|q − 1|, |q′ − 1|)max(|c0|, R0) < r, then,
by the formalism introduced in § 4.2, if D := D−(1, r/max(|c0|, R0)), one has an equivalence

ResDq′ ◦ (ResDq )−1 : σq-Mod(HK(X))[r] ∼−−→ σq′-Mod(HK(X))[r]. (7.2.8)
The same statement holds for (σ, δ)-modules without assuming that q, q′ /∈ µp∞ .

Definition 7.10. In the notation of Corollary 7.9 (cf. (7.2.8)), if q, q′ /∈ µp∞ , we set

DefTay
q,q′ := ResD

q′ ◦ (ResDq )−1 : σq-Mod(HK(X))[r] ∼−→ σq′-Mod(HK(X))[r]. (7.2.9)

We denote again by DefTay
q,q′ , without assuming that q, q′ ∈ µp∞ , the analogous functor for (σ, δ)-

modules. Moreover, if q /∈ Q(X)− µp∞ , then we set

ConfTay
q := DefTay

q,1 ◦ (Forget δq)−1 : σq-Mod(HK(X))[r] ∼−→ δ1-Mod(HK(X))[r]. (7.2.10)

By Remark 7.5, the functor ConfTay
q : (σq, δq)-Mod(HK(X))[r] ∼−−→ σq-Mod(HK(X))[r] of dia-

gram (7.2.6) coincides with ConfCq (cf. Definition 4.6), where C is equal to AK(c, r), where r is as
in Corollary 7.9, and where c ∈ X(K) is arbitrarily chosen.

7.2.1 Root of unity. If q ∈ µp∞ , then the categories σq-Mod(HK(X))[r]S and σq-Mod(HK(X))adm
S

are not defined. In this case we cannot expect any equivalence between (σq, δq)-Mod(HK(X))adm

with a full subcategory of σq-Mod(HK(X)) because the first category is K-linear and the second is
not. In this case we will see in Proposition 8.6 that the functor ‘Forget δq’ is not very interesting
since it sends every (σq, δq)-module with Frobenius structure into the trivial σq-module (i.e. a direct
sum of the copies of the unit object).

7.2.2 Starting from a Taylor admissible σq-module M over B, one can compute the differential
equation ConfTay

q (M) ∈ δ1-Mod(B) by the relation

G(1, T ) = lim
q→1

A(q, T )− Id
q − 1

= lim
n→+∞

A(qpn
, T )− Id

qpn − 1
, (7.2.11)

where A(qpn
, T ) = A(q, qpn−1T )A(q, qpn−2T ) · · ·A(q, T ). The propagation theorem provides the

convergence of this limit in Mn(B). The reader may have the feeling that this limit should be
easy to compute, but (without introducing the Taylor solution) the convergence of this limit and
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its explicit computation are highly non-trivial facts. It is surprising to see that the admissibility
condition, which is not a strong assumption, actually implies such a deep fact.

Remark 7.11. It should be possible to generalize the main theorem to other kinds of operators,
different from σq. In other words it should be possible to ‘deform’ differential equations into ‘σ-
difference equations’, where σ in an automorphism different from σq, but sufficiently close to the
identity. We will describe this phenomenon in a forthcoming work [Pul08].

7.3 Extending the confluence functor to the case |q − 1| = |q| = 1
Let q ∈ Q(X) − µ(Q(X)) be such that qk0 ∈ Q1(X), for some k0 � 1.7 By composing with the
evident functor

σq-Mod(HK(X)) −→ σqk0 -Mod(HK(X)), (7.3.1)

one defines k0-Taylor admissible objects of σq-Mod(HK(X)) as objects whose image is Taylor ad-
missible in σqk0 -Mod(HK(X)). Since the sequence {qk0pn}n�0 tends to 1, then, for k0 sufficiently
large, qk0 satisfies the condition of § 5.2, in order that d

qk0 verifies equality (5.2.1). We obtain then
a confluence functor:

σq-Mod(HK(X))k0-adm −→ δ1-Mod(HK(X))adm. (7.3.2)

The converse of this fact (i.e. the deformation of a differential equation into a q-difference
equation with |q| = 1 and |q − 1| large) remains an open problem.

Remark 7.12. Notice that there exist equations in σq-Mod(HK(X)) which are not k0-Taylor
admissible, for all k0 � 1. For example consider the rank one equation σq − a, with a ∈ K, |a| > 1.
Suppose also that |q− 1| < |p|1/(p−1), in order that lim infn |[n]!q|1/n = |p|1/(p−1). Then the radius is
small and one can compute it explicitly by applying [DV04, Proposition 4.6]. One has

Ray((M, σM
q ), ρ) = |a|−1|p|1/(p−1)|q − 1|ρ < |q − 1|ρ

and

Ray((M, σM
qk0

), ρ) = |a|−k0 |p|1/(p−1)|qk0 − 1|ρ < |qk0 − 1|ρ.

7.4 Propagation theorem over H†K and RK
The propagation theorem is true over every base ring B appearing in this paper, up to a correct
definition for the notion of ‘Taylor admissible’. We state here the results for H†

K and RK .

Proposition 7.13. Let again B := H†
K , or B := RK , let 0 < r � 1, and let S ⊆ D−(1, r)

be a subset, with S◦ �= ∅. Let M ∈ σ-Mod(B)[r]S (i.e. in particular M is admissible). Then M is
the restriction to S of an analytically C-constant module over all the disk D−(1, r). Moreover, the
restriction functor is an equivalence:

σ-Mod(B)[r]
D−(1,r)

Res
D−(1,r)
S−−−−−−−→∼ σ-Mod(B)[r]S . (7.4.1)

In particular solvable modules extend to the whole disk D−(1, 1). The analogous assertion holds for
(σ, δ)-modules, without supposing that S◦ �= ∅:

(σ, δ)-Mod(B)[r]D−(1,r)

Res
D−(1,r)
S−−−−−−−→∼ (σ, δ)-Mod(B)[r]S . (7.4.2)

7For an annulus centered at 0, the condition qk0 ∈ Q1(A) = D−(1, 1) is equivalent to q̄ ∈ Falg
p .
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Proof. By Lemma 4.3, it suffices to prove the essential surjectivity of ResD
−(1,r)

S . The proof is
straightforward and essentially the same as the proof of the propagation theorem (Theorem 7.6).

Corollary 7.14. Let q, q′ ∈ D−(1, 1) − µp∞ . Let r ∈ R satisfy

max(|q − 1|, |q′ − 1|) < r � 1. (7.4.3)

Then one has an equivalence

σq-Mod(RK)[r]
DefTay

q,q′−−−−→∼ σq′-Mod(RK)[r]. (7.4.4)

The same equivalence holds between (σq, δq)-Mod(RK)[r] and (σq′ , δq′)-Mod(RK)[r], without assum-
ing that q /∈ µp∞ . Moreover, if q /∈ µp∞ , and if |q − 1| < r, then we have an equivalence

(σq, δq)-Mod(RK)[r]
Forgetδq−−−−−→∼ σq-Mod(RK)[r]. (7.4.5)

As usual we set ConfTay
q := DefTay ◦ (Forget δq)−1. The analogous statement holds for H†

K .

7.4.1 Unipotent equations. We shall compute the deformation DefTay
1,q of the differential module

Um defined by the equation

δ1(YUm) =


0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 1
0 0 0 · · · 0

 · YUm, YUm(x, y) =


1 �1 · · · �m−2 �m−1

0 1 �1 · · · �m−2
...

...
0 · · · 0 1 �1
0 · · · 0 0 1

 , (7.4.6)

where �n := [log(x)− log(y)]n/n!. One has

σx
q (�n(x, y)) = [log(qx )− log(y)]n/n! = (log(q) + log(x)− log(y))n/n! =

n∑
i=0

log(q)n−k

(n− k)! · �k.

The matrix of σUm
q is then

A(q, T ) =


1 log(q) log(q)2/2 · · · log(q)m−1/(m− 1)!
0 1 log(q) · · · log(q)m−2/(m− 2)!
...

...
0 0 · · · 1 log(q)
0 0 · · · · · · 1

 . (7.4.7)

7.5 Classification of solvable rank one q-difference equations over RK∞
In this section we classify rank one solvable q-difference equations over RK∞ by applying the defor-
mation DefTay

1,q to the classification of the differential equations obtained in [Pul07]. We recall the
classification of the rank one solvable differential equations over RK∞ :=

⋃
s�0RKs (see below).

We fix a Lubin–Tate group GP isomorphic to Ĝm over Zp. We recall that GP is defined by a
uniformizer w of Zp, and by a series P (X) ∈ XZp[[X]], satisfying P (X) ≡ w ·X (mod X2Zp[[X]])
and P (X) ≡ Xp (mod pZp[[X]]). By simplicity we assume p = w, in order that GP

∼= Ĝm. Such a
formal series is called a Lubin–Tate series. We fix now a sequence π := (πm)m�0, πm ∈ Q

alg
p , such

that P (π0) = 0, π0 �= 0 and P (πm+1) = πm, for all m � 0. The element (πm)m�0 is a generator of the
Tate module of GP which is a free rank one Zp-module. We set Ks := K(πs) and K∞ :=

⋃
s�0Ks.

We denote by ks and k∞ the respective residual fields. The tower K ⊆ K0 ⊆ K1 ⊆ · · · does not
depend on the choice of π, nor on GP

∼= Ĝm. One has Ks = K(ξs), where ξs is a primitive ps+1th
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root of unity. For example, one can choose GP = Gm, hence P (X) = (X+1)p−1, and πm = ξm−1,
where ξm is a compatible sequence of primitive pm+1th root of 1, i.e. ξp

0 = 1 and ξp
m = ξm−1, for all

m � 0. One has the following facts.

(i) Every rank one solvable differential module over RK has a basis in which the associated
operator is

L(a0,f
−(T )) := δ1 −

(
a0 −

s∑
j=0

πs−j

j∑
i=0

f−i (T )p
j−i
∂T,log(f−i (T ))

)
, (7.5.1)

where a0 ∈ Zp, and f−(T ) := (f−0 (T ), . . . , f−s (T )) is a Witt vector in Ws(T−1OKs [T−1]),
with Ks := K(πs). Notice that even if πj does not belong to K, the resulting polynomial∑s

j=0 πs−j
∑j

i=0 f
−
i (T )p

j−i
∂T,log(f−i (T )) has, by assumption, coefficients in K.

(ii) The Taylor solution at ∞ of the differential module in this basis is given by the so-called
π-exponential attached to f−(T ):

T a0 · epm(f−(T ), 1) := T a0 · exp
( s∑

j=0

πs−j

φ−j (T )
pj

)
, (7.5.2)

where 〈φ−0 (T ), . . . , φ−s (T )〉 ∈ (T−1OKs [T−1])s+1 is the phantom vector of f−(T ), namely one
has φ−j (T ) =

∑j
i=0 p

if−i (T )p
j−i

.

(iii) The correspondence f−(T ) �→ eps(f−(T ), 1) is a group morphism

Ws(T−1OKs [T
−1])

eps(−,1)−−−−−→ 1 + πsT
−1OKs [[T

−1]]. (7.5.3)

Notice that if L(0,f−(T )) has its coefficients in RK (⊂ RKs) then also eps(f−(T ), 1) lies in
1 + T−1OK [[T−1]] (because it is its Taylor solution at ∞).

(iv) Conversely, L(a0,f
−(T )) is solvable for all pairs (a0,f

−(T )) ∈ Zp ×Ws(T−1OKs [T−1]).

(v) The operator L(a0,f
−(T )) has a (strong) Frobenius structure (cf. Definition 8.5) if and only

if a0 ∈ Z(p) := Zp ∩Q.

(vi) The operators L(a0,f
−
1 (T )) and L(b0,f−

2 (T )) (with coefficients in RK(⊂ RKs)) define isomor-
phic differential modules (over RK) if and only if a0− b0 ∈ Z and the Artin–Schreier equation

F̄(g−(T ))− g−(T ) = f−
1 (T )− f−

2 (T ) (7.5.4)

has a solution g−(T ) in Ws(kalg((t))), where t is the reduction of T , and F̄ is the Frobenius of
Ws(kalg((t))) (sending (ḡ0, . . . , ḡs) into (ḡp

0 , . . . , ḡ
p
s )). This happens if and only if the equation

L(0,f−
1 (T ) − f−

2 (T )) is trivial over RK , and also if and only if eps(f−
1 (T ) − f−

2 (T ), 1) is
overconvergent.8

By deformation, every solvable q-difference equation, with |q − 1| < 1, has a solution at ∞ of
the form T a0 · eps(f−(T ), 1). Its matrix in this basis is then

A(q, T ) = eps(f−(qT ), 1)/eps(f−(T ), 1) = eps(f−(qT )− f−(T ), 1).

The deformation guarantees that A(q, T ) ∈ RK . This is confirmed by the fact that f−(qT ) and
f−(T ) have the same reduction in Ws(kalg((t))), and hence eps(f−(qT )− f−(T ), 1) ∈ RK by point
vi) of the previous classification.

8Indeed the overconvergence of eps (f−
1 (T )−f−

2 (T ), 1) is independent of the residual field; for this reason we can look
for solution of the Artin–Schreier–Witt equation (7.5.4) with coefficients in the more general field kalg instead of k.

904

https://doi.org/10.1112/S0010437X07003454 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003454


p-adic confluence of q-difference equations

8. Quasi-unipotence and p-adic local monodromy theorem

In this section we show how to deduce the q-analog of the p-adic local monodromy theorem
(cf. [And02, Ked04, Meb02]) by deformation.

Let K be a complete discrete valued field with perfect residue field (this hypothesis is necessary
to have the p-adic local monodromy theorem (cf. Theorem 8.12)). Let E†K ⊂ RK be the so-called
bounded Robba ring,

E†K :=
{∑

i∈Z
aiT

i ∈ RK

∣∣∣∣ sup |ai| < +∞, lim
i→−∞

|ai| = 0
}
.

Then, since K is discrete valued, (E†K , | · |(0,1)) is a Henselian valued field, with residue field k((t)).
It has two topologies arising from | · |(0,1), and from the inclusion in RK . It is not complete with
respect to either of these two topologies, but E†K is dense in RK . One has the inclusions

H†
K ⊂ E†K ⊂ RK . (8.0.1)

8.1 Frobenius functor and Frobenius structure

Let ϕ : K → K be an absolute Frobenius (i.e. a ring morphism lifting of the pth power map of k).
Since RK is not a local ring, and does not have a residue ring, we need a particular definition.

Definition 8.1. An absolute Frobenius on RK (respectively H†
K , E†K) is a continuous ring mor-

phism, again denoted by ϕ : RK →RK , extending ϕ onK and such that ϕ(
∑
aiT

i) =
∑
ϕ(ai)ϕ(T )i,

where ϕ(T ) =
∑

i∈Z biT
i ∈ RK (respectively ϕ(T ) ∈ H†

K , ϕ(T ) ∈ E†K) verifies |bi| < 1, for all i �= p,
and |bp − 1| < 1.

Definition 8.2. We denote by φ the particular absolute Frobenius on RK given by the choice

φ(T ) := T p, φ(f(T )) := fϕ(T p), (8.1.1)

where fϕ(T ) is the series obtained from f(T ) by applying ϕ : K → K to the coefficients.

Let B be one of the rings H†
K , E†K , or RK . For all q ∈ D−(1, 1), the following diagrams are

commutative.

B

�

φ ��

σqp

��

B
σq

��

B

�p·δ1
��

φ �� B

δ1
��

B
φ

�� B B
φ

�� B

(8.1.2)

Definition 8.3 (Frobenius functor). Let S ⊆ D−(1, r), 0 < r � 1. Let

r′ := min(r1/p, r · |p|−1). (8.1.3)

The Frobenius functor (cf. Definition 6.9)

φ∗ : (σ, δ)-Mod(B)[r]S −→ (σ, δ)-Mod(B)[r
′]

S , (8.1.4)

respectively

φ∗ : σ-Mod(B)[r]S −→ σ-Mod(B)[r
′]

S , (8.1.5)

is defined as φ∗(M, σM, δM1 ) = (φ∗(M), σφ∗(M), δ
φ∗(M)
1 ), where:

(i) φ∗(M) := M⊗B,φ B is the scalar extension of M via φ;
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(ii) the morphism σφ∗(M) is given by σφ∗(M)
q = σM

qp ⊗ σB
q ,

q �−→ σM
qp ⊗ σq : S σφ∗(M)−−−−→ Autcont

K (φ∗(M)); (8.1.6)

(iii) the derivation is given by

δ
φ∗(M)
1 = (p · δM1 )⊗ IdB + IdM ⊗ δB1 ; (8.1.7)

(iv) a morphism α : M→ N is sent into α⊗ 1 : φ∗(M)→ φ∗(N).

Remark 8.4. The fact that the functor φ∗ sends (σ, δ)-Mod(B)[r]S into (σ, δ)-Mod(B)[r
′]

S with this
particular value of r′ (cf. (8.1.3)) follows from the fact that this result is true for differential equations
(cf. [Pul05, Appendix] and [CM02, Proposition 7.2]), and from the confluence.

8.1.1 We observe that the pull-back ϕ∗(M) is actually a σ-module over S1/p := {q ∈ K | qp

∈ S}. Indeed φ∗(M) is canonically endowed with the action of σφ∗(M)

q1/p := σM
q ⊗σq1/p : φ∗(M)→ φ∗(M),

for all roots q1/p of q. This fact was used in [ADV04] to define the so-called confluent weak Frobenius
structure (cf. Definition 8.27).

If M ∈ (σ, δ)-Mod(H†
K)[r]S , then we can consider its Taylor solution at 1:

Y (T, 1) =
∑
i�0

Yi(T − 1)i ∈ GLn(AK(1, 1)), Yi ∈Mn(K).

Then the Taylor solution of φ∗(M) is given by

Y φ(T p, 1) :=
∑
i�0

ϕ(Yi)(T p − 1)i. (8.1.8)

The matrices of φ∗(σq) and φ∗(δ1) are the following. Let e = {e1, . . . , en} be a basis of M. Let
σq − A(q, T ) and δ1 − G(1, T ) be the operators associated to σM

q and δM1 in this basis. Then the
operators associated to φ∗(M) in the basis e⊗ 1 are

σq −Aϕ(qp, T p), δ1 − p ·Gϕ(1, T p), (8.1.9)

where, according to (2.1.7), one has A(qp, T ) = A(q, qp−1T ) · · ·A(q, qT )A(q, T ).

8.1.2 Frobenius structure. The functor φ∗ : δ1-Mod(RK)[1] ∼−−→ δ1-Mod(RK)[1] is an equiva-
lence (cf. [CM02, Corollary 8.14]). By deformation φ∗ is hence an auto-equivalence of σ-Mod(RK)[1]S

(if S◦ �= ∅) and (σ, δ)-Mod(RK)[1]S (without assuming S◦ �= ∅).
Definition 8.5 (Frobenius structure). Let B be one of the rings H†

K , E†K , or RK . Let S ⊆ D−(1, 1)
be a subset. Let M be a discrete σ-module (respectively (σ, δ)-module) over S. We will say that
M has a Frobenius structure of order h � 1, if there exists a B-isomorphism (φ∗)h(M) ∼−→ M of
σ-modules over S (cf. § 8.1.1), where (φ∗)h := φ∗ ◦ · · · ◦ φ∗, h-times. We denote by

σ-Mod(B)(φ)
S , (respectively (σ, δ)-Mod(B)(φ)

S ) (8.1.10)

the full subcategory of σ-Mod(B)[1]S (respectively (σ, δ)-Mod(B)[1]S ) whose objects have a Frobenius
structure of some unspecified order.

If M has a Frobenius structure, then r = r′ (cf. (8.1.3)) and hence M is solvable:

σ-Mod(B)(φ)
S ⊂ σ-Mod(B)[1]S . (8.1.11)

Hence objects in σ-Mod(B)(φ)
S and (σ, δ)-Mod(B)(φ)

S are, in particular, admissible.
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If Y (T, 1) is the Taylor solution of M ∈ (σ, δ)-Mod(H†
K)[1]S at 1, then the fact that M has a

Frobenius structure of some order h � 1 is equivalent to the existence of a matrix H(T ) ∈ GLn(H†
K)

such that

Y ϕh
(T ph

, 1) = H(T ) · Y (T, 1). (8.1.12)

Indeed AK(1, 1) is an H†
K-discrete σ-algebra over D−(1, 1) trivializing M (cf. Definition 3.2). In

particular the equivalences DefTay
q,q′ and ConfTay

q send objects with Frobenius structure into objects
with Frobenius structure.

Proposition 8.6. Let ξ be a pnth root of unity, and let q ∈ Q1−µ(Q1). Let M ∈ σq-Mod(H†
K)(φ).

Then DefTay
q,ξ (M) ∈ σξ-Mod(H†

K) is trivial (i.e. isomorphic to a direct sum of copies of the unit
object).

Proof. Let Y (T, 1) ∈ GLn(H†
K) be the Taylor solution at 1 of M in some basis e. Then, by (8.1.12),

there exists H(T ) such that Y ϕh
(T ph

, 1) = H(T ) · Y (T, 1). Hence, one also has Y ϕnh
(T pnh

, 1) =
Hn(T ) · Y (T, 1), for some Hn(T ) ∈ GLn(H†

K). Since σξ(Y ϕnh
(T pnh

, 1)) = Y ϕnh
(T pnh

, 1), it follows
that in the basis Hn(T ) · e the matrix of σξ is trivial: A(ξ, T ) = Id (cf. § 3.2.1).

8.2 Special coverings of H†K
We recall briefly the notions of special coverings. The residue field of E†K is k((t)) (with respect to
the norm | · |(0,1)). On the other hand, the residue ring of H†

K (with respect to the Gauss norm
| · |(0,1)) is k[t, t−1]. One has the following diagram.

OH†
K

�

⊆

��

OE†
K

��
k[t, t−1] ⊆ k((t))

(8.2.1)

We denote by OK [T, T−1]† the weak completion ofOK [T, T−1], in the sense of Monsky and Wash-
nitzer [MW68]. One has

H†
K = OK [T, T−1]† ⊗OK

K. (8.2.2)

Let us look at the residual situation. The morphism

η̂ := Spec(k((t))) ↪→ Gm,k = Spec(k[t, t−1]) (8.2.3)

gives rise, by pull-back, to a map{
finite étale
coverings of η̂

}
pull-back←−−−−−

{
finite étales
coverings of Gm,k

}
. (8.2.4)

It is known (cf. [Kat86, 2.4.9]) that this map is surjective, and moreover that there exists a full
sub-category of the right-hand category, called special coverings of Gm,k, which is equivalent, via
pull-back, to the category on the left-hand side. Special coverings are defined by the property that
they are tamely ramified at∞, and that their geometric Galois group has a unique p-Sylow subgroup
(cf. [Kat86, 1.3.1]).

On the other hand, if π ∈ OK is a uniformizing element, then both (OE†
K
, (π)) and

(OK [T, T−1]†, (π)) are Henselian couples in the sense of [Ray70, ch. II] (cf. [Mat02, § 5.1]).
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One can show that the preceding situation lifts to characteristic 0. One has the equivalences{
special
extensions of H†

K

}
∼

−⊗E†
K ��

�

{
finite unramified
extensions of E†K

}
∼

−⊗RK ��
{

special
extensions of RK

}

{
special extensions
of OK [T, T−1]†

}
∼

−⊗OE†
K��

�

−⊗K

��

−⊗k 
��

{
finite unramified
extensions of OE†

K

}
−⊗k

��

−⊗K
��

{
special
coverings of Gm,k

}
∼

pull-back ��
{

finite étale
coverings of η̂

}
(8.2.5)

where, by special extension of OK [T, T−1]† (respectively H†
K , RK), we mean a finite étale Galois

extension of OK [T, T−1]† (respectively H†
K , RK) coming, by Henselianity, from a special cover

of Gm,k.

Lemma 8.7. Let F/k((t)) be a finite Galois extension with Galois group G. Let S†(F)/H†
K be the

corresponding special extension of H†
K . Then (S†(F))G = H†

K .

Proof. By [SGA03, Exposé V, Corollary 3.4], (S†(F))G/H†
K is a special extension. The assertion is

then easy since, by the above equivalence, there is bijection between special sub-algebras of S†(F)
over H†

K and sub-extensions of F/k((t)).

8.2.1 Extension of σq to Special extensions.

Lemma 8.8 [ADV04, § 11.3]. Let F/k((t)) be a finite separable extension. Let F†/OK [T, T−1]† be the
corresponding special extensions. The automorphism σq of OK [T, T−1]† extends to an automorphism
F†. The extension is unique up to OK [T, T−1]†-automorphisms of F†. The same statement holds

for the extensions (H†
K)′/H†

K , (E†K)′/E†K , (RK)′/RK corresponding to F/k((t)). In particular there

exists a unique extension of σq to F†, (H†
K)′, (E†K)′, (RK)′ inducing the identity on F .

Proof. The proof results from the formal properties of Henselian couples (cf. [Ray70]).

By uniqueness the extension of σq commutes with the action of Gal(k((t))sep/k((t))).

Remark 8.9. Every finite extension of C((T )) is of the form C((Tm/n)). Up to change of variable
we have an isomorphism C((Tm/n)) ∼= C((Z)). Analogously it can be seen that a finite unramified
extension of E†K is (non-canonically) isomorphic to E†K ′ for some finite K ′/K. In this case the link
between the variable Z and the variable T is rather complicated and essentially unknown. One of
the problems of the theory is that the extended automorphism does not send Z into qZ. The general
‘confluence’ theory introduced in § 4 will be crucial in solving this problem.

8.3 Quasi-unipotence of differential equations and canonical extension
In this section we recall some known facts on p-adic differential equations.

Definition 8.10. We denote by H̃†
K (respectively Ẽ†K , R̃K) the union of all finite special (respec-

tively unramified, special) extensions of H†
K (respectively E†K , RK) in an algebraically closure of

the field of fractions of RK .
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Definition 8.11. Let B be one of the rings H†
K , E†K , RK . Let S ⊆ D−(1, 1) be a subset (respectively

S ⊆ D−(1, 1), with S◦ �= ∅). A discrete (σ, δ)-module on S (respectively discrete σ-module on S)
over B is called quasi-unipotent if it is trivialized by the discrete (σ, δ)-algebra

B̃[log(T )]. (8.3.1)

We observe that M is trivialized by B̃[log(T )], if and only if M is trivialized by B′[log(T )], where
B′ is a (finite) special extension of B. Indeed the entries of a fundamental matrix of solutions of M
in B̃[log(T )] all lie in a finite extension.

Theorem 8.12 (The p-adic local monodromy theorem, cf. [And02, Ked04, Meb02]). Objects in
δ1-Mod(RK)(φ) become quasi-unipotent possibly after a suitable extension of the field of constants
K. In other words, if M ∈ δ1-Mod(RK)(φ), then there exists a finite extension K ′/K such that

M⊗K K ′ is quasi-unipotent (i.e. trivialized by H̃†
K ′ [log(T )]).

Theorem 8.13 [Mat02, Corollary 7.10, Theorem 7.15]. If a differential equation M ∈ δ1-Mod(RK)
is quasi-unipotent, then it has a Frobenius structure. Moreover, the scalar extension functor

−⊗RK : δ1-Mod(H†
K)(φ) → δ1-Mod(RK)(φ) (8.3.2)

is essentially surjective.

Theorem 8.14 [Mat02, Theorem 7.15]. There exists a full sub-category of δ1-Mod(H†
K)(φ), denoted

by δ1-Mod(H†
K)Sp, which is equivalent to δ1-Mod(RK)(φ) via the scalar extension functor (8.3.2).

Objects in δ1-Mod(H†
K)Sp category are trivialized by H̃†

K [log(T )].

Definition 8.15 (Canonical extension). Objects in δ1-Mod(H†
K)Sp will be called special objects.

We will denote by

δ1-Mod(RK)(φ) Can−−→∼ δ1-Mod(H†
K)Sp ⊂ δ1-Mod(H†

K)(φ) (8.3.3)

the section of the functor (8.3.2), whose image is the category of special objects (cf. Theorem 8.14).
We will call it the canonical extension functor.

Corollary 8.16 [And02, Corollaire 7.1.6]. Let M ∈ δ1-Mod(RK)(φ), then, up to replacing K by a
finite extension K ′/K, M decomposes in a direct sum of submodules of the form N⊗ Um, where N
is a module trivialized by a special extension of RK , and Um is the m-dimensional object defined
by the operator (cf. § 7.4.1)

δ1 −


0 1 0 · · · 0
0 0 1 · · · 0

. . .

0 0 0 · · · 1
0 0 0 · · · 0

 . (8.3.4)

Remark 8.17. The log(T ) appearing in (8.3.1) is actually added uniquely to trivialize the module
of the form Um, for m � 2 (cf. § 7.4.1).

Lemma 8.18. Let N ∈ δ1-Mod(H†
K)Sp be a special object trivialized by H̃†

K . Let Ỹ = (ỹi,j) ∈
GLn(H̃†

K) be a fundamental matrix solution of N. Let (E†)′ (respectively R′) be the smallest special

extension of E†K (respectively RK), such that N ⊗ E†K is trivialized by (E†)′ (N ⊗RK is trivialized
by R′). Then one has

(E†)′ = E†K [{ỹi,j}i,j ], R′ = RK [{ỹi,j}i,j ]. (8.3.5)
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In other words, the smallest special extension of E†K (respectively RK) trivializing N is generated
by the solutions of N.

Proof. Since N is trivialized by (E†)′, one has E†K [{ỹi,j}i,j] ⊆ (E†)′. Hence the differential field
E†K ′[{ỹi,j}i,j] is an unramified extension, and is then a special extension. Since (E†)′ is minimal,
E†K [{ỹi,j}i,j] = (E†)′. The case over RK follows from the case over E†K .

Corollary 8.19. We preserve the notation of Lemma 8.18. There exists a unique automorphism
of E†K [{ỹi,j}i,j ] extending σq, and inducing the identity on the residue field. We denote it again by
σq.

Proof. By Lemma 8.18, E†K [{ỹi,j}i,j ] is a special extension (i.e. Henselian). Hence, by § 8.2.1, the
extension of σq to E†K [{ỹi,j}i,j ] is unique.

Corollary 8.20. Let S ⊆ D−
K(1, 1) The scalar extension functor

−⊗RK : (σ, δ)-Mod(H†
K)(φ)

S −→ (σ, δ)-Mod(RK)(φ)
S (8.3.6)

is essentially surjective. Moreover there exists a full sub-category of (σ, δ)-Mod(H†
K)(φ)

S , which we

call (σ, δ)-Mod(H†
K)Sp

S , equivalent via −⊗RK to (σ, δ)-Mod(RK)(φ)
S . The same statement is true for

σ-modules under the assumption S◦ �= ∅.
Proof. By Proposition 7.13, we can assume that S = D−(1, 1). By Theorem 8.13 there exists a
basis of M in which the matrix G(1, T ) of δM1 lies in Mn(H†

K). Moreover, Can(M, δM1 ) is Taylor
admissible, since all solvable differential equations are Taylor admissible. By Proposition 7.13, for
all q ∈ D−(1, 1), the matrix A(q, T ) := YG(qT , T ) belongs also to GLn(H†

K). This proves the essential
surjectivity. The fully faithfulness follows by deformation of Theorem 8.14 (cf. Corollary 7.9).

8.3.1 It is not clear to us if the smallest special extension of H†
K trivializing a given M ∈

δ1-Mod(H†
K)Sp is generated (over H†

K) by the entries of a fundamental matrix of solution of M. So
we are obliged to give the following definition.

Definition 8.21. We denote by C̃ét
K the sub-algebra of H̃†

K generated, over H†
K , by the entries of

every fundamental solution matrix of each object in δ1-Mod(H†
K)Sp which is trivialized by H̃†

K .

With the notation of Corollary 8.20, the inclusions (σ, δ)-Mod(H†
K)Sp

S ⊂ (σ, δ)-Mod(H†
K)(φ)

S ⊂
(σ, δ)-Mod(H†

K)[1]S are strict (the same holds for (σ, δ)-modules). For example the equation δ1(y) =
a0y, with a0 ∈ Zp−Z(p), is solvable, but without Frobenius structure (cf. § 7.5). On the other hand
an object with Frobenius structure could have non-zero p-adic slope at 1+ (hence irregular at ∞),
hence it is not special. Unfortunately we have no examples of non-special equations with Frobenius
structure, but trivialized by C̃ét

K [log(T )].

8.4 Quasi-unipotence of σ-modules and (σ, δ)-modules with Frobenius structure

This section is devoted to proving the following theorem.

Theorem 8.22 (The p-adic local monodromy theorem (generalized form)). Let S ⊂ D−(1, 1) be

a subset (respectively S◦ �= ∅). Then every object M ∈ (σ, δ)-Mod(RK)(φ)
S (respectively M ∈

σ-Mod(RK)(φ)
S ) is quasi-unipotent, after replacing K, if necessary, by a finite extension K ′/K

depending on M.
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This result simplifies and generalizes the analogous result of [ADV04]. The proof is obtained by
deformation of the p-adic local monodromy theorem of differential equations (cf. Theorem 8.12).

The proof is essentially the following. Assume that S = {q}, with q /∈ µp∞ . By canonical
extension (cf. Corollary 8.20) M is trivialized by R̃K [log(T )] if and only if Can(M) is trivialized by

H̃†
K [log(T )] (or equivalently by C̃ét

K [log(T )]). Hence we can assume that M ∈ σq-Mod(H†
K)Sp. Firstly

apply the confluence functor to obtain a differential equation ConfTay
q (M, σM

q ). We prove then in

Lemma 8.23 below that ConfTay
q (M, σM

q ) is C̃ét
K [log(T )]-extensible to D−(1, 1) (cf. Definition 4.4).

Hence we obtain, by deformation, another q-difference module Def C̃
ét
K [log(T )]

1,q (ConfTay
q (M, σM

q )) over
H†

K (cf. § 4). This q-difference module is quasi-unipotent since, by definition, it has the same solutions

in C̃ét
K [log(T )] of the quasi-unipotent differential equation ConfTay

q (M, σM
q ). We show then that there

is an embedding C̃ét
K [log(T )] ⊆ AKalg(1, 1) commuting with δ1, ϕ, and with σq, for all q ∈ D−(1, 1)

(cf. Lemma 8.24). This proves that the restriction of DefTay
1,q to the category of objects trivialized

by C̃ét
K [log(T )] coincides with Def C̃

ét
K [log(T )]

1,q (cf. §§ 4.2.3 and 4.2.1), because DefTay
1,q = DefC1,q, with

C = AK(1, 1) (cf. Remark 7.5) or equivalently C = AKalg(1, 1) (cf. Corollary 8.26). Hence

Def C̃
ét
K [log(T )]

1,q (ConfTay
q (M, σM

q )) = DefTay
1,q (ConfTay

q (M, σM
q )) = (M, σM

q ). (8.4.1)

In particular (M, σM
q ) is trivialized by C̃ét

K [log(T )] and is hence quasi-unipotent.

Lemma 8.23. Let M ∈ δ1-Mod(H†
K)Sp. Assume that K is sufficiently large so that M is quasi-uni-

potent. Let (H†
K)′ be the smallest special extension ofH†

K such that M is trivialized by (H†
K)′[log(T )].

Let Ỹ ∈ GLn(H̃†
K [log(T )]) be a fundamental matrix solution of the differential equation M. Then

there exists a finite extension K ′/K such that the matrix

Ã(q, T ) := σq(Ỹ ) · Ỹ −1 (8.4.2)

belongs to GLn(H†
K ′), for all q ∈ D−

K ′(1, 1). In particular the operator σq acting on Ẽ†K stabilizes both

H̃†
K and C̃ét

K , and hence M is C̃ét
K [log(T )]-extensible to the whole disk D−(1, 1) (cf. Definition 4.4).

Proof. We can suppose that K = K ′. By Corollary 8.16, and by canonical extension (cf. Defini-
tion 8.15), one can assume that M = N , or M = Um, where N is trivialized by a Galois étale
extension (H†

K)′ of H†
K , and where Um is defined over H†

K as in Corollary 8.16. The case M = Um

is trivial, since both the matrices of δUm
1 and of σUm

q can be described explicitly as in § 7.4.1. Let

now M = N (i.e. M is trivialized by H̃†
K). In this case the solution matrix Ỹ lies in GLn((H†

K)′).
The special extension (H†

K)′/H†
K corresponds via the equivalence of § 8.2 to a finite Galois extension

F/k((t)). Let G := Gal(F/k((t))); then G acts on (H†
K)′ by H†

K-automorphisms, and moreover the
fixed points under this action are exactly the elements of H†

K (cf. Lemma 8.7). After enlarging K,
if necessary, for all γ ∈ G, one has

γ(Ỹ ) = Ỹ ·Hγ , with Hγ ∈ GLn(K). (8.4.3)

Indeed by Lemma 8.18 the corresponding Galois extension (E†K)′/E†K is generated by the entries
of Ỹ . Hence (E†K)′/E†K is a Picard–Vessiot extension of E†K with differential Galois group G. It
follows then by Picard–Vessiot theory that Hγ ∈ GLn(K) (cf. [vdPS03, Observation 1.26]). Since
σq commutes with every γ ∈ G(cf. § 8.2.1), one finds

γ(Ã(q, T )) = γ(σq(Ỹ ) · Ỹ −1) = σq(Ỹ ) ·Hγ · (Ỹ ·Hγ)−1 = Ã(q, T ). (8.4.4)

Hence Ã(q, T ) belongs to H†
K , for all |q − 1| < 1.
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Lemma 8.24. Let AKalg(1, 1) :=
⋃

K ′/K=finiteAK ′(1, 1). There exists an embedding C̃ét
K [log(T )] ⊆

AKalg(1, 1) commuting with the actions of δ1, of ϕ, and of σq, for all q ∈ D−
Kalg(1, 1). In other

words AKalg(1, 1) is a C̃ét
K [log(T )]-(σ, δ)-algebra over the disk D−

Kalg(1, 1), and one has the following

diagram of discrete H†
K − (σ, δ)-algebras over D−(1, 1)

AKalg(1, 1) C̃ét
K

⊃ ⊂ H̃†
K

⊂ Ẽ†K ⊂ R̃K

AK(1, 1)

∪

H†
K

⊃

∪

⊂ E†K

∪

⊂ RK

∪ (8.4.5)

Proof. In the following we assume K to be sufficiently large in order that every special object
appearing in the proof is quasi-unipotent. Let M ∈ δ1-Mod(H†

K)Sp be a special differential equa-

tion trivialized by H̃†
K . Let (Cét

K)′ be the smallest sub-H†
K-algebra of H̃†

K trivializing M. By def-

inition (Cét
K)′ is generated over H†

K by the entries {ỹi,j}i,j of a matrix solution Ỹ of M in H̃†
K .

We consider H†
K [log(T )], (Cét

K)′[log(T )], C̃ét
K [log(T )], AK(1, 1) as differential algebras (we forget

the actions of σq in a first time). We have an embedding H†
K [log(T )] ⊂ AK(1, 1) commuting

with δ1 sending the symbol log(T ) into the power series
∑

n�1(−1)n−1(T − 1)n/n ∈ AK(1, 1).
We extend this embedding to (Cét

K)′[log(T )] as follows. Since the differential equation M has its
coefficients in H†

K we can consider its Taylor solutions Y (T, 1) at the point 1. Since M is solvable,
then Y (T, 1) ∈ GLn(AK(1, 1)). Let now FK := Frac(H†

K) be the field of fractions of H†
K . Since

FK is a field, then (up to enlarged K) we can apply the Picard–Vessiot theory to obtain an iso-
morphism FK [{ỹi,j}i,j] ∼−→ FK [{yi,j(T, 1)}i,j ], sending ỹi,j into yi,j(T, 1), and commuting with δ1.
Clearly this isomorphism identifies (Cét

K)′ = H†
K [{ỹi,j}i,j] with H†

K [{yi,j(T, 1)}i,j ] ⊂ AK(1, 1).
If M′ is another differential equation, and if H†

K [{ỹ′i,j}i,j ] is the corresponding Picard–Vessiot
extension identified with H†

K [{y′i,j(T, 1)}i,j ] ⊂ AK(1, 1), then the embedding corresponding to
M ⊕ M′ extends these two embeddings since the entries of a solution of M ⊕ M′ are the fami-
lies {ỹi,j , ỹ

′
h,k}i,j,h,k and {yi,j(T, 1), y′h,k(T, 1)}i,j,h,k respectively. It is hence clear that this family of

embeddings are compatible, so that we obtain an embedding C̃ét
K ⊆ AK(1, 1) commuting with δ1,

and consequently C̃ét
K [log(T )] ⊆ AK(1, 1) also commutes with δ1. Notice that log(T ) is algebraically

free over H†
K and hence over C̃ét

K which is union of finite algebras over H†
K (cf. Lemma 8.7).

We can now check that this embedding commutes with σq (respectively ϕ), by looking to its
action on the entries {ỹi,j}i,j and {yi,j(T, 1)}i,j . Hence it is enough to prove that the isomorphism
E†K [{ỹi,j}i,j] ∼−−→ E†K [{yi,j(T, 1)}i,j ] commutes with σq (respectively ϕ). Observe that, if we fix an
embedding of FK [{yi,j(T, 1)}i,j ] in a fixed algebraic closure of E†K , then E†K [{yi,j(T, 1)}i,j ] is, by
definition, the smallest field containing E†K and {yi,j(T, 1)}i,j . The actions of δ1, σq, ϕ are defined
on E†K [{yi,j(T, 1)}i,j ] as the extensions of δ1, σq, ϕ on FK [{yi,j(T, 1)}i,j ]. This extension exists since
H†

K [{yi,j(T, 1)}i,j ]∩E†K = H†
K [{ỹi,j}i,j ]∩E†K = H†

K (cf. Lemma 8.7), and since δ1, σq, ϕ act on Y (T, 1)
by multiplication by matrices with coefficients in H†

K (cf. [Bou59, § 6, no. 1, Proposition 1]). By
Lemma 8.19, there exists a unique extension of σq to E†K [{ỹi,j}i,j ], and of course a unique extension
of ϕ since E†K [{ỹi,j}i,j ]/E†K is unramified. Hence the isomorphism E†K [{ỹi,j}i,j ] ∼−→ E†K [{yi,j(T, 1)}i,j ]
commutes with σq and ϕ.

Remark 8.25. The same statement holds for AK(c, 1) instead of AK(1, 1), providing that |c| = 1,
c ∈ K, and ϕ(c) = c.
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Proof of Theorem 8.22. By Proposition 7.13, one has (σ, δ)-Mod(RK)(φ)
S = (σ, δ)-Mod(RK)(φ)

D−(1,1)
,

(respectively σ-Mod(RK)(φ)
S = σ-Mod(RK)(φ)

D−(1,1)
). On the other hand, (σ, δ)-Mod(RK)(φ)

D−(1,1)
=

σ-Mod(RK)(φ)
D−(1,1)

(cf. (2.4.3)). Moreover, if q ∈ D−(1, 1) − µp∞ , then (σ, δ)-Mod(RK)(φ)
D−(1,1)

=

(σq, δq)-Mod(RK)(φ) (respectively σ-Mod(RK)(φ)
D−(1,1)

= σq-Mod(RK)(φ)). Hence, without loss of
generality, we can assume that M is a Taylor admissible (σq, δq)-module, with Frobenius structure.
The proof follows now by the discussion after Theorem 8.22.

Corollary 8.26. Let S ⊂ D−(1, 1) − µp∞ (respectively S ⊂ D−(1, 1)). We have the equalities

ConfTay
q

Rem. 7.5= ConfAK(1,1)
q = Conf

A
Kalg (1,1)

q
Lemma 8.24= ConfC̃

ét
K [log(T )]

q , (8.4.6)

where the first three equalities hold for these functors on σ-Mod(H†
K)[1]S (respectively (σ, δ)-

Mod(H†
K)[1]S ), while, in the last equality, one considers the restrictions of these functors to the full

subcategory of σ-Mod(H†
K)[1]S (respectively (σ, δ)-Mod(H†

K)[1]S ) of objects trivialized by C̃ét
K [log(T )].

In particular the last equality holds on σ-Mod(H†
K)Sp

S (respectively (σ, δ)-Mod(H†
K)Sp

S ). The same
relation holds for deformation functors.

Proof. By Remark 7.5 the restriction of ConfTay
q to the category of solvable objects coincides with

ConfAK (1,1)
q . A solvable object over H†

K is trivialized by AKalg(1, 1) if and only if it is trivialized by
AK(1, 1). Indeed both these conditions are verified if and only if its Taylor solution at 1 converges

on D−(1, 1). Hence ConfAK (1,1)
q = Conf

A
Kalg (1,1)

q on solvable objects. Now, by Theorem 8.22, special

objects are trivialized by C̃ét
K [log(T )] hence by AKalg(1, 1) (cf. Lemma 8.24).

8.5 The confluence of André–Di Vizio
In this last section we prove that the restriction of ConfTay

q to σq-Mod(RK)(φ) is isomorphic to the
functor ‘Conf’ defined in [ADV04, § 15.1]. In all this last section q ∈ D−(1, 1) − µp∞ .

We recall that an antecedent of a σq-module M over RK is a σqp-module M1 such that φ∗(M1)
is isomorphic to M as σq-module. The antecedent is unique up to isomorphisms, because this
fact is true for differential equations (cf. Remark 8.4). In order to preserve the notation of [ADV04],
we fix an s � 1, and we call M1 the sth antecedent of M, i.e. Φ : (φ∗)s(M1)

∼−−→ M.
The following definition was given in [ADV04] under the assumption |q − 1| < |p|1/(p−1). The

same definition holds for q ∈ D−(1, 1) − µp∞ .

Definition 8.27 [ADV04, Definition 12.11]. Let s ∈ N>0. A confluent weak frobenius structure
(CWFS) on a σq-module M0 := (M0, σ

M0
q ) ∈ σq-Mod(RK) is a sequence {σMm

qpsm}m�0 of qpsm
-

difference operators on M0, together with a family of isomorphisms

Φm : ((φ∗)s(M0), (φ∗)s(σ
Mm+1

qps(m+1) ))
∼−→ (M0, σ

Mm

qpsm ), (8.5.1)

of qpsm
-difference modules (identifying (M0, σ

Mm

qpsm ) to the sth antecedent of (M0, σ
M0
q )), such that:

(i) the operators ∆Mm

qpsm := (σMm

qpsm − IdM0)/(qpsm − 1) converge to a derivation ∆M∞ on M0;

(ii) if M∞ := (M0,∆M∞) is this differential module, then the sequence of isomorphisms (8.5.1)
converges to a Frobenius isomorphism Φ∞ : φ∗(M∞) ∼−→ M∞.

We denote by
σq-Mod(RK)conf(φ) (8.5.2)

the category whose objects are families of operators (M0, {σMm

qpsm}m�0) on M0 admitting the existence
of a family {Φm}m�0 making it on a confluent weak Frobenius structure on (M0, σ

M0
q ). A morphism
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α : (M0, {σMm

qpm}m�0) −→ (N0, {σNm

qpm}m�0) is an RK-linear morphism α : M0 → N0 verifying

simultaneously α ◦ σMm

qpsm = σNm

qpsm ◦ α, for all m � 0.

8.5.1 Construction of CWFSs. A q-difference module (M0, σ
M0
q ) admits infinitely many conflu-

ent weak Frobenius structures (CWFS), even if (M0, σ
M0
q ) admits a (strong) Frobenius structure.

Indeed if a CWFS (M0, {σMm

qpsm}m�0, {Φm}m�0) on (M0, σ
M0
q ) is given, we now give an algorithm to

produce infinitely many CWFSs on (M0, σ
M0
q ). Let {ψm : M0

∼→ M0}m�0 be a sequence of RK -linear
automorphisms of M0 such that limm ψm = IdM0 . Define

σ
M′

m

qpsm := ψm ◦ σMm

qpsm ◦ ψ−1
m , Φ′

m := ψm ◦ Φm ◦ [φ∗(ψm+1)]−1. (8.5.3)

One easily checks that (M0, {σM′
m

qpsm}m, {Φ′
m}m) is again a CWFS on (M0, σ

M0
q ). Notice that this

new CWFS is not always isomorphic to the first one (even if ψ0 = IdM0). Indeed, by definition,
an isomorphism is a single arrow α : M0 → M0 satisfying simultaneously α ◦ σMm

qpsm = σ
M′

m

qpsm ◦ α,

for all m � 0. Nevertheless, since limm ψm = IdM0, the limit differential equation is the same
for all CWFSs defined in this way (cf. Remark 8.29). We observe moreover that ψm defines an
isomorphism of qpsm

-difference modules between (M0, σ
Mm

qpsm ) and (M0, σ
M′

m

qpsm ); this agrees with the

uniqueness of the antecedent by Frobenius. If Ỹm is the solution of (M0, σ
Mm

qpsm ) in GLn(R̃K [log(T )]),

and if Bm(T ) ∈ GLn(RK) is the matrix of ψm, then the solution of (M0, σ
M′

m

qpsm ) is given by Bm(T )Ỹm.

Remark 8.28. Assume that M0 admits a (strong) Frobenius structure. The constancy of the solution
does not follow from the preview definition. Indeed a solution of (M0, σ

M0
q ) with values in C is a

morphism α : M0 → C satisfying α ◦ σM0
q = σC

q ◦ α (cf. § 3). The fact that α is a solution of
(M0, σ

M0
q ) does not imply that α commutes also with σMm

qpsm . Indeed the data (M0, {σMm

qpsm}m�0) is
not necessarily a discrete σ-module over S = {qpsm}m�0, because the map S → Autcont(M0) sending
q into σMm

qpsm is not supposed to have any coherency (cf. Remark 2.5(3)). To obtain the constancy
of the solutions we need to rigidify these constructions by introducing the notion of C-constant
σ-module (cf. Remarks 0.2 and 0.1, and Example 2.6).

8.5.2 We have an evident fully faithful functor

χ(φ)
q : σq-Mod(RK)(φ) −→ σq-Mod(RK)conf(φ) (8.5.4)

defined by

χ(φ)
q (M0, σ

M0
q ) := (M0, {(σM0

q )p
sm}m�0), (8.5.5)

where s is sufficiently large to have an isomorphism Φ : (φ∗)s(M0, σ
M0
q ) ∼−−→ (M0, σ

M0
q ), and Φm := Φ,

for all m � 0. On the other hand we have another functor (cf. [ADV04, § 12.3])
Lim(φ)

∞ : σq-Mod(RK)conf(φ) −→ δ1-Mod(RK)(φ) (8.5.6)

sending (M0, {σMm

qpsm}m�0, {Φm}m�0) into its limit differential equation (M0,∆M∞). We have actually

Lim(φ)
∞ ◦ χ(φ)

q = ConfTay
q . (8.5.7)

Indeed if (M0, σ
M0
q ) has a (strong) Frobenius structure, then (M0, {(σM0

q )p
sm}m�0) is a (solvable)

Taylor admissible σ-module over S := {qpsm}m�0 (cf. Definition 7.4). Hence, by § 7.2.2, the differ-
ential equation ConfTay

q (M0, σ
M0
q ) is given by the limit ∆M∞ := limm→∞ ∆Mm

qpsm of Definition 8.27.

Moreover, since the operator σMm

qpsm is determined by the knowledge of the solutions of (M0, σ
Mm

qpsm ) in
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GLn(R̃K [log(T )]), then χ(φ)
q (M0, σ

M0
q ) is the unique CWFS on (M0, σ

M0
q ) such that the fundamental

matrix solution of (M0, σ
M0
q ) in GLn(R̃K [log(T )]) (or equivalently its Taylor solution in AK(1, 1),

cf. Lemma 8.24) is simultaneously a solution of every (M0, σ
Mm

qpsm ).

Remark 8.29. It is not clear whether the limit differential equation (M0,∆M∞) depends on the par-
ticular CWFS on (M0, σ

M0
q ) or, analogously, if there exists two non-isomorphic q-difference modules

endowed with CWFS giving the same limit differential equation. Indeed both these phenomena arise
in the category σq-Mod(RK)conf defined below (cf. Definition 8.31).

Lemma 8.30. IfK is algebraically closed, then the functor χ
(φ)
q is isomorphic to the functorD

conf(φ)
σq ◦

V
(φ)
σq of [ADV04, Corollary 14.8]. Hence the functor ConfTay

q (
(8.5.7)

= Lim(φ)
∞ ◦ χ(φ)

q ) is isomorphic to

the confluence functor Conf := Lim(φ)
∞ ◦Dconf(φ)

σq ◦ V (φ)
σq as it was defined in [ADV04, § 15.1].

Proof. As explained in the introduction, V (φ)
σq (M, σM

q ) (respectively V (φ)
d (M, δM1 )) is the (dual of the)

space of solutions of (M, σM
q ) (respectively (M, δM1 )) in R̃K [log(T )]. By definition D(φ)

d ◦ V (φ)
d
∼= Id,

and D
(φ)
σq ◦ V (φ)

σq
∼= Id. Then D

(φ)
d ◦ V (φ)

σq = ConfR̃K [log(T )]
q is the functor sending (M, σM

q ) into
the differential equation having the same solutions in R̃K [log(T )]. By definition (cf. [ADV04,
Proposition 12.17]) one has Dconf(φ)

σq
∼= χ

(φ)
q ◦D(φ)

σq . This proves that the functor Conf of [ADV04] is

equal to ConfR̃K [log(T )]
q . By Corollary 8.26 we conclude.

8.5.3 Lemma 8.30 clarifies the nature of the functor Conf of [ADV04] (cf. Corollary 8.26).
Indeed Conf is equal to ConfTay

q , and sends a q-difference equation into the differential equation
having the same Taylor solutions (or equivalently having the same ‘étale’ solutions in R̃K [log(T )], cf.
Lemma 8.24 and Corollary 8.26). This functor actually does not depend on the existence of a Frobe-
nius structure and exists in the more general context of admissible modules. This generalizes the
constructions of [ADV04] to all q ∈ D−(1, 1) − µp∞ , removing also the assumption K = Kalg.
Notice that the equivalence provided by the propagation theorem requires only the definition
and the formal properties of the Taylor solution Y (x, y). For this reason the equivalences ConfTay

q and
DefTay

q,q′ are not a consequence of the previously developed theory. Conversely our confluence implies
the main results of [ADV04] and also of [DV04].

8.5.4 A conjecture of [ADV04]. Section 8.5.1 proves that the fully faithful functor χ(φ)
q is not

an equivalence. This answers a question asked in [ADV04, Corollary 14.8, and after]. Nevertheless
observe that the existence of a CWFS on (M0, σ

M0
q ) is equivalent to the existence of a strong

Frobenius structure on it. This was first proved for rank one equations (cf. [ADV04, Proposition 7.3];
the case with rational coefficient follows actually from § 7.5; indeed every rank one equation with
rational exponent has a (strong) Frobenius structure). The general case is proved as follows (cf.
Corollary 8.33).

Definition 8.31. We define

σq-Mod(RK)conf (8.5.8)

as the category whose objects are RK-modules M together with a family of σq-semi-linear auto-
morphisms {σM

qpsm : M ∼→ M}m�0 (without any condition of compatibility) such that the limit

δM1 := lim
m→∞

σM
qpsm − Id

qpsm − 1
(8.5.9)

915

https://doi.org/10.1112/S0010437X07003454 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003454


A. Pulita

converges to a connection δM1 on M. Morphisms between (M, {σM
qpsm }m�0) and (N, {σN

qpsm}m�0) are
RK-linear morphisms α : M→ N satisfying simultaneously α ◦ σM

qpsm = σN
qpsm ◦ α, for all m � 0.

Remark 8.32. We have a functor

Lim∞ : σq-Mod(RK)conf −→ δ1-Mod(RK) (8.5.10)

sending (M, {σM
qpsm }m�0) into its limit differential equation. Indeed if α : M → N satisfies simulta-

neously α ◦ σM
qpsm = σN

qpsm ◦ α, for all m � 0, then, by passing to the limit, one has α ◦ δM1 = δN1 ◦ α.
We have then the following commutative diagram of categories:

σq-Mod(RK)[r]
χq ��

�

σq-Mod(RK)conf

�

Lim∞ �� δ1-Mod(RK)

σq-Mod(RK)(φ)

χ
(φ)
q

��

∪

σq-Mod(RK)conf(φ)

Lim
(φ)
∞

��

∪

δ1-Mod(RK)(φ)

∪ (8.5.11)

where r � |q − 1|, and where χq sends (M, σM
q ) into (M, {(σM

q )p
sm}m�0). By § 7.2.2, as above

Lim∞ ◦ χq = ConfTay
q : σq-Mod(RK)[r] ∼−−→ δ1-Mod(RK)[r] ⊂ δ1-Mod(RK). (8.5.12)

Corollary 8.33. Let q ∈ D−(1, 1) − µp∞ . Let (M, σM
q ) ∈ σq-Mod(RK)[r], with r � |q − 1|. Then

(M, σM
q ) admits a CWFS if and only if it admits a (strong) Frobenius structure.

Proof. Assume that Lim∞◦χq(M, σM
q ) lies in δ1-Mod(RK)(φ). By (8.1.12), DefTay

1,q ◦Lim∞◦χq(M, σM
q )

lies in σq-Mod(RK)(φ). Now since DefTay
1,q ◦Lim∞ ◦χq = DefTay

1,q ◦ConfTay
q = Id, then DefTay

1,q ◦Lim∞ ◦
χq(M, σM

q ) is isomorphic to (M, σM
q ), and hence has (strong) Frobenius structure.

8.6 The theory of slopes
In a sequence of papers, Christol and Mebkhout developed a theory of slopes for p-adic differential
equations over the Robba ring. We summarize the main properties in the following theorem.

Theorem 8.34 (cf. [CM02]). Let M be a solvable differential module over RK . There exists a unique
decomposition of M, called break decomposition

M =
⊕

x∈R�0

M(x), (8.6.1)

satisfying the following properties. Let tρ be a generic point for the norm | · |ρ (cf. (6.1.1)). Then
there exists ε > 0 such that:

(i) for all ρ ∈ ]1− ε, 1[, M(x) is the biggest submodule of M trivialized by AK(tρ, ρx+1);

(ii) for all ρ ∈ ]1− ε, 1[, and for all y < x, M(x) has no solutions in AK(tρ, ρy+1).

The number Irr(M) :=
∑

x�0 x ·rankRK
(M(x)) is called the p-adic irregularity of M, and it lies in N.

The fact that Irr(M) is integer is known as the Hasse–Arf property. This theorem has an analo-
gous in the theory of representations of the Galois group of a local field.

Proposition 8.35 (cf. [Kat88]). Let I, P be the inertia and the wild inertia subgroups of G :=
Gal(k((t))sep/k((t))). Denote by {I(x)}x�0 the ‘upper numbering filtration’ of I. Let V be a Z[1/p]-
representation of G, such that P acts through a finite discrete quotient. Then V admits a break de-
composition V =

⊕
x�0 V(x) of G-submodules V(x) such that V(0) = VP , and for

all x > 0:
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(i) (V(x))I(x)
= 0;

(ii) for all y > x, (V(x))I(y)
= V(x).

The number Swan(V) :=
∑

x�0 rankZ[1/p]V(x) is called the Swan conductor of V, and it lies in N.

For a very inspiring overview about this analogy we refer to [And04].
Different authors (cf. [Tsu98b, Mat02, Cre00]) proved that the equivalence functor introduced by

Fontaine (cf. [Fon90, Tsu98a]), associating to a finite representation of G, a (ϕ,∇)-module over E†K
(and hence a differential module over RK), preserves the break decompositions. The Swan conductor
of a representation equals the irregularity of the corresponding differential equation.

In [And02] André stated a family of axiomatic conditions in a general Tannakian category in
order to have a theory of slopes. The previous two cases respect the formalism of [And02].

In a second paper he conjectured (cf. [And04, Conjecture 4.2]) that a similar theory of slopes
should exist also for σq-Mod(RK)(φ) and asked if this ‘new’ theory of slopes is compatible with that
of Christol and Mebkhout on δ1-Mod(RK)(φ) (via the confluence), and hence with the ramification
theory on Rep

Kalg(Ikalg((t))×Ga) (via the Fontaine’s functor T1 of the introduction). He suggested to
proceed in analogy with the theory of Christol and Mebkhout (cf. [CM02]), reproducing their proofs
in the context of q-difference equations in order to obtain a statement analogous to Theorem 8.34.
Finally he asked whether this ‘new’ theory of slopes on σq-Mod(RKalg)(φ) is compatible or not with
the theory of slopes of Christol and Mebkhout in δ1-Mod(RKalg)(φ) via the equivalence Conf that
he obtained in [ADV04] for |q − 1| < |p|1/(p−1).

Afterwards, at the end of 2005, he actually obtained such a theory of slopes for σq-Mod(RKalg)(φ),
with |q − 1| < |p|1/(p−1), and established the two corollaries below in this case. These verifications
will be included in a forthcoming paper of André. This part was given by André at the 24th Nordic
and 1st Franco-Nordic Congress of Mathematicians (6 to 9 January 2006, Reykjavik, Iceland).

The next corollaries prove the above conjecture in the more general context of σ-modules. We
prove it for all |q − 1| < 1, without any assumptions about the Frobenius structure, and without
assuming K = Kalg. The equivalence established by Corollary 7.14 gives in fact the following
analog of Theorem 8.34 for σ-modules and (σ, δ)-modules. Thanks to Proposition 7.13, without loss
of generality, we can reduce this statement to the case S = {q}.
Corollary 8.36. Let |q − 1| < 1, q ∈ K (respectively q /∈ µp∞). Let M ∈ (σq, δq)-Mod(RK)[1]

(respectively M ∈ σq-Mod(RK)[1]). Then M admits a break decomposition M =
⊕

x�0 M(x), where
M(x) is characterized by the following properties (analogs to (i) and (ii) of Theorem 8.34). There
exists ε > 0 such that:

(i) for all ρ ∈ ]1− ε, 1[, M(x) is the biggest submodule of M trivialized by AK(tρ, ρx+1);
(ii) for all ρ ∈ ]1− ε, 1[, and for all y < x, M(x) has no solutions in AK(tρ, ρy+1).

This decomposition is compatible with the confluence, i.e. M(x) = DefTay
1,q (ConfTay

q (M)(x)). In
particular the irregularity Irrσq(M) :=

∑
x�0 x · rankRK

M(x) is a natural number.

Proof. The slopes and the irregularity are defined, by Christol and Mebkhout [CM02], by means of
the generic radius of the Taylor solutions. The K-linear equivalences ConfTay

q and DefTay
1,q preserve,

by definition, the generic Taylor solution. It follows immediately that the q-difference equation
inherits then, via the equivalence ConfTay

q , the slopes of the attached differential equation, together
with their formal properties (break decomposition, Hasse–Arf property, . . .).

Corollary 8.37. With the notation of [ADV04] and [And04], if K = Kalg is algebraically closed,

the functor D
(φ)
σq : σq-Mod(RKalg)(φ) −→ Rep

Kalg(Ikalg((t)) × Ga) preserves the slopes (by Corol-
lary 8.36 on the left-hand side, and by the Swan conductor on the right-hand side).

917

https://doi.org/10.1112/S0010437X07003454 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003454


A. Pulita

Proof. One hasD(φ)
σq = D

(φ)
d ◦ConfTay

q . Since D(φ)
d and ConfTay preserve the slopes, so does D(φ)

σq .
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And02 Y. André, Filtrations de type Hasse–Arf et monodromie p-adique, Invent. Math. 148 (2002),
285–317.
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p-adique, Invent. Math. 148 (2002), 319–351.
MW68 P. Monsky and G. Washnitzer, Formal cohomology. I, Ann. of Math. (2) 88 (1968), 181–217.
Pul05 A. Pulita, Frobenius structure for rank one p-adic differential equations, in Ultrametric functional

analysis, Contemporary Mathematics, vol. 384 (American Mathematical Society, Providence, RI,
2005), 247–258.

Pul07 A. Pulita, Rank one solvable p-adic differential equations and finite abelian characters via Lubin–
Tate groups, Math. Ann. 337 (2007), 489–555.

Pul08 A. Pulita. Infinitesimal actions of operators and differential equations. Preprint (2008),
arXiv:0802.1945v1.
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