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A numerical investigation is undertaken on the development of linear disturbances in
the rotating disk boundary layer, in which a time-periodic modulation is applied to
the disk rotation rate. The model gives a prototypical example of a three-dimensional
oscillatory boundary layer, by adding a Stokes layer to the von Kdrman flow that develops
on a steady disk. The study extends the Floquet analysis of Morgan et al. (J. Fluid
Mech., vol. 925, 2021, A20), who showed that disk modulation stabilises the stationary
convective instabilities found on the steady rotating disk. Using a radial homogeneous flow
approximation, whereby the radial dependence of the basic state is ignored, disturbance
development is simulated for several modulation settings, with flow conditions matched
to both convective and absolute forms of linear instability. Disturbances excited via a
stationary periodic wall forcing display behaviour consistent with that found using Floquet
theory; time-periodic modulation stabilises the cross-flow instability by reducing the radial
growth rate. In addition, convective and absolute instabilities, generated by an impulsive
wall forcing, are both stabilised by the introduction of modulation to the disk rotation rate.
Modulation establishes a significant reduction in both the temporal growth rate and the
disturbance amplitude as it propagates away from the impulse origin. Moreover, greater
stabilising control benefits are realised as the modulation amplitude increases.
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1. Introduction

The rotating disk boundary layer develops when a disk of infinite radius rotates
beneath an infinite body of incompressible viscous fluid. As the disk spins, fluid
is drawn towards the disk surface along the wall-normal direction, before spiralling
radially outwards. This flow was first described by von Karman (1921) and has
since been the investigation of numerous theoretical and experimental investigations
on three-dimensional laminar—turbulent transition processes and laminar flow control
applications. An extensive review of the many studies undertaken on the rotating disk
is given by Lingwood & Alfredsson (2015).

The flow over a rotating disk, or von Karméan flow, is susceptible to a range of stability
mechanisms, including the inviscid cross-flow instability that is also found within the
boundary layer on a swept wing. It is for this very reason that the rotating disk has held the
interest of so many within the fluid dynamics community. Gregory, Stuart & Walker (1955)
undertook both an experimental and theoretical study of the rotating disk, and showed that
the cross-flow instability appears as stationary spiral vortices relative to the disk surface.
Typically 28-32 such cross-flow vortices are observed in the early stages of transition
(Gregory et al. 1955; Kobayashi, Kohama & Takamadate 1980; Jarre, Le Gal & Chauve
1996), with the number of vortices related to the integer-valued azimuthal mode number n
that represents the periodicity of the disturbance in the azimuthal direction.

In addition to the cross-flow, or type I instability, the von Karman flow is susceptible
to at least two other forms of instability. A viscous type II instability is brought about by
curvature and Coriolis effects (Faller & Kaylor 1966), while a type III spatially damped
mode that propagates radially inwards was discovered by Mack (1985).

Using linear stability theory, Malik (1986) computed neutral stability curves and critical
conditions for the onset of the stationary type I cross-flow and type II Coriolis instabilities.
It was shown by Malik and later confirmed by many others (Lingwood 1995; Cooper &
Carpenter 1997a; Cooper et al. 2015; Garrett et al. 2016) that the stationary cross-flow
instability first appears for Reynolds number Re ~ 286 and azimuthal mode number n ~
22. However, as the Reynolds number increases, stronger growing cross-flow instabilities
emerge for azimuthal mode numbers near n = 32, which is consistent with the number
of spiral vortices observed in experiments. The onset of travelling linear disturbances was
investigated subsequently by Balakumar & Malik (1990) for a range of non-zero temporal
frequencies. (A formal definition for the Reynolds number Re is given below in (2.3).)

The type I and II modes are both classified as convective instabilities, where the
disturbance forms wavepackets in the radial-temporal (r, f)-plane that propagate away
from the initial point of origin, as in figure 1(a). On the other hand, absolute instability
develops if the disturbance grows in time at a fixed spatial location, as in figure 1(b)
(Huerre & Monkewitz 1990). In the context of the rotating disk boundary layer, it was
discovered by Lingwood (1995, 1997) that absolutely unstable behaviour emerges for
Reynolds numbers Re > 507 and a critical azimuthal mode number n = 68. Following an
experimental study by Lingwood (1996), it was noted that the onset of absolute instability
coincides with the emergence of transition on a rotating disk. Consequently, Lingwood
speculated that absolute instability may play a pivotal role in the breakdown of laminar
flow to a turbulent state.

The analysis of Lingwood and that of the preceding studies by Malik (1986) and
Balakumar & Malik (1990) were based on a local linear stability theory that was
achieved by imposing a radial homogeneous flow approximation. Often called the parallel
flow approximation, the analysis is simplified by ignoring the radial dependence of the
undisturbed flow, which is achieved by setting the radius equal to the Reynolds number.
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Figure 1. Schematic sketches of the evolution of a spatiotemporal wavepacket generated by an impulse,
within the radial r and time ¢ plane: (a) convective instability; (b) absolute instability.

Many subsequent investigations on the von Kdrmén flow have employed the homogeneous
flow approximation, with the aim to suppress the onset and growth of the convective
and absolute instabilities via a control mechanism. Uniform mass suction through
the disk surface was modelled by Dhanak, Kumar & Streett (1992) and Lingwood
(1997) to control convectively and absolutely unstable behaviour, respectively. Similarly,
Cooper & Carpenter (1997a,b) modelled the rotating disk with a compliant surface and
observed favourable control benefits for both forms of instability. More recently, studies
have focused on stabilising the stationary type I cross-flow instability via an imposed
surface roughness (Cooper et al. 2015; Garrett et al. 2016) or via a heated disk in a
temperature-dependent viscous fluid (Miller ez al. 2020).

A novel approach for controlling the stationary cross-flow instability was implemented
by Morgan, Davies & Thomas (2021), whereby a time-periodic modulation of the disk
rotation rate was modelled. The application of modulation to the steady rotating disk was
motivated by Thomas et al. (2011), who, following Hall (1975), found that plane Poiseuille
flow in a channel could be stabilised by introducing a small level of oscillation. A similar
stabilising effect was also found in oscillatory Couette flow (Kelly & Cheers 1970; Von
Kerczek 1976). On coupling Floquet theory with the homogeneous flow approximation,
Morgan and co-workers showed that a small level of disk modulation could delay the
onset of both the stationary type I and II instabilities to Reynolds numbers larger than
that found in the steady rotating disk boundary layer. Moreover, a subsequent energy
analysis demonstrated that time-periodic modulation reduces the Reynolds stress energy
production and increases the viscous dissipation across the boundary layer.

In this study, the effect of disk modulation on both convective and absolute forms of
linear instability is considered, whereby disturbance development is simulated numerically
using the velocity—vorticity scheme developed by Davies & Carpenter (2001) and Morgan
& Davies (2020). The velocity—vorticity formulation allows disturbances to be excited
via either a localised periodic forcing or an impulsive wall forcing. The former forcing
type establishes periodic disturbances with a fixed temporal frequency. For the subsequent
investigation, this particular forcing is used to generate stationary disturbances (that is, the
stationary type I cross-flow instability) and provide the first independent verification of
the Floquet analysis undertaken by Morgan ef al. (2021). On the other hand, impulsively
excited disturbances develop in the spatiotemporal plane and form wavepackets, as in
figure 1. Depending on the flow conditions (Reynolds number and azimuthal mode
number) and modulation parameter settings, either convectively or absolutely unstable
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behaviour emerges. Here, for the first time, we illustrate that time-periodic modulation
of the disk rotation rate stabilises both forms of instability and brings about a significant
reduction in the temporal growth rate. Thus disk modulation has the potential to control
and suppress the onset of laminar—turbulent transition in the rotating disk boundary layer,
with applications in aerodynamics, rotating-cavity flows, computer storage devices and
electrochemistry (Ahn et al. 2014, 2016; Lingwood & Alfredsson 2015). Throughout the
study, the radial homogeneous flow approximation is implemented.

The remainder of this investigation is outlined as follows. The time-periodic modulated
von Karman flow is modelled in the next section. In § 3, the velocity—vorticity formulation
developed by Davies & Carpenter (2001) and Morgan & Davies (2020) for linearised
perturbations is presented. The effects of time-periodic modulation on the development
of the disturbances associated with convective and absolute instability are discussed in
§ 4, with conclusions given in § 5.

2. Base flow

The approach for formulating and computing the unsteady base flow is described fully in
Morgan et al. (2021). Accordingly, only an outline of the scheme is presented here.

A disk of infinite radius rotates beneath an infinite body of incompressible fluid with
an unsteady rotation rate £2*(r*) about the vertical axis that passes through the centre
of the disk. Cylindrical polar coordinates are used, where r*, 6 and z* denote the radial,
azimuthal and wall-normal directions. (An asterisks denotes dimensional quantities.) The
dimensional velocity field is U* = (U*, V*, W*), while v* denotes the kinematic viscosity
of the fluid. In the subsequent derivation of the non-dimensional unsteady base flow,
all quantities are defined in a non-rotating frame of reference to facilitate the numerical
solution via Chebyshev methods (Morgan et al. 2021).

Boundary conditions on the disk surface are defined as

Ur=Ww* =0, V*=r"Q*r*) onz*=0 (2.1a,b)

and in the far field,

U*—-0 and V*—=0 asz*— oo. 2.1c,d)

The unsteady disk rotation rate is decomposed as the sum of a constant rotation rate £
(as used in studies on the steady von Karmén flow) and a small time-periodic modulation
as

Q") = 2§ + 49" cos(¢p*t* — 1/2), (2.2)

where A and ¢* denote the angular displacement and frequency of the modulation,
respectively. (The unsteady component of (2.2) has been shifted by a phase 7/2, so that
time r* = 0 corresponds to the steady von Karman flow conditions.)

Units of length are scaled on the boundary layer thickness §* = ,/v*/$§2;, while local
and global time non-dimensionalisations are implemented following Davies, Thomas &
Carpenter (2007). A local time scale is based on the ratio of the boundary layer thickness
8* to the circumferential speed of the steady rotating disk, r; §2}, while a global time scale
is characterised by the inverse of the constant disk angular velocity §2;. Thus a globally

scaled temporal frequency is f = wRe, where w is the locally scaled temporal frequency,
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and the Reynolds number is

r* Q * 8* r*

Re= T L, 23)
for a reference radius ;. In the subsequent analysis, all units of time are scaled on the local
time scale. However, for consistency with the earlier numerical investigations by Davies
& Carpenter (2003) and Thomas & Davies (2018), temporal frequencies will be presented
using the global definition.

The unsteady base flow is established using the modified von Karman (1921) similarity
variables

U*(r*, 2, 1) = (r* Q¢ F(z, 1), 2§ G(z, 1), §* 2§ H(z, 1)), (2.4)
where F, G and H represent the non-dimensional unsteady velocity profiles along the three

coordinate directions. On substituting (2.4) into the Navier—Stokes equations in cylindrical
coordinates, the following system of differential equations for F, G and H is derived:

o 82F+G2 gt (2.5a)
= - (== —F*—H—), Sa
0t  Re \ 3972 9z
3G 1 (3°G IG
—=—(— —-2FG-H—), (2.5D)
dt  Re \ 972 0z
oH
0= —+2F, (2.5¢)
0z
which is solved subject to the boundary conditions
FO.0)=H(©0.1)=0, G(0.1) =1+ ecos (Rﬁ - g) (2.6a.b)
e
and
F—0, G—0 asz— oo. (2.6¢,d)
The dimensionless parameters
A0*  J2¢R
=2 _ YRy (2.7a)
£2 Re
and
¢*

represent the modulation amplitude and frequency, respectively. The modulation
frequency ¢ corresponds to the number of cycles of time-periodic modulation during one
full rotation of the disk.

A so-called Stokes Reynolds number Reg, based on the time-periodic modulation of the
disk, is defined as

Arfp*s* o* € Re
Rey=~L1—* = [ —— = —, 28
T T "oy T Ve &9

where §7 = /v*/¢* represents a Stokes length scale. In keeping with the earlier study by
Morgan et al. (2021), modulation parameter settings were chosen carefully to ensure that
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the time-periodic modulation did not establish any new forms of instability, other than the
convective and absolute instabilities already found in the steady von Karman flow (Malik
1986; Balakumar & Malik 1990; Lingwood 1995). The modulation amplitude was limited
to the interval 0 < e < 0.4, while, following the observations of Morgan et al. (2021),
much of the subsequent investigation was based on modulation frequencies ¢ = 4, 8, 12.
(The earlier Floquet analysis of Morgan and co-workers showed that the optimal frequency
@ for controlling the stationary cross-flow instability was in the interval 8 < ¢ < 12, while
smaller and larger frequencies had a negligible effect on the growth of the disturbance.
Consequently, modulation frequencies in this parameter range were modelled.) Thus the
Stokes Reynolds number satisfies Reg; << Reg -, where Res . = 707.84 is the critical value
for the onset of linearly unstable behaviour in the semi-infinite Stokes layer (Blennerhassett
& Bassom 2002). Non-dimensionalising the velocity field U* on r} £2; gives the following
definition for the non-dimensional unsteady velocity field:
r

1
Up(r,z,1) = (Rie F(t,2), 2= G(1.2), o H. z)) . (2.9)

In the subsequent investigation, the radial homogeneous flow approximation is employed,
whereby the radial dependence of the base flow is removed by setting r = Re. Thus (2.9)
becomes

Up(z, t) = (F(t, 2), G(t, 2), Ié H(t, z)) . (2.10)

The system (2.5)—(2.6) was solved numerically using the procedure outlined in Morgan
et al. (2021). Velocity fields were expanded using Chebyshev polynomials and integral
expressions determined accordingly, while temporal integration was performed using a
three-point backward difference scheme coupled with a predictor—corrector method.

Figure 2 depicts velocity profiles F, G and H for the parameter settings (Re, €, ¢) =
(500, 0.2, 8). Results are plotted at four successive points in time, ¢/7,, = 0, 0.25, 0.5 and
0.75, where T,, denotes one full cycle of the time-periodic modulation. Black dotted lines
depict the corresponding results obtained for the steady von Karman flow. Computations
are consistent with those presented by Morgan et al. (2021), with relatively small variations
in the radial " and wall-normal H velocity profiles. However, significant differences in the
azimuthal G velocity field occur, particularly near the disk surface. This behaviour is to
be expected, as Morgan and co-workers showed that the effect of modulation (for small
amplitudes € and high frequencies ¢) amounted to the addition of a Stokes layer to the
azimuthal component of the steady rotating disk boundary layer.

3. Velocity-vorticity formulation

A local linear stability study is undertaken using the vorticity-based formulation developed
by Davies & Carpenter (2001), where disturbance development is modelled in a frame of
reference that rotates at the constant rate 2, with time-periodic modulation applied to
the disk. As a consequence of the change in reference frame, the base flow profiles (2.10)
must first undergo a transformation. This comprises a change in the boundary conditions
(2.1b,d) for the azimuthal velocity field as

V¥ =r"a¢* cos(¢p*" —m/2)onz* =0 and V* — —r*Q;asz" — oo, (3.la,b)

and by setting
G, =Gy — 1. (3.2)
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Figure 2. Velocity profiles (a) F, (b) G and (c¢) H, as functions of the wall-normal z-direction, for Reynolds
number Re = 500, modulation amplitude ¢ = 0.2 and frequency ¢ = 8. Results are plotted at #/7;, = 0 (blue
solid lines), t/T,, = 0.25 (red dashed), ¢/T,, = 0.5 (yellow dot-dashed) and #/7,, = 0.75 (purple dotted). The
steady solution is given by the black dotted lines, while 7}, denotes one full cycle of disk modulation.

Subscripts r and nr denote the rotating and non-rotating reference frames, respectively.
(Note that in the earlier investigation by Morgan et al. 2021, there was a typographical
error in the transformation of G.) Additionally, Coriolis and curvature effects are included
in the governing perturbation equations.

Total velocity and vorticity fields are defined as

U=Up+u and E=Ep+§&, (3.3a,b)
949 A35-7
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where £p = V x Up, while velocity and vorticity perturbation fields are defined as

u=(urug,u;) and &= (&, 8&.§&). (3.3c.d)

Perturbation fields are separated into primary (&, &g, u;) and secondary (u,,uyp,&;)
variables. The development of the three primary variables is then determined using the
governing system of equations

9&, 10N, oNy 2 o\ 1 ([, 1 2 9%
Gor 0% 2% = ) ((v2— = )e -2 50) ) (34
o "7 90 9z  Re (5” ar) Re (( 2 )5 72 (3.42)

% | ON: N 2 (sr—l%)— : ((vz—riz)sﬁ - aé’), (3.4b)

ot ' 9z  dr ' Re r30)  Re 2 960
v =1 (ﬁ - 80’59)) : (3.4¢)
r \ 90 ar
where
N =(N;,Nyg,N;) =Epxu+&xUp (3.5)
and

¥ 19 132+32 (3.6)
orr  ror  r? 0% 0972 '
The remaining secondary variables are expressed in terms of the primary variables by
rearranging the definition for vorticity and the solenoidal condition as

Ltrz—‘/OO (Se-l—%)dz, (3.7a)
- ar

_/°° 1ou) 3.7b
w= | (g,—“,w)z, (3.75)
L[ (00E) | 3%
Sz—;/ ( 5 +%>dz. (3.7¢)

Linear disturbances are excited within the boundary layer by prescribing a radially
localised motion of the disk wall. On linearising about the undisturbed disk wall and
assuming that the disk surface can move only along the vertical direction, the linearised
boundary conditions may be written as

d
u-=—F 0,00, u=-GO0,0n u = d_rtl atz =0, (3.8a—c)

where n = n(r,0,t) is the non-dimensional vertical wall displacement. (The wall
displacement is n = 0 for a rigid disk.) In the subsequent study, the wall displacement
n will be prescribed via either a localised periodic motion or an impulsive wall motion.
On substituting (3.8a) and (3.8b) into the definitions (3.7a) and (3.7b) for the secondary
variables u, and ug, the following integral constraints on the primary variables &, and &y
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are derived:

o0  Ju
/ ggdz=F'(0,)n — / —dz (3.9a)
0 0 ar
and
o , 1 du,
&dz=-G'0,0)n+ - —dz. (3.90)
0 o F 20

Furthermore, as per Davies & Carpenter (2001), all velocity and vorticity perturbation
fields are assumed to vanish in the far-field limit.

Finally, linearisation makes the problem separable with respect to the azimuthal
0-direction. Hence perturbations are decomposed as

u(r,0,z,0) =a(r,z,0)e™ and &(r,0,z,1) = E(r,z, 1) e, (3.10a,b)

where 7 is the integer-valued azimuthal mode number.

3.1. Numerical scheme

The governing perturbation equations (3.4) are discretised and solved using the approach
described in Davies & Carpenter (2001). A fourth-order centred, compact finite difference
method is used along the radial r-direction, and a Fourier expansion (3.10) is utilised
in the azimuthal 6-direction. In the wall-normal z-direction, a Chebyshev spectral series
expansion is implemented. For the subsequent study, N = 48 Chebyshev points are used,
with points mapped from the semi-infinite physical domain z € [0, c0) onto a finite
computational interval ¢ € (0, 1] via the coordinate transformation

[

- 3.11
z+1 @10

¢

where [ = 4 is a stretching parameter.
The radial domain is defined on the interval r;, < r < r,,;, Where the inner and outer
radial locations are fixed sufficiently far upstream and downstream of the region that
any disturbances develop, so as to avoid any spurious computational edge effects. In
addition, null conditions are imposed on all perturbation fields at the inner radial boundary
rin, While disturbances are assumed to be wave-like at the outer radius r,,;, with the

condition

82g
ar?
imposed on all primary perturbation fields. Here, «,,;, which can be complex-valued, can
be set equal to the radial wavenumber determined by undertaking a linear stability analysis
of the steady von Kdrman flow, i.e. the radial wavenumber is computed for a fixed Reynolds
number, azimuthal mode number and frequency. In the subsequent study, oy, = 0.2 is
used for all numerical simulations, including the disturbances excited by an impulsive wall
motion and established within the time-periodic modulated flow. Indeed, the behaviour of
the disturbance at the outer radial boundary r,,; is less influenced by this particular choice
for «y,; than by ensuring that the length of the computational domain is sufficiently large.
For all numerical simulations presented herein, the radial domain is specified as ry,; —
rin = 800 radial units, with disturbance development excited at approximately ry = ri, +
100. Thus the outer radial boundary r,,, is always far removed from the locations where
the disturbance has evolved to an appreciable amplitude. (Checks on the influence of the
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radial domain size and outflow boundary condition are considered in Appendix A.) Finally,
disturbance development is simulated numerically using a time marching procedure based
on a combination of a predictor—corrector scheme and a semi-implicit method.

The radial and time step sizes, Ar and Af, were chosen carefully through extensive
testing of the numerical scheme. A radial step size Ar =1 is implemented in the
discretisation of the radial derivatives, which translates to approximately 20 points per
disturbance wavelength. This was found to resolve accurately all disturbances investigated.
Additionally, time steps Af = 0.5 are used in the time marching procedure. Numerous
checks on the respective sizes of Ar and At are presented in Appendix A.

4. Results

In the subsequent study, disturbances are generated by a radially localised wall motion.
The wall displacement 7, in (3.8), takes the form

(. 0, 1) = a(t) e < (=) +ind (4.1a)

where the scale factor « fixes the radial extent of the forcing at the radius r = r¢, and
the function a = a(¢) defines the time-dependent amplitude. The amplitude function a is
then prescribed to establish either periodic or impulsive disturbance development. (In the
subsequent study, the scale factor is « = 1 for all numerical simulations. Modifying the
size of ¥ would establish variations in the initial amplitude of the disturbance. However,
disturbance characteristics would be unchanged.)

Disturbances with a fixed time periodicity are excited by setting

a() = (1 . e*f”z) et (4.1b)

for a locally defined temporal frequency w. Here, the parameter o scales the forcing
up from zero amplitude at time ¢ = 0. Although the periodic forcing (4.1b) is modelled
to excite a disturbance with a fixed temporal frequency, inevitably the initial scaling
of the forcing will seed unstable disturbances at other frequencies. Consequently, this
will establish a transient phase (both spatial and temporal) in which several disturbances
compete to dominate the flow response. However, eventually the disturbance matched to
the frequency w prevails and develops within the spatiotemporal plane. For the results
presented in § 4.1, the local frequency is w = 0 in order to validate the numerical procedure
against the Floquet analysis undertaken by Morgan er al. (2021) for linear stationary
disturbances.
Alternatively, disturbances are excited impulsively by setting

at) = (1 - e_‘”2> e, (4.1¢)

where o now fixes the duration of the initial impulse. Similar to the periodic forcing
(4.1b), the impulsive wall motion excites many disturbances, with the strongest growing
disturbance governing the response of the flow.

4.1. Steady forcing: stationary cross-flow instability

Validation of the velocity—vorticity formulation and numerical scheme was achieved
by comparing simulations of disturbance development against the results obtained via
Floquet theory (Morgan et al. 2021). In their study, Morgan and co-workers used
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time-periodic modulation to stabilise both the stationary type I and II instabilities. This
observation was confirmed here by simulating numerically stationary type I cross-flow
instabilities, excited via a steady forcing (4.1») with a fixed local temporal frequency
o =0.

Stationary cross-flow disturbances were excited for the modulation frequency ¢ = 8 and
amplitudes € = 0, 0.1 and 0.2. In addition, the Reynolds number was Re = 500 and the
azimuthal mode number was n = 32. These particular flow conditions correspond to a
strongly unstable stationary cross-flow instability in the steady von Kdrméan flow (Malik
1986) that is often observed experimentally during the early stages of laminar—turbulent
transition (Gregory et al. 1955; Kobayashi et al. 1980; Jarre et al. 1996). The radial
centre of the steady forcing was fixed at rr = Re. (Since the radial homogeneous flow
approximation has been implemented, the radial location of the forcing is inconsequential.
Equivalent behaviour would be realised for r¢ # Re. The forcing is prescribed only about
the radius matching the Reynolds number to simplify the description and for consistency
with earlier studies undertaken by the investigators Davies and Thomas.)

At time zero, the steady forcing was turned on, which excites the stationary cross-flow
instability associated with the above parameter settings. The disturbance evolves radially
outwards and eventually propagates across the entire radial interval ry, < r < r,,.. After
sufficiently many periods of disk rotation, the disturbance achieves a steady state that
is unchanged by further increments in time. Figure 3 displays contours of the real
part of the azimuthal vorticity perturbation field, &y, in the (r, z)-plane, for the three
modulation settings specified above. Each solution has been plotted at the end of three
disk rotations, which was sufficient for each disturbance to attain a steady state over the
given radial interval. In addition, each disturbance has been normalised on its respective
radial r-dependent normalisation factor max; |&|, i.e. the local maximum absolute value
of the azimuthal vorticity perturbation field. This scaling ensures that each solution has a
maximum absolute value of unity about each radial position, and was implemented to help
to demonstrate the evolution of the disturbance, which would otherwise be impossible
due to the rapid radial growth associated with the cross-flow instability. Red and blue
contour levels depict positive- and negative-valued &g, respectively. In each instance, a
stationary disturbance develops downstream of the forcing centre ry = 500. The cross-flow
instability emerges immediately to the right of the forcing for the steady von Karmén
flow; figure 3(a). However, for the two modulated flows, depicted in figures 3(b,c), there
is an extended radial interval r € [500, 550], in which the response is characterised by
transient behaviour. This would suggest that coupling the steady forcing to the modulated
von Karméan flow establishes a broader range of frequencies that compete to dominate
the early stages of the disturbance development. (On the radial interval 500 < r < 550,
the disturbance response appears to be vanishingly small for the two modulated flows
modelled. However, this particular feature of the disturbance development is an artefact
of the transient behaviour coupled with the normalisation procedure and colour scheme.
In fact, amplitudes &g/ max; |£g| &~ %1 are found very near the disk surface, for z < 0.01,
and consequently are not visible for the given axes dimensions.) Nevertheless, further
downstream, the stationary cross-flow instability emerges eventually and develops with a
fixed radial wavelength. The general structure of the azimuthal vorticity perturbation field
is comparable for all three modulation amplitudes modelled. Two maxima are observed, at
the disk wall and near the wall-normal height z = 2. Moreover, the normalised solutions
indicate that the magnitude of the latter maximum increases as the modulation amplitude
€ increases.
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Figure 3. Contours of the azimuthal vorticity perturbation field & for Reynolds number Re = 500, azimuthal
mode number n = 32, and local temporal frequency w = 0. Solutions are excited by a localised steady forcing
centred at 7y = Re and normalised on their respective maximum absolute values, max; |§9|. Modulation
frequency is ¢ = 8, with amplitudes (a) € = 0, (b) € = 0.1, and (c) e = 0.2.

Figure 4 depicts the absolute value of the azimuthal vorticity ||, radial velocity
|uy| and azimuthal velocity |ug| perturbation fields at the radius r = 700, for all three
modulation settings considered above. This particular radial location was chosen to
illustrate disturbance behaviour as it was sufficiently far downstream of the forcing centre
ry = 500, while perturbation fields were unchanged by further increases in the radius.
For each set of modulation settings, disturbance characteristics were normalised on the
absolute value of the azimuthal vorticity perturbation at the disk wall, &g ,,|. Following
this normalisation, results again demonstrate that the azimuthal vorticity achieves a
secondary maximum near the wall-normal height z = 2 that increases with the modulation
amplitude €. Furthermore, solutions of the radial and azimuthal velocity perturbation
fields, |u,| and |ug|, indicate that their respective maxima increase for increasing €.

The stabilising effect brought about by modulating the disk rotation rate is demonstrated
by tracing the maximum of the disturbance along the radial r-direction. Figure 5 depicts
the evolution of the absolute value of the azimuthal vorticity perturbation field at the
disk wall, |&p |, for the flow conditions modelled above, in addition to the solutions
obtained for modulation amplitudes € = 0.3 and € = 0.4. Results are again plotted at
the end of three rotations of the disk, to allow the disturbance sufficient time to convect
across the radial domain shown. Furthermore, as a consequence of the transient behaviour
observed on the radial interval r € [500, 550] for the modulated flows plotted in figure 3,
each disturbance has been normalised to unity at the radius r = 600 = r¢ + 100. This
choice of normalisation was implemented to allow for easier comparisons of the stationary
cross-flow disturbances established for the five flows modelled, and demonstrates the
control benefits realised by time-periodic modulation. Following an inspection of the
curve gradients, it is clear that time-periodic modulation is stabilising and establishes a
significant reduction in the disturbance amplitude. For instance, at the end of the radial
interval shown, |& | is four orders of magnitude less for the modulated case € = 0.4
compared to that realised for the steady disk.

949 A35-12


https://doi.org/10.1017/jfm.2022.791

https://doi.org/10.1017/jfm.2022.791 Published online by Cambridge University Press

Linear impulse response in the oscillatory rotating disk

(@ 10
I —e=0
0.8 i - - €=0.1/]
i €=02
0.6
(3 B
04l I/ 3
I/
02t \, \
0 2 4 6 g
(b) 0.25
0.20 |
0.15
[ut,]
0.10
0.05 |
0 2 4 6 8
(¢) 10
|u9|
W

Figure 4. Absolute value of perturbation fields (a) &5, (b) |u,| and (c) |ug|, about a fixed radial location, for
the flow conditions modelled in figure 3. Each solution is normalised on the respective absolute value of the
azimuthal vorticity perturbation field at the disk wall, |&s ,,|. Modulation frequency is ¢ = 8, with amplitudes
€ = 0 (solid line), € = 0.1 (dashed) and € = 0.2 (dot-dashed).

Radial wavenumbers o = «, + ia;, associated with the disturbances shown in
figures 3-5, are determined by the formula

i 0A
o0 =———), 4.2)
A Or

where A is taken to be a measure of the disturbance amplitude at any given radial location
and point in time. The real and imaginary parts of « may be interpreted as being the
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Figure 5. Absolute value of the azimuthal vorticity perturbation field at the disk wall, |& ,,|, for the flow
conditions modelled in figure 3. Modulation frequency is ¢ = 8, with amplitudes € € [0, 0.4]. Solutions
normalised to unity at r = 600 = r; 4 100.

radial wavenumber and the radial growth rate of the disturbance, respectively. In the
following study, A is given by the azimuthal vorticity perturbation field at the disk wall,
&p . This particular quantity was again chosen to illustrate disturbance characteristics for
consistency with those earlier investigations on the steady rotating disk boundary layer by
Davies & Carpenter (2003) and Thomas & Davies (2018). No special significance should
be attached to the continued use of this particular flow quantity, and identical behaviour
would be realised for other perturbation fields. The radial wavenumbers « obtained for
large time (taken to be /T = 3, where T = 271 Re is the non-dimensional time period
for the disk rotation rate) are tabulated in table 1 alongside the equivalent calculations
determined via Floquet theory (Morgan et al. 2021). Additional results are included in the
table for other modulation parameter settings (€, ¢). In most instances, agreement to two
or three decimal places is realised. Modulation is found to have a negligible effect on the
real part of o. However, there is a noticeable effect on the radial growth rate «;, which
is further enhanced as the modulation amplitude € increases. Thus a stabilising effect is
realised, equivalent to that found via Floquet theory by Morgan et al. (2021). (Note that a
negative radial growth rate «; < 0 corresponds to linearly unstable behaviour.)

Further stationary disturbances were simulated numerically for other combinations of
the Reynolds number Re and azimuthal mode number n, and in each instance results
were consistent with the Floquet computations of Morgan et al. (2021); time-periodic
modulation establishes a significant stabilising effect. For instance, figure 6 displays
the absolute value of the azimuthal perturbation field at the disk wall, |&p |, for two
different flow settings (Re, n). Figure 6(a) depicts solutions for (Re, n) = (400, 25), while
figure 6(b) displays the corresponding results for (Re, n) = (600, 40). In each case, the
modulation frequency is ¢ = 8, with modulation amplitudes in the range 0 < ¢ < 0.4. As
with the results presented in figure 5, numerical simulations are normalised to have an
amplitude of unity approximately the radial location r = r¢ + 100; r = 500 and r = 700
in figures 6(a) and 6(b), respectively. It is again clear that disk modulation brings about a
strong stabilising effect that is enhanced further as the modulation amplitude € increases.
At the end of the radial interval shown for the smaller Reynolds number (figure 6a), |5 |
is reduced by 2-3 orders of magnitude when € = 0.3, whereas at the larger Reynolds
number (figure 6b), the modulation amplitude € = 0.4 reduces |&y ,,| by approximately
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(Re, n) € 7 Floquet DNS
0 — 0.2689 — 0.0379i 0.2679 — 0.0369i
0.1 4 0.2682 — 0.0333i 0.2655 — 0.0348i
0.2 4 0.2695 — 0.0187i 0.2670 — 0.0235i
(400, 25) 0.1 8 0.2698 — 0.0336i1 0.2674 — 0.0335i
0.2 8 0.2736 — 0.0195i 0.2703 — 0.0217i
0.1 12 0.2699 — 0.0357i 0.2674 — 0.03491
0.2 12 0.2732 — 0.0290i 0.2695 — 0.0301i
0 — 0.2814 — 0.0702i 0.2815 — 0.0701i
0.1 4 0.2796 — 0.0668i 0.2796 — 0.0679i
0.2 4 0.2749 — 0.0562i 0.2762 — 0.05811
(500, 32) 0.1 8 0.2816 — 0.0662i 0.2811 — 0.0671i
0.2 8 0.2830 — 0.0538i 0.2823 — 0.0554i
0.1 12 0.2822 — 0.0675i 0.2817 — 0.0681i
0.2 12 0.2851 — 0.0592i 0.2837 — 0.0608i
0 — 0.3082 — 0.0894i 0.3080 — 0.0888i
0.1 4 0.3060 — 0.0868i 0.3047 — 0.0865i
0.2 4 0.2992 — 0.0789i 0.2970 — 0.0798i
(600, 40) 0.1 8 0.3078 — 0.0857i 0.3061 — 0.0855i
0.2 8 0.3067 — 0.0744i 0.3047 — 0.0752i
0.1 12 0.3087 — 0.0865i 0.3070 — 0.0853i
0.2 12 0.3106 — 0.0779i 0.3084 — 0.0772i

Table 1. Radial wavenumbers « for stationary disturbances computed via Floquet theory (Morgan et al.

2021) and DNS for a steady wall forcing (4.1b).

(@) 10 —=; (b) 109
10*
102
10°
500 550 600 650 700 700 750 800 850 900
r r

Figure 6. Same as figure 5, but for (a) Re = 400 and n = 25, (b) Re = 600 and n = 40. Each disturbance was
excited at rr = Re, and solutions normalised to unity at r = ry + 100.

four orders of magnitude. Hence considerable control benefits are again realised. Further
comparisons between the radial wavenumber « computed via Floquet theory (Morgan
et al. 2021) and direct numerical simulations (DNS), for the above flow conditions and
modulation settings, are given in table 1.

Minor differences between the DNS and Floquet calculations may be attributed to the
numerical scheme implemented in solving (4.2). Additionally, DNS radial wavenumbers
were approximated by extracting results at a finite point in time. Extending the numerical
simulations beyond the time interval shown in figures 5 and 6 may have allowed the radial
wavenumbers to achieve values in better agreement with the Floquet analysis. However,
as a consequence of the significant exponential growth associated with the spatiotemporal
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disturbance development, longer time simulations were very difficult to carry out. Similar
to Davies & Carpenter (2003) on the steady rotating disk, numerical errors associated
with convergence problems in the discretisation were encountered. Thus it was impossible
to simulate successfully disturbance development for longer time intervals. Nevertheless,
good agreement between the two schemes is achieved for the finite time interval for which
DNS are realisable. Moreover, DNS results corroborate the earlier Floquet analysis and
demonstrate that time-periodic modulation of the disk rotation rate stabilises the stationary
cross-flow instability.

4.2. Impulse response

Disturbance development was excited impulsively by a localised wall motion (4.1¢), for
flow settings matched to both convectively and absolutely unstable behaviour in the steady
rotating disk boundary layer (Malik 1986; Balakumar & Malik 1990; Lingwood 1995). The
parameter o in (4.1¢), which fixes the duration of the impulse, was setaso = 1/ (207)2 for
the remainder of this paper. This was sufficiently large so as to initially excite a broad range
of temporal frequencies. The strongest growing disturbance then dictates the response of
the flow at each radial location and point in time. (Additional checks on the response of
the disturbance to different values of o are considered in Appendices A and B.)

4.2.1. Convective instability

Figure 7 displays disturbance time histories, at four successive radial locations, for
several modulation parameter settings with Reynolds number Re = 500 and azimuthal
mode number n = 32. The impulse is again centred at rr = Re, while the envelopes of
the azimuthal component of the vorticity at the wall, £|& |, are plotted for a fixed
value of 8. The modulation amplitude is € = 0.1, with frequencies ¢ = 4 (dashed lines),
¢ = 8 (dot-dashed) and ¢ = 12 (dotted). Solid lines depict the corresponding disturbance
development in the steady von Kdrmdn flow. For each set of disk modulation settings, the
disturbance decays rapidly at r = ry. Disturbances then propagate radially downstream
away from the impulse centre. At radial positions r > ry, there is an initial period
of quiescence (due to a delay in the disturbance reaching these locations), before the
disturbance grows rapidly over a finite time interval and subsequently decays at a relatively
slow rate. Strong radial growth is clearly evident when the scales of the respective
vertical axes in each plot are accounted for. Such behaviour demonstrates the convectively
unstable nature of the disturbance for the given flow conditions. Time-periodic modulation
establishes oscillations in the disturbance amplitude about each radial position during
the time phase when growth occurs. Moreover, the envelopes for modulation frequencies
¢ = 4 and 12 are only marginally different to that obtained for the steady flow. Indeed,
the effect of time-periodic modulation for these particular frequencies is found to enhance
the disturbance magnitude over parts of the evolution. On the other hand, the modulation
frequency ¢ = 8 is found to suppress the growth and amplitude of the disturbance at each
radial location shown. Hence a stabilising effect is established in this instance.

The above analysis was repeated for the same flow conditions (Re, n) and modulation
frequencies ¢, but for the modulation amplitude € = 0.2. The resulting time histories of
the envelopes £|&p | are plotted in figure 8, with the line types the same as those presented
in figure 7. The stabilising effect brought about by modulating the disk with a frequency
¢ = 8 is even greater at this larger modulation amplitude, with significant disturbance
damping realised at all four radial locations shown. Additionally, a stabilising effect is now
evident for the other two modulation frequencies, especially about larger radial locations.
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Figure 7. Temporal evolution of the envelopes of the azimuthal vorticity perturbation field at the disk wall,
*£/&p,w|, for impulsively excited disturbances with n = 32 and ry = Re = 500. The modulation amplitude is
€ = 0.1, with frequencies ¢ = 4 (dashed lines), ¢ = 8 (dot-dashed) and ¢ = 12 (dotted). Steady flow results
are represented by the solid lines. Here, (a) r =1y, (b) r =1y +25, (¢c) r =17 + 50, (d) r =ry + 75, and
T = 2mRe is the non-dimensional time period for the disk rotation.

However, the greatest stabilising effect is again found for ¢ = 8, which is consistent with
the optimal stabilising frequency found via Floquet theory (see table 4 of Morgan et al.
2021).

The convectively unstable behaviour of the above disturbances, and the stabilising
effect induced by modulating the disk rotation rate, are demonstrated further in the
spatiotemporal contour plots of |&p ,,| shown in figure 9. Disturbance evolution is plotted
in the (r, t/T)-plane for the modulation frequency ¢ = 8, while the amplitude € increases
from zero in figure 9(a) to 0.2 in figure 9(c) at 0.1 step intervals. All solutions have been
normalised to have a maximum amplitude of unity at #/7 = 0.1. Additionally, contours
are drawn using a natural logarithmic scaling, with blue and dark red contours matched to
amplitude levels In|&p | = —1 and In|&p ,,| = 7, respectively. The leading and trailing
edges of the three disturbance wavepackets are identified by the outer blue contours
originating from the impulse centre r = r¢. In each instance, both edges propagate radially
outwards with non-zero velocities; the leading edge travels to the right faster than the
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Figure 8. Same as figure 7, but for e = 0.2.

equivalent trailing edge. Time-periodic modulation of the disk rotation rate establishes
disturbance oscillations that are visualised by wiggles in the contours that become more
prominent as the modulation amplitude € increases. Furthermore, modulation has a
marked effect on the radial growth of the disturbance, as evidenced by a reduction in the
maximum contour level over the given radial range: max(In |&,,,|) = 7 (maroon contour)
in figure 9(a) for ¢ = 0, and max(In |& ,,|) = 6 (red contour) in figure 9(c) for e = 0.2.
Figures 10(c,d) display the magnitude max |& | and radial trajectory ry,,, of the
wavepacket maximum associated with the disturbances plotted in figure 9. In addition,
results for modulation amplitudes € = 0.3 and € = 0.4 are included, while figures 10(a,b)
and 10(e.f) display the equivalent solutions for the respective modulation frequencies ¢ =
4 and ¢ = 12. As before, all disturbances are scaled to unity at approximately /7 = 0.1.
Plots of the disturbance maxima max |&y ,,| further demonstrate the significant stabilisation
brought about by modulating the disk rotation rate. At the end of the time interval
shown, the maximum disturbance amplitude is reduced by 2-3 orders of magnitude for
all three modulation frequencies when the amplitude is € = 0.4. A marginally greater
stabilising effect is again realised for the modulation frequency ¢ = 8. Moreover, the
plots of the trajectories r,,,, indicate that the maximum of the disturbance amplitude
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Figure 9. Spatiotemporal development of |& ,,| for impulsively excited disturbances with n = 32 and ry =
Re = 500. Contours are drawn using a natural logarithmic scaling and normalised at #/7" = 0.1. The modulation
frequency is ¢ = 8, with amplitudes (a) ¢ = 0, (b) ¢ = 0.1, and (¢) € = 0.2. (Contour levels are plotted on the
logarithmic interval [—1, 7].)

propagates radially outwards at a marginally faster rate as the modulation amplitude €
increases.

The above analysis demonstrates clearly that the stabilising effect, brought about by
a time-periodic modulation of the disk rotation rate, is not limited to the stationary
convective instabilities considered by Morgan et al. (2021). While the behaviour displayed
in figures 7-10 is limited to the impulse response of one set of convectively unstable
conditions, comparable behaviour was found for many other Reynolds numbers Re and
azimuthal mode numbers n (that are classified as being convectively unstable by a local
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Figure 10. Development of the maximum value of |&p ,,| for disturbance wavepackets generated by impulsive
excitation centred at ry = Re = 500 for n = 32 and variable modulation amplitudes €. (a,c,e) Magnitudes of
the maxima, (b,d,f) radial trajectories 7, of the amplitude maxima, for modulation frequencies (a,b) ¢ = 4,
(c,d) ¢ = 8, and (e,f) ¢ = 12. All disturbances are normalised so that they are equal to unity for /7 = 0.1.

linear stability analysis). Additionally, a strong stabilising effect was found for other
modulation frequencies ¢, consistent with the Floquet analysis of Morgan et al. (2021).

4.2.2. Absolute instability

It was shown by Lingwood (1995, 1997) that when the radial homogeneous flow
approximation has been implemented, linear disturbances in the steady von Kdrman flow
first become absolutely unstable for Reynolds number Re = 507.3 and azimuthal mode
number n = 68. Consequently, we examine the effects of time-periodic modulation on
the development of absolutely unstable disturbances for this critical azimuthal mode
number. Figure 11 displays time histories of three perturbations excited impulsively at
ry = Re, for Reynolds number Re = 525. Solutions are plotted about the four successive
radial locations ry — 25, ry, ry + 25 and ry + 50, while the disk modulation frequency is
¢ = 8, with amplitudes € = 0 (solid lines), € = 0.1 (dashed) and ¢ = 0.2 (dot-dashed).
As before, the envelopes of the azimuthal vorticity perturbation field at the disk wall,
+|&p. |, are plotted to illustrate the development and growth of the disturbances. Absolute
instability is demonstrated clearly for the steady disk (as expected, given the parameter
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settings) as the disturbance grows about all four radial locations shown, including the radial
position upstream of the impulse centre. Hence strong temporal growth is observed in this
instance. On the other hand, modulation of the disk rotation rate has a significant effect
on the disturbance development. Disturbances are again characterised by oscillations,
whereby the amplitude of the perturbation grows and decays in tandem with the unsteady
oscillations of the disk. (This behaviour is less obvious for the case € = 0.2 due to a
considerable reduction in the disturbance magnitude.) For the modulation amplitude € =
0.1, the maximum and minimum amplitudes of the disturbance appear to remain constant
throughout the time interval shown. This would suggest that over one full period of disk
modulation, 7, the disturbance neither grows nor decays. Thus behaviour equivalent to
critical absolute instability is expected. Hence the onset of absolute instability has been
raised to a larger Reynolds number, and stabilisation of the rotating disk boundary layer has
been achieved. Further stabilisation is established for the modulation amplitude € = 0.2,
where the disturbance magnitude is found to decrease rapidly at every radial location
plotted. Thus strong temporal decay is now observed.

It is worth emphasising that the oscillations observed in the perturbations shown in
figures 7, 8 and 11 are brought about by the time-periodic modulation of the disk rotation
rate, and consequently are dependent on the phase of the initial perturbation with respect
to the periodic motion of the disk. For this investigation, the unsteady base flow (2.10) was
established for the disk rotation rate £2* given in (2.2), where a phase shift of 7/2 was
introduced to ensure that time zero was matched to the steady von Karmén flow conditions.
Although the impulse response and phase of these oscillations are governed by the initial
time of the impulsive forcing, qualitatively similar stability characteristics are realised for
disturbances excited about other phases of the unsteady base flow, as demonstrated in

Appendix B.
The spatiotemporal development of the above three disturbances is plotted in figure 12,
with blue and dark red contours matched to amplitude levels In &y .| = —1 and In &g ,,| =

12, respectively. Again, disturbances have been normalised to unity at #/7" = 0.1. The
leading edge of the three disturbance wavepackets propagates radially downstream with
a commensurate velocity. However, in addition to the formation of oscillatory contour
levels, modulation of the disk establishes significant variations in the behaviour of the
trailing edge, leading to the development of very different types of instability. For the
steady disk, the trailing edge propagates radially inwards, as expected for an absolutely
unstable disturbance; eventually, the disturbance spreads across the entire radial range of
interest. However, for the modulation amplitude € = 0.1, the trailing edge propagates with
a near-zero velocity and is parallel to the vertical time #/T-axis. Thus behaviour matching
critical absolute instability is observed, while for € = 0.2, the trailing edge propagates to
the right and radially downstream, establishing convectively unstable behaviour.

In addition to the changing character of the trailing edge, figure 12 also illustrates the
effect of time-periodic modulation on the disturbance amplitude. Over the radial and time
intervals shown, the azimuthal wall vorticity achieves a maximum In |§y ,,| &~ 12 fore = 0,
which reduces to In |&p,,,| &~ 7 for € = 0.2. Hence modulation of the disk rotation rate both
changes the type of instability from absolute to convective and brings about a significant
reduction in the magnitude of the disturbance.

Temporal frequencies and growth rates for the above disturbances may be examined by
considering the complex-valued quantity

B iRe 0A
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At 43
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Figure 11. Temporal evolution of the envelopes of the azimuthal vorticity perturbation field at the disk wall,
*£/&p,|, for impulsively excited disturbances with n = 68 and ry = Re = 525. The modulation frequency is
¢ = 8, with amplitudes € = 0 (solid lines), € = 0.1 (dashed) and € = 0.2 (dot-dashed), and (@) r = ry — 25,
BO)r=rs, () r=rr+25,and (d) r = ry + 50.

where the respective real and imaginary parts of f represent the temporal frequency and
growth rate based on the global time non-dimensionalisation. Once again, A is given by
the azimuthal vorticity perturbation field at the disk wall, &y ,,. Figure 13 displays the
temporal frequencies f. and growth rates f; for the above three disturbances. Furthermore,
results are presented about the four radial locations considered in figure 11: rr — 25 (solid
lines), ry (dashed), rr + 25 (dot-dashed) and r¢ + 50 (dotted). For the results plotted for the
steady disk, depicted in figures 13(a,b), the temporal frequency f, and growth rate f; about
each radial position approach the same fixed constant for large time: f ~ —17.0 + 0.16i.
(Results to greater accuracy are tabulated in table 2.) This behaviour is to be expected, as
all radial positions are equivalent for the base flow (2.10) based on the radial homogeneous
flow approximation. Moreover, as the imaginary part of the temporal frequency f is
positive for large time, positive temporal growth and absolute instability develop, which
is not too surprising given the results of Lingwood (1995) and that presented above in
figures 11 and 12.
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Figure 12. Spatiotemporal development of |&g ,,| for impulsively excited disturbances with n = 68 and ry =
Re = 525. The modulation frequency is ¢ = 8, with amplitudes (a) € =0, (b) € = 0.1, and (¢) € =0.2.
(Contour levels are plotted on the logarithmic interval [—1, 12].)

The temporal frequencies and growth rates computed for the two modulated flows,
plotted in figures 13(c,d) and 13(e,f), again demonstrate that computations asymptote
towards the same solution, irrespective of the radial position. However, as a consequence of
the time-periodic modulation of the disk rotation rate, temporal frequencies f, and growth
rates f; are now characterised by oscillations. Over the span of each modulation cycle 7},
the temporal frequency f; displays periodic behaviour and oscillates about a value near that
found for the steady disk. Moreover, the size of these oscillations increases with increasing
modulation amplitude €. Similar fluctuations are observed in the temporal growth rates f;,
whereby during each modulation cycle, an interval of temporal decay (f; < 0) is followed
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Figure 13. Temporal frequencies f, and temporal growth rates f; for the disturbances modelled in figures 11 and
12, where n = 68 and ry = Re = 525. The temporal development is plotted for four different radial positions:
r = ry — 25 (solid lines), r = r¢ (dashed), r = r¢ + 25 (dot-dashed) and r = ry + 50 (dotted), and: (a,b) ¢ = 8
ande =0, (c,d) p =8 and e = 0.1, and (e,f) ¢ = 8and € = 0.2.

by a period of temporal growth (f; > 0). The maximum and minimum values of the
temporal growth rate f;, during each modulation cycle, are respectively enhanced and
reduced by increases in the modulation amplitude €. Averaging the temporal frequencies
S over one period of disk modulation establishes the mean frequencies f ~ —16.9 + 0.011
and f ~ —16.7 — 0.44i for the respective modulation amplitudes € = 0.1 and € = 0.2.
(Mean calculations of f to greater accuracy are again tabulated in table 2.) Thus in the
instance € = 0.1, the mean temporal growth rate f; is near critical conditions for absolute
instability, while for € = 0.2, strong temporal decay ensues.

The above analysis was extended to modulation frequencies ¢ =4 and 12.
Linear disturbances were again excited impulsively for Reynolds number Re = 525,
with modulation amplitudes € = 0.1 and 0.2. Figure 14 displays the corresponding
spatiotemporal disturbance development in the (r,#/T)-plane. Contour levels and the
radial-temporal domain are equivalent to those presented for the modulation frequency
¢ =8 in figure 12, to help to draw comparisons. In both instances, time-periodic
modulation again establishes a significant stabilising effect. Behaviour consistent with
critical conditions for absolute instability is realised for amplitude € = 0.1, while
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Re 2 € Sr fi
— 0 —17.01 0.1801
4 0.1 —16.89 0.0685
4 02 —16.54 —0.1600
525 8 0.1 —16.93 —0.0034
8 0.2 —16.70 —0.4521
12 0.1 —16.99 —0.0131
12 0.2 —16.93 —0.5032
— 0 —16.37 0.3755
4 0.1 —16.25 0.2597
4 02 —15.90 0.0247
4 03 —15.32  —0.3563
550 8 0.1 —16.29 0.1885
8 0.2 —16.06 —0.2584
8 0.3 —15.62 —1.0606
12 0.1 —16.34 0.1826
12 02 —16.28 —0.2988
12 0.3 —16.18 —1.1528
— 0 —15.10 0.7160
4 0.1 —14.99 0.5902
4 02 —14.64 0.3408
4 03 —14.06 —0.0625
8 0.1 —15.04 0.5285
600 8 0.2 —14.82 0.0982
8 0.3 —14.35 —0.7436
12 0.1 —15.09 0.5578
12 02 —15.02 0.0535
12 0.3 —14.91 —0.7702
— 0 —12.71 1.2163
4 0.1 —12.56 1.1414
4 02 —12.22 0.8655
4 03 —11.64 0.4233
8 0.1 —12.56 1.0701
700 8 0.2 —12.34 0.6354
8 03 —11.77 —0.2038
12 0.1 —12.66 1.0914
12 0.2 —12.61 0.6392
12 0.3 —12.50 —0.1461

Table 2. Mean temporal frequencies f, and growth rates f; for impulsively excited disturbances with n = 68
and variable Reynolds number Re and modulation settings ¢ and €. Mean results are calculated by averaging f;
and f; over one full period of disk modulation about the radius r = ry = Re.

convectively unstable behaviour is achieved for € = 0.2. On inspecting the disturbance
maximum and behaviour of the respective trailing edges, it is clear that the modulation
frequency ¢ = 12 establishes a stabilising effect greater than that found for ¢ = 4. Indeed,
disturbance development obtained for ¢ = 12 is commensurate with that brought about by
modulating the disk at frequency ¢ = 8. Additional temporal frequencies f, obtained by
averaging over one modulation cycle 7;,, are included in table 2 for the above disturbances,
alongside computations for several other Reynolds numbers Re.

Further disturbances were simulated numerically for Reynolds number Re = 550, with
modulation parameter settings € = 0.1,0.2 and ¢ = 4, 8, 12. Figure 15 displays the
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Figure 14. Same as figure 12 for (@) p =4 ande = 0.1, (h) p = 12and € = 0.1, (c) p =4 and e = 0.2,
(dyp =12and e =0.2.

corresponding temporal frequencies f, and growth rates f; computed about the impulse
centre ry = Re, with the modulation frequency ¢ increasing monotonically down the
figure. The illustration again demonstrates that time-periodic modulation establishes
oscillations in both the temporal frequency and growth rate, with the periodicity governed
by the modulation frequency ¢ of the disk rotation rate. Additionally, larger modulation
amplitudes € enhance the size of these oscillations. However, the variation in the
temporal frequency f; is found to decrease as the modulation frequency ¢ increases,
whereas fluctuations in the temporal growth rate f; appear to be less affected by the size
of ¢.

The spatiotemporal development associated with the disturbances excited impulsively
for Reynolds number Re = 550 and modulation frequency ¢ = 12 are plotted in
figures 16(a,c,e,g). In addition to modulation amplitudes ¢ =0, 0.1, 0.2, the solution
for € = 0.3 is included in the illustration, while plots in figures 16(b,d.f.,h) depict
the equivalent behaviour for Reynolds number Re = 600. The size of the modulation
amplitude € increases monotonically down the figure, while contour levels are now plotted
on the logarithmic interval In|&p ,,| € [—1, 14]. The type of instability that develops in
each instance is again identified by the direction of the leading and trailing edges of the
disturbance wavepacket, i.e. upstream or downstream. Absolute instability is observed
clearly for the modulation amplitude € = 0.1 at both Reynolds numbers considered
(figures 16¢,d), as the leading and trailing edges propagate in opposite directions.
Behaviour near critical conditions for absolute instability is found for € = 0.2 and
Re = 600, as the trailing edge of the wavepacket is almost parallel to the time #/7T-axis
(figure 16f), while for the largest modulation amplitude, € = 0.3, convectively unstable
behaviour is demonstrated as both leading and trailing edges propagate radially outwards
(figures 16g,h).
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Figure 15. Temporal frequencies f, and temporal growth rates f; for impulsively excited disturbances with
n =068 and ry = Re = 550. The temporal development is plotted about the radial position r = r¢, with
the modulation amplitudes € = 0 (solid lines), € = 0.1 (dashed) and € = 0.2 (dot-dashed), for (a,b) ¢ =4,
(c,d) ¢ =8, and (e,f) p = 12.

Tracing the changes in the contour shading in figure 16 demonstrates a significant
reduction in the disturbance amplitude as the modulation amplitude € increases. The
development of the maximum absolute value of the azimuthal perturbation field at the disk
wall, max |&p |, is plotted in figures 17(a,c) for the disturbance wavepackets illustrated
in figure 16, in addition to the results obtained for the modulation amplitude € = 0.4. On
normalising all disturbances to unity at time /7 = 0.1, a huge reduction in the disturbance
amplitude is realised by modulating the disk with amplitude ¢ = 0.4. For both Reynolds
numbers modelled, max |&g,,,| is of the order 10" at the end of one full rotation of the
disk for € = 0.4, while max |&g ,,| is of the order 107-10° for the steady von Karman flow.
The corresponding radial trajectories 7y, of the amplitude maxima are plotted in figures
17(b,d), and indicate that the maximum of the disturbance convects further downstream as
the modulation amplitude € increases. _

Figures 18(a,c,e) depict the variation in the mean temporal growth rate f; obtained for
azimuthal mode number n = 68, as a function of Reynolds number Re. Results are plotted
for all three modulation frequencies modelled so far, i.e. ¢ = 4, 8 and 12. Mean temporal
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Figure 16. Spatiotemporal development of [&p .| for impulsively excited disturbances with rs = Re, n = 68
and ¢ = 12, for (a) Re = 550 and € = 0, (b) Re = 600 and € = 0, (¢) Re = 550 and € = 0.1, (d) Re = 600 and
€ =0.1, (e) Re =550 and € = 0.2, (f) Re = 600 and € = 0.2, (g) Re = 550 and € = 0.3, (h) Re = 600 and
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€ = 0.3. (Contour levels are plotted on the logarithmic interval [—1, 14].)

growth rates were determined for Reynolds numbers Re € [500, 700] at step intervals
ARe = 25, with modulation amplitudes € € [0, 0.3]. Solutions further demonstrate the
significant stabilising effect achieved via the application of time-periodic modulation to
the disk rotation rate; mean temporal growth rates f; decrease as € increases and the
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Figure 17. Development of the maximum value of |&p ,,| for disturbance wavepackets generated by impulsive
excitation centred at ry = Re for n = 68 and variable modulation amplitudes €. (a,c) Magnitudes of the
maxima; (b,d) radial trajectories of the amplitude maxima. The Reynolds number is Re = 550 in (a,b), and
Re = 600 in (c,d). The modulation frequency is ¢ = 12, and all disturbances are normalised so that they are
equal to unity at #/7 = 0.1.

onset of absolute instability is raised to larger Reynolds numbers. Moreover, modulation
frequencies ¢ = 8 and 12 establish a reduction in the mean temporal growth rate greater
than the results obtained for ¢ = 4.

Comparable control of absolutely unstable behaviour was realised for other azimuthal
mode numbers n. For instance, figures 18(b,d.f) depict the equivalent set of computations
for n = 100, where absolute instability is again delayed to larger Reynolds number. Several
mean temporal frequencies f = f, + if; are given in tables 2 and 3, for the two azimuthal
mode numbers n = 68 and n = 100, and modulation frequencies ¢ = 4, 8, 12.

The mean temporal growth rates f;, shown in figure 18, are found to decrease
proportionally with the square of the modulation amplitude €. This particular observation
is illustrated for the modulation frequency ¢ = 8 in figure 19(a) for n = 68 and in
figure 19(b) for n = 100. Mean temporal growth rates are plotted as a function of the
modulation amplitude e, for four fixed Reynolds numbers, Re = 550 to Re = 700 at step
intervals ARe = 50, with interpolation implemented to generate the curves of best fit. In
each instance, solutions can be approximated by a parabolic function in € of the form

2
F=e 1= (i) , (4.4)

2

949 A35-29


https://doi.org/10.1017/jfm.2022.791

https://doi.org/10.1017/jfm.2022.791 Published online by Cambridge University Press

S. Morgan, C. Davies and C. Thomas

®) 15 -
1.0
05
0 A
. 05t /-
1.0 -1.0
500 550 600 650 700 500 550 600 650 700
(¢) 15 d 15 —
LO 1.0
Z 05 0.5
0 pZmt 0
s e -0.5
gl ~1.0%
500 550 600 650 700 500 550 600 650 700
(e) 15 f) 15 =
1.0 1.0
- 05 0.5
0 " - 0
o5 o e -0.5
-1.0 e —1.05
500 550 600 650 700 500 550 600 650 700
Re Re

Figure 18. Mean temporal growth rates f_, as functions of Reynolds number Re, with (a) (n, ¢) = (68, 4),
(b) (n, @) = (100,4), (c) (n,9) = (68,8), (d) (n,¢9)=(100,8), (e) (n,¢)=(68,12), and (f) (n,¢) =
(100, 12). The modulation amplitudes are € = 0 (solid line), ¢ = 0.1 (dashed), ¢ = 0.2 (dot-dashed) and
€ = 0.3 (dotted). Mean results are calculated by averaging f; over one full period of disk modulation at the
radius r = rf = Re.

where c; is the temporal growth rate at € =0, and ¢, is the modulation amplitude
associated with zero temporal growth. Thus a greater reduction in the temporal growth
rate is realised as the modulation amplitude € increases to larger values.

Critical Reynolds numbers Re, for the onset of absolute instability can be estimated by
applying linear interpolation to the mean temporal growth rates plotted in figure 18. Table 4
presents predictions for Re., for both azimuthal mode numbers n = 68 and n = 100.
Calculations indicate that modulation frequencies ¢ = 8 and 12 raise the critical Reynolds
number by approximately 70-85 units in the instance the modulation amplitude € = 0.2,
whereas a significantly smaller increase in Re, is realised for ¢ = 4, at approximately
14-35 units when € = 0.2.

Finally, modulation frequencies ¢ = 4, 8, 12 were chosen in this study to demonstrate
the control benefits of disk modulation following the earlier observations of Morgan
et al. (2021). In their Floquet analysis, Morgan and co-workers found that the control
of stationary convective instabilities (both type I cross-flow and type II Coriolis) was
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Re @ € Jr fi
— 0 —29.75 —0.0674
4 0.1 —29.57 —0.1198
4 02 —29.05 —0.2802
550 8 0.1 —29.58 —0.2732
8§ 0.2 —29.07 —0.8907
12 0.1 —29.67 —0.3437
12 0.2 —29.40 —1.1918
— 0 —28.43 0.6113
4 01 —28.25 0.5489
4 02 —27.72 0.3609
4 03 —26.88 0.0473
4 04 —=25.77 —0.4003
600 8 0.1 —28.27 0.4002
8§ 0.2 —27.77 —0.2364
8§ 03 —26.90 —1.1936
12 0.1 —28.36 0.3396
12 0.2 —28.12  —0.4966
12 03 —27.52 —1.9563
— 0 —25.90 1.7579
4 0.1 —25.72 1.6772
4 02 —25.17 1.4394
4 03 —24.31 1.0532
4 04 —23.16 0.5205
700 8 0.1 —25.75 1.5401
8§ 0.2 —25.28 0.8832
8§ 03 —24.47 —0.1245
12 0.1 —25.84 1.4970
12 0.2 —25.64 0.6930
12 03 —25.24 —0.7315

Table 3. Same as table 2 for n = 100.

0 0.1 0.2 0.3
€ €

Figure 19. Mean temporal growth rates f; as functions of the modulation amplitude e with frequency ¢ =
8, and Reynolds numbers Re = 550 (solid line), Re = 600 (dashed), Re = 650 (dot-dashed) and Re = 700
(dotted), with azimuthal mode numbers (a) n = 68, (b) n = 100.

optimised by modulation frequencies 8 < ¢ < 12, with negligible control benefits realised
for smaller and larger frequencies (see figure 7 of their paper). While extending the
above study to other flow conditions and modulation settings would help to identify the
optimal modulation configurations for controlling absolutely unstable behaviour, this was
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n © € Re.
— 0 507
4 0.1 513
4 0.2 542
68 8 0.1 524
8 0.2 583
12 0.1 523
12 0.2 587
— 0 557
4 0.1 560
4 0.2 571
100 8 0.1 570
8 0.2 618
12 0.1 576
12 0.2 642

Table 4. Predictions for the critical Reynolds number Re. for azimuthal mode numbers n = 68 and n = 100.
Calculations are based on applying linear interpolation to the solutions presented in figure 18.

unfeasible due to the computational demands of the numerical scheme; a single numerical
simulation, for fixed Re, n, € and ¢, required several computational processing hours.
Undertaking a thorough investigation of all possible parameters was impractical, and
instead the control benefits of modulating the disk rotation rate were presented for those
azimuthal modes numbers that are considered to be the most significant on the steady
rotating disk, namely n = 32 for the cross-flow instability (Gregory et al. 1955; Malik
1986), and n = 68 for absolute instability (Lingwood 1995, 1996). Nevertheless, further
study was undertaken to ascertain whether the frequency range proposed by Morgan
and co-workers was optimal for suppressing the temporal growth of absolutely unstable
disturbances. B

Figure 20 displays mean temporal growth rates f; as functions of the modulation
frequency ¢. Solutions are plotted for the two azimuthal mode numbers » = 68 and
n =100, in the instance the Reynolds number Re = 600; these particular conditions
correspond to strong absolutely unstable disturbances on the steady rotating disk. In
addition, solutions are plotted for modulation amplitudes € € [0.1, 0.3] and modulation
frequencies ¢ € [2,30] at step intervals Ag = 2. Cross markers indicate the results
obtained for these particular settings, with interpolation implemented to generate the
curves of best fit. For the azimuthal mode number n = 68, results indicate that the optimal
frequency for suppressing the temporal growth rate, and the appearance of absolutely
unstable behaviour, is found for ¢ &~ 10. For smaller and larger modulation frequencies,
the effect on the temporal growth rate quickly diminishes, which is comparable with the
behaviour found by Morgan and co-workers for the stationary cross-flow instability. Hence
the preferred frequency is within the range of optimum frequencies suggested by Morgan
et al. (2021). However, at the larger azimuthal mode number, solutions indicate that a
frequency near ¢ = 14 gives the optimal control benefits. Moreover, similar numerical
simulations carried out for azimuthal mode numbers n = 75, 85 and 95, suggest that
control is optimised for frequencies ¢ & 11, 12 and 13, respectively. While results suggest
that the preferred modulation frequency increases with the size of the azimuthal mode
number, comparable reductions in the mean temporal growth rate f; are still realised
for 8 < ¢ < 12. Furthermore, the larger azimuthal mode numbers have not, to these
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Figure 20. Mean temporal growth rates f; as functions of the modulation frequency ¢ with Reynolds number
Re = 600, and modulation amplitudes € = 0 (solid line), ¢ = 0.1 (dashed), ¢ = 0.2 (dot-dashed) and € = 0.3
(dotted), and azimuthal mode numbers (a) n = 68, (b) n = 100.

authors’ knowledge, been observed to play a significant role in the laminar—turbulent
transition process on a rotating disk. Hence the frequency range suggested by Morgan and
co-workers, 8 < ¢ < 12, is the preferred modulation configuration for controlling both
convective and absolute forms of linear instability.

5. Conclusions

A numerical investigation has been undertaken on the development of linear disturbances
in the time-periodic modulated rotating disk boundary layer. Modulation of the disk
rotation rate was achieved in the manner outlined by Morgan et al. (2021), whereby
sinusoidal motion was added to the otherwise constant disk rotation rate. In addition, the
modulation amplitude € was limited to relatively small values to prevent the growth of
stability mechanisms associated with the unsteady oscillations of the disk (Blennerhassett
& Bassom 2002).

The study extends the recent Floquet stability analysis by Morgan et al. (2021) on the
control of stationary convective instabilities, to encompass the effects of modulation on
both convective and absolute forms of linear instability. Linear disturbance development
was established using both a periodic and an impulsive wall forcing, for the unsteady base
flow based on the radial homogeneous flow approximation; the radial dependence of the
base flow was removed by replacing the radius r with the Reynolds number Re in (2.9).

Periodic wall forcing was implemented to generate stationary disturbances associated
with the convective cross-flow instability. Numerical simulations revealed behaviour
consistent with the earlier Floquet analysis, with modulation establishing significant
control benefits; the radial growth and amplitude of the stationary cross-flow instability
were reduced.

Impulsive wall forcing was used to excite linear disturbance development for a range
of flow and modulation settings, with a focus on the two azimuthal mode numbers
n = 32 and n = 68. These particular mode numbers respectively correspond to a strongly
growing convective cross-flow instability and the critical value associated with the onset of
absolute instability in the steady von Kdrman flow. Time-periodic modulation of the disk
rotation rate was found to establish a considerable stabilising effect for both the convective
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and absolute instabilities, which was illustrated via a reduction in both the disturbance
amplitude and temporal growth rate (based on an averaging over one modulation period).
Moreover, the onset of absolute instability was raised to larger Reynolds numbers Re with
the application of disk modulation. Thus it is expected that laminar—turbulent transition
on the time-periodic modulated disk will be delayed to larger Reynolds numbers (or
equivalently radial locations).

The strong stabilising effect brought about by modulating the disk rotation rate was
enhanced by increasing the modulation amplitude €, while modulation frequencies in the
interval 8 < ¢ < 12 were found to bring about greater control benefits for the n = 68
absolutely unstable mode. Negligible control benefits were realised for very small and
large frequencies. This behaviour is consistent with the earlier Floquet analysis of Morgan
et al. (2021), who found that frequencies in this parameter range optimised the control
of the stationary cross-flow instability. For larger azimuthal mode numbers n, results
suggest that the optimal modulation frequency increases with increasing n. However, as
there is no evidence in the experimental literature that the larger n modes play a role
in laminar—turbulent transition on the steady rotating disk, we conclude that frequencies
8 < ¢ < 12 are the preferred modulation configuration for controlling both convective and
absolute instabilities.

Finally, the current study has focused on the control of linear disturbances with
the implementation of the radial homogeneous flow approximation. For the steady von
Kérman flow, Davies & Carpenter (2003), Thomas & Davies (2018) and Appelquist et al.
(2015) showed that the impulse response of linear disturbance development is affected
by radial inhomogeneity, where the radial dependence of the base flow (2.9) is retained.
For azimuthal mode numbers near critical conditions for absolute instability, convective
characteristics dominate the global disturbance response (Davies & Carpenter 2003),
while at sufficiently large azimuthal mode numbers, a form of global instability emerges
that is characterised by a faster than exponential growth (Thomas & Davies 2018). Thus
we might expect radial inhomogeneity to have a similar effect on disturbance development
in the modulated von Karman flow. Additionally, nonlinearity and the subsequent stages
of the transition process play an important role on the steady rotating disk (Pier 2003,
2007, 2013; Appelquist et al. 2016, 2018) and can again be expected to become significant
on the modulated rotating disk. Hence further investigation is required to understand the
full effect of time-periodic modulation on laminar—turbulent transition in the rotating disk
boundary layer.
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Appendix A. Checks on the numerical scheme
A.l. The radial and temporal step sizes

Figure 21 displays the temporal evolution of the disturbance at two successive radial
locations ry and ry + 50, where the disturbance was excited impulsively at 7y = 600.
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Figure 21. Temporal evolution of the azimuthal vorticity perturbation field at the disk wall, &, for
impulsively excited disturbances with n = 68 and rr = Re = 600. The modulation amplitude is € = 0.1, and
frequency is ¢ = 8. Solutions are plotted for radial and temporal step sizes (Ar, Af) = (1, 0.5) (solid lines),
(Ar, At) = (1,0.25) (dashed) and (Ar, At) = (0.5, 0.5) (dotted), for (a) r = r¢, and (b) r = rr + 50. Here,
T = 2mRe is the non-dimensional time period for the disk rotation.

Ar At fr fi

1.0 05 —15.0388 0.5285
1.0 025 —15.0367 0.5281
05 05 —15.0398 0.5295

Table 5. Mean temporal frequencies f, and growth rates f; for impulsively excited disturbances with n = 68,
Re = 600, € = 0.1 and ¢ = 8. Mean results are calculated by averaging f, and f; over one full period of disk
modulation about the radius r = ry = Re.

The Reynolds number is Re = 600, azimuthal mode number is n = 68, and modulation
parameter settings are € = 0.1 and ¢ = 8. Solutions are presented for three different
numerical simulations, in which the radial and temporal step sizes, Ar and At, have been
varied. The aim here is to demonstrate that the choice for Ar and At used throughout this
study is more than sufficient to compute accurately the development of linear disturbances
in the rotating disk boundary layer with time-periodic modulation. The solid blue lines
depict the results matched to (Ar, At) = (1, 0.5) that were used in the above investigation,
while the dashed red and dotted yellow lines display the equivalent solutions obtained by
scaling the respective temporal and radial step sizes by one-half. To graphical accuracy, the
three numerical simulations are identical over the time interval shown. Moreover, the mean
temporal growth rates f; associated with the above numerical discretisations are found to
be identical to at least two decimal places; see table 5.
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Figure 22. Instantaneous radial variation of the azimuthal vorticity perturbation field at the disk wall, &g ,,, for
impulsively excited disturbances with n = 68 and ry = Re = 600. The modulation amplitude is € = 0.1, and
frequency is ¢ = 8. The outer radial boundary is fixed at r,,; = 1300 (solid lines) and r,,; = 1500 (dashed),
for (a) t/T = 1.15, and (b) t/T = 2.3.

A.2. The influence of the domain size and outflow boundary condition

As discussed in § 3, condition (3.12) was imposed on all primary perturbation fields at
the outer radial boundary to prevent the development of any spurious computational edge
effects. In addition, the computational domain r;, < r < r,,; was modelled sufficiently
large, so that the outer radius r,,; was far removed from all disturbances that have evolved
to an appreciable amplitude. Figure 22 displays the radial variation of the azimuthal
vorticity perturbation field at the disk wall, & ,,, for the flow conditions and modulation
settings specified in § A.1. Solutions are plotted at times ¢/7T = 1.15 and 2.3, for two
numerical simulations with different outflow boundary locations. The solid blue lines
depict the results obtained by setting r,,, = 1300, while the dashed red lines display
the equivalent solution for r,,; = 1500. At the first time instant, shown in figure 22(a),
the maximum of the disturbance wavepacket is located far away from the outer radial
boundary, so the disturbance is negligible at the outflow in both cases. Unsurprisingly,
the two solutions are identical. At the second time instant, plotted in figure 22(b), the
disturbance amplitude at the outer radial boundary for the simulation undertaken on
the shorter computational domain has achieved a size comparable to the wavepacket
maximum, whereas for the numerical simulation conducted on the longer computational
domain, the disturbance amplitude is again negligible at the outflow. Nevertheless, there
is still excellent agreement between the two computations, and there is no indication that
the shorter computational domain has generated any spurious numerical noise.

A.3. Duration of the initial impulse

In the above impulse response analysis, where disturbance development was established
by an impulsive wall motion (4.1¢), the duration of the initial impulse was fixed by the
parameter o. Setting o = 1/(20m?) was found to initially excite an extensive range of
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Figure 23. Temporal evolution of the azimuthal vorticity perturbation field at the disk wall, & ,,, for
impulsively excited disturbances with n = 68 and ry = Re = 600. The modulation amplitude is € = 0.1, and

frequency is ¢ = 8. Solutions are plotted for an initial impulse o = 1/(201‘[)2 (solid lines), o = l/(401'r)2
(dashed) and o = 1/ (27)? (dotted). Solutions are normalised to unity at t/7 = 0.1.

frequencies, after which the most unstable mode dominated the flow response. Other o
values were considered in the early testing of the numerical formulation but did not affect
the general response of the disturbances. For instance, figure 23 depicts the temporal
evolution of &y ,, for flow conditions n = 68 and ry = Re = 600, and modulation settings
€ = 0.1 and ¢ = 8. Solutions are plotted for three numerical simulations with different
o values. The solid blue line displays the result generated for o = 1/(20w?), while
the dashed red and dotted yellow lines depict solutions matched to o = 1/(40w?) and
o = 1/(2w?), respectively. These two latter simulations respectively establish longer and
shorter initial impulses than the value of o used in the above investigation. However,
on normalising all three solutions at time ¢#/7 = 0.1, the resulting temporal evolution is
identical in all three cases; each disturbance grows with the same periodicity and displays
absolutely unstable behaviour, i.e. the disturbance grows with increasing time. Thus the
impulse response is unaffected by the initial duration of the impulsive wall forcing.

Appendix B. Variation in the phase of the unsteady flow

Time-periodic modulation of the rotating disk was achieved by imposing an unsteady disk
rotation rate

(1) = 25 + A¢™ cos(¢™t" — 1/2); (B1)

recall (2.2). The first term represents a constant disk rotation rate, while the second
term establishes modulation of the rotating disk. In the above study, the 7/2 phase
shift was implemented to ensure that time zero corresponds to the von Kérman flow
conditions. Consequently, the oscillations observed in the disturbance development,
illustrated in figures 7-9 and 11-16, were dependent on this particular choice of phase shift.
Nevertheless, equivalent stability characteristics were obtained for disturbances excited
impulsively about other phases of the periodic motion.
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Figure 24. Variation in the initial phase y of the unsteady base flow, for impulsively excited disturbances
with n = 68, rr = Re =525, € = 0.1 and ¢ = 8. (a) Temporal evolution of the envelopes |&g,,,| at r = ry.
(b) Temporal evolution of the radial location r, of the trailing edge, associated with the spatiotemporal
disturbance development, with solutions normalised to unity at #/7 = 0.1.

Generalising the disk rotation rate £2* as
Q") = 25 + A9 cos(¢™t" + y), (B2)

for a phase shift y (where y = —m/2 recovers the flow modelled herein), several
disturbances were simulated numerically to demonstrate the effect of varying the initial
phase of the impulsive forcing. Figure 24(a) displays the temporal evolution of the
envelopes |&p,| at r = ry, established for flow settings Re =525 and n = 68, and
modulation parameter settings ¢ = 8 and € = (.1. Solutions are plotted for four phase
shifts y: the solid blue line corresponds to y = —mn/2 modelled throughout this study,
while the red dashed, yellow dot-dashed and purple dotted lines depict the respective
solutions for y =0, /2 and 7. As expected, all four solutions are characterised by
oscillatory behaviour, with disturbances attaining local maxima and minima at different
time instances. The perturbation matched to ¥ = 0 achieves a local maximum (minimum)
at the same point in time that the y = m disturbance attains a local minimum (maximum).
Similarly for the y = £m/2 time history envelopes. Moreover, behaviour consistent with
critical absolute instability is emerging in each instance, as for large time ¢, disturbances
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neither grow nor decay from one period of disk modulation to the next. However, there
is a noticeable difference in the respective amplitudes of each disturbance. Solutions
established for phase shifts y =0 and m/2 attain amplitudes (both maximum and
minimum) larger than those amplitudes realised for y = —m/2 and 7. This particular
observation is a direct consequence of the phase in which disturbances are excited initially;
the amplitude of the disturbance varies with the phase shift y.

The spatiotemporal disturbance development associated with the above numerical
simulations was constructed in the (r,t/T)-plane, with all four solutions normalised
at t/T = 0.1. The respective leading and trailing edges of each disturbance were then
determined by defining contour levels on the logarithmic interval In|&p | = [—1, 12]
(as implemented in figure 12). Figure 24(b) displays the temporal evolution of the
radial location r, associated with the four trailing edges (based on the contour level
In|& | = —1), with line types the same as those given in figure 24(a). For each phase
shift y, the trailing edge is found to oscillate about the radial position r = 532 for large
time ¢/T. Meanwhile, the corresponding leading edges are found to propagate radially
outwards with a comparable non-zero velocity. Thus behaviour consistent with the onset
of absolute instability develops in each instance. Hence despite the obvious differences
in the disturbance amplitude, illustrated in figure 24(a), qualitatively similar stability
characteristics (that is, critical absolute instability) are realised.
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