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H∞ Functional Calculus and Mikhlin-Type
Multiplier Conditions

José E. Galé and Pedro J. Miana

Abstract. Let T be a sectorial operator. It is known that the existence of a bounded (suitably scaled)

H∞ calculus for T, on every sector containing the positive half-line, is equivalent to the existence of

a bounded functional calculus on the Besov algebra Λα
∞,1(R

+). Such an algebra includes functions

defined by Mikhlin-type conditions and so the Besov calculus can be seen as a result on multipliers for

T. In this paper, we use fractional derivation to analyse in detail the relationship between Λα
∞,1 and

Banach algebras of Mikhlin-type. As a result, we obtain a new version of the quoted equivalence.

1 Introduction

On the basis of the work done by A. McIntosh for Hilbert spaces [12], an H∞ func-

tional calculus is given for sectorial operators on general Banach spaces [4]. When

the operators under discussion are of type 0, the existence of the (suitably scaled) H∞

calculus is shown to be equivalent to the existence of a functional calculus defined on

a certain Besov space Λ
α
∞,1(R

+) [4, Theorem 4.10].

Every n-differentiable function F on R
+ := (0,∞) obeying Mikhlin-type condi-

tions like

sup
t>0

tk|F(k)(t)| <∞ (k = 0, 1, . . . , n)

belongs to Λ
α
∞,1 if n > α; see [4, p. 73], [5, p. 416]. This reinforces the view of

the Besov functional calculus as a theorem about multipliers. We study more closely

such a link by using fractional derivation, in Section 2 and Section 3 of this paper.

The equivalence between the H∞ calculus and the Besov calculus is proven in [4,

Theorem 4.10] through the Paley–Wiener theorem. We show in Section 4 that to go

from (bounded) analytic functions to functions in Λ
α
∞,1, the way is in fact paved with

a formula of Cauchy type for fractional derivatives. In Section 5, we apply the results

of previous sections to give a characterization of the (scaled) H∞ calculus in terms

of Mikhlin algebras.

On the other hand, the sectorial H∞ calculus provides us, in general, with oper-

ators which are not necessarily bounded [4, 16]. It has been shown [8, 9] that these

operators can always be regarded as certain generalized multipliers, or regular quasi-

multipliers in the sense defined by J. Esterle [7]. It may be worth pointing out that as
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H∞ Functional Calculus and Mikhlin-Type Multiplier Conditions 1011

a consequence of the results in Sections 3 and 4, an unbounded calculus is available

where operating functions of Mikhlin type yield regular quasimultipliers.

2 Mikhlin Algebras Defined by Fractional Derivation

Let h be a locally integrable function on R
+ := (0,∞). For δ such that 0 < δ < 1

and ω > 0, we put

Iδωh(t) :=
1

Γ(δ)

∫ ω

t

(s − t)δ−1h(s) ds,

if 0 < t < ω, and Iδωh(t) := 0, if t ≥ ω. Then, assuming that the following limit

exists, we write

h(δ)(t) := lim
ω→∞

(
−

d

dt

)
(I1−δ
ω h)(t).

If α is a positive number with α = n + δ where n := [α] is the integer part of α, we

define

h(α)(t) :=
( d

dt

) n

h(α−n)(t), t > 0.

Whenever we write h(α), we understand that the limit exists and that I1−δ
ω h for ω > 0

and h(δ), . . . , h(α−1) are locally absolutely continuous functions on R
+.

The above definition of h(α) is a kind of Riemann–Liouville fractional derivative

introduced by Cossar [3] and reconsidered by Trebels [15]. Here, we call h(α) the

Cossar–Riemann–Liouville derivative of h. In some cases, the definition of h(α) can be

done more directly. For example, when h is assumed to be, additionally, of compact

support in R
+, then we may use the Fourier transform so that

ĥ(α)(ξ) = (−iξ)αĥ(ξ), ξ ∈ R,

in the distributional sense.

Let WBV∞,α denote the space of functions of weak bounded variation formed by

the functions in L∞ ∩ C(R
+) for which there exist h(α) and ‖h‖∞,α := ‖h‖∞ +

‖tαh(α)(t)‖∞ < ∞. The space WBV∞,α is a Banach space with respect to the norm

‖ · ‖∞,α. Moreover, it coincides with corresponding (concerning order α and sup-

norm) localized Riesz potential spaces and localized Riemann–Liouville spaces. In

particular, the norm ‖h‖∞,α is equivalent to the norm

sup
t>0

‖(φht )
(α)‖∞

for any, fixed, non-negative φ ∈ C(∞)
c (R

+), and where ht (s) := h(ts), for a.e. s, t > 0,

see [2, Theorem 2]. If h ∈ WBV∞,α is of compact support, then

h(s) =
(−1)n

Γ(α)

∫ ∞

s

(t − s)α−1h(α)(t) dt, a.e. s > 0,

see [2, p. 252]. Note that in particular if h(s) = 0 for s ≥ r, then h(α)(s) = 0 for s ≥ r.
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Although for generic elements of WBV∞,α the above formula need not hold, there

is also a reproducing formula for derivatives. This is

g(ν)(t) =
(−1)[α]−[ν]

Γ(α− ν)

∫ ∞

t

(s − t)α−ν−1g(α)(s) ds

for a.e. t > 0 if g ∈ WBV∞,α and 0 < ν < α, see [11, p. 250]. This formula readily

implies that WBV∞,β ⊂ WBV∞,α with ‖tαgα(t)‖∞ ≤ ‖tβgβ(t)‖∞, if g ∈ WBV∞,β

and 0 < α ≤ β.

For convenience, we are interested here in elements f of WBV∞,α with f and f (α)

continuous.

Definition 2.1 For α > 0, let M(α)
∞ denote the closure in WBV∞,α of the linear

subspace WBV∞,α ∩C(∞)(R
+).

Clearly, M(β)
∞ ⊂ M(α)

∞ for 0 < α ≤ β. It is possible to endow M(α)
∞ with an-

other norm which is equivalent to ‖ · ‖∞,α and involves the fractional power opera-

tor (−s d
ds

)α. Let us first recall some well-known facts about such an operator when

α = n ∈ N.

If F ∈ C(n)(R) and x ∈ R, we have (x d
dx

)nF(x) =
∑n

j=1 c jx
jF( j)(x), for specific

coefficients c j , j = 1, . . . , n. If F(x) := f (ex), where f is a C(n) function on R
+, then

F(n)(x) =

n∑

j=1

c je
jx f ( j)(ex) ≡

n∑

j=1

c js
j f ( j)(s)

for every s = ex > 0. That is, the operators dn

dxn on R and (s d
ds

)n on R
+ are in cor-

respondence under exponential (or, conversely, logarithmic) change of variable. In-

deed, the set of functions F ∈ C(n)(R) such that sup j=0,1,...,n ‖F( j)‖∞ <∞ is bijective

with the set of functions f ∈ C(n)(R
+) for which sup j=0,1,...,n ‖ f ( j)(s)s j‖∞ < ∞. On

the other hand, using induction, we obtain that sup j=0,1,...,n ‖ f ( j)(s)s j‖∞ <∞ if and

only if sup j=0,1,...,n ‖(s d
ds

) j f ‖∞ < ∞. In order to find an analog of this equivalence

for fractional derivation, we replace the usual derivation on R
+ with the Marchaud

derivation, and use the Hadamard fractional version of (−s d
ds

)n.

Let 0 < δ < 1. If f ∈ WBV∞,δ , then

f (δ)(s) =
1

Γ(−δ)

∫ ∞

s

f (t) − f (s)

(t − s)1+δ
dt

for every s > 0 [11, p. 256]. Recall that the above integral is known as the Marchaud

derivative of f of order δ [14, p. 110]. For higher order derivation, let α = n + δ > 0

with n = [α] and let f be a C(n+1) function in M(n)
∞ . From the above we get for s > 0,

f (α)(s) =
1

Γ(−δ)

dn

dsn

∫ ∞

s

f (t) − f (s)

(t − s)1+δ
dt =

1

Γ(−δ)

dn

dsn

(
s−δ

∫ ∞

1

f (st) − f (s)

(t − 1)1+δ
dt

)
.
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In a similar way, if f ∈ M(n)
∞ ∩ C(n+1)(R

+), first note that the Hadamard operator of

order δ is defined by

(
−s

d

ds

) δ

f (s) :=
1

Γ(−δ)

∫ ∞

1

[ f (st) − f (s)]
dt

t(log t)1+δ
,

see [14, (18.53), (18.56 ′)]. Thus the action of the Hadamard operator of order α on

f can be expressed as

(
−s

d

ds

)α

f (s) =
1

Γ(−δ)

∫ ∞

1

(
−s

d

ds

) n

[ f (st) − f (s)]
dt

t(log t)1+δ

for every s > 0, α = n + δ, 0 < δ < 1.

Before passing to the result about equivalent norms, note that for 0 < δ < 1, the

function κ(t) := t−1(log t)−(1+δ) − (t − 1)−(1+δ) is integrable on (1,∞). In fact, we

only need to check integrability near t = 1, and this is straightforward.

∫ 2

1

|κ(t)| dt ≤

∫ 2

1

(1 + δ)
(∫ t−1

log t

uδ du
) dt

(t − 1)1+δ(log t)1+δ
+

∫ 2

1

(t − 1)−δ dt

≤ (1 + δ)

∫ 2

1

t − 1 − log t

(t − 1)(log t)1+δ
dt + (1 − δ)−1 ≡ Cδ <∞.

Put ( d
ds

)α f := f (α).

Proposition 2.2 Let α = n + δ, n = [α]. Let f be a bounded C(n+1) function on R
+.

The following are equivalent.

(i) sups>0 |s
α( d

ds
)α f (s)| <∞.

(ii) sups>0 |(−s d
ds

)β f (s)| <∞, for every 0 < β ≤ α.

Proof Put µk := sups>0 |s
k f (k)(s)| where k = 0, 1, . . . , n. Assuming either (i) or (ii)

implies that µk < ∞ for all k = 0, 1, . . . , n (if we assume (i), then f is in M(α)
∞ and

so is in M(k)
∞ ; if we assume (ii), then we can take β = k and proceed by induction).

By Leibniz’ rule we get

sα
( d

ds

)α

f (s) =
sα

Γ(−δ)

n∑

k=0

(
n

k

)( dk

dsk

∫ ∞

1

f (st) − f (s)

(t − 1)1+δ
dt

) dn−k

dsn−k
s−δ

=
1

Γ(−δ)

n∑

k=0

ak,δ

∫ ∞

1

f (k)(st)(st)k − f (k)(s)sk

(t − 1)1+δ
dt,

where an,δ = 1. On the other hand,

(
−s

d

ds

)α

f (s) =
(−1)n

Γ(−δ)

∫ ∞

1

(
s

d

ds

) n

[ f (st) − f (s)]
dt

t(log t)1+δ

=
(−1)n

Γ(−δ)

n∑

k=1

ck

∫ ∞

1

f (k)(st)(st)k − f (k)(s)sk

t(log t)1+δ
dt,
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where cn = 1.

Let us now consider the difference (−s d
ds

)α f (s) − (−1)nsα( d
ds

)α f (s). In this ex-

pression the terms that correspond to k = 0, 1, . . . , n − 1 are bounded uniformly

in s. So are

∣∣∣
∫ ∞

1

f (k)(st)(st)k − f (k)(s)sk

(t − 1)1+δ
dt

∣∣∣

≤

∫ 2

1

∫ ts

s
(µk+1 + kµk)(du/u)

(t − 1)1+δ
dt +

∫ ∞

2

2µk dt

(t − 1)1+δ
<∞,

for k = 0, 1, . . . , n − 1. Terms of the form

∫ ∞

1

[ f (k)(st)(st)k − f (k)(s)sk] t−1(log t)−(1+δ) dt,

with k = 1, . . . , n − 1, are estimated analogously.

Hence the only term which is really significant for comparing both derivatives is

(−1)n

Γ(−δ)

∫ ∞

1

[ f (n)(st)(st)n − f (n)(s)sn]
{ 1

t(log t)1+δ
−

1

(t − 1)1+δ

}
dt.

This integral is bounded by 2µnΓ(−δ)−1
∫ ∞

1

∣∣t−1(log t)−(1+δ) − (t − 1)−(1+δ)
∣∣ dt ,

and this is finite as shown prior to the proposition.

Finally, noting that in the direction (i) ⇒ (ii) β can play the role of α, we end the

proof.

Corollary 2.3 The expression sup0≤β≤α sups>0 |(−s d
ds

)β f (s)| defines a norm in M(α)
∞

which is equivalent to ‖ · ‖∞,α.

Cossar–Riemann–Liouville derivatives become simpler in certain spaces of abso-

lutely continuous functions of higher order. For α = n + δ > 0, 0 < δ < 1,

f ∈ C(∞)
c ([0,∞)) and s ≥ 0, set

W−α f (s) :=
1

Γ(α)

∫ ∞

s

(t − s)α−1 f (t) dt,

W α f (s) :=
(−1)n+1

Γ(1 − δ)

dn+1

dsn+1

∫ ∞

s

(t − s)−δ f (t) dt.

Then, with W 0 f ≡ f , (W α)α∈R is a group (acting on f ). In [10], the space of the

functions AC(α)
2,1 has been defined as the completion of C(∞)

c ([0,∞)) in the norm

‖ f ‖(α);2,1 :=

∫ ∞

0

(∫ 2t

t

|W α f (s) sα|2
ds

s

) 1/2 dt

t
.

Then for every f in AC(α)
2,1 , the symbol W α f can be given a precise sense, and W α f

is called the Weyl derivative of f . Note that if h is in C(∞)
c ([0,∞)), then h(α)

=
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(−1)[α]W αh. We extend this definition to every f in AC(α)
2,1 , and we will use f (α)

rather than W α f in the sequel.

The space AC(α)
2,1 is a Banach algebra for pointwise multiplication provided that

α > 1/2. This is proved in [10, Proposition 3.8] as an application of the following

Leibniz formula for fractional derivatives [10, Proposition 2.5]:

For f , g ∈ C(∞)
c ([0,∞)) and α > 0,

(2.1) ( f g)(α)(s) = f (α)(s)g(s) + f (s)g(α)(s)

+ (−1)[α]+1

∫ ∞

s

∫ ∞

s

(ϕα−1
t,u ) ′(s) f (α)(t) g(α)(u) dtdu,

where ϕα−1
r,u is the function defined in [10, p. 313].

We shall need to consider a certain ideal of AC(α)
2,1 .

Definition 2.4 Forα > 0, let M
(α)
2,1 denote the completion of C(∞)

c (R
+) in the norm

‖ f ‖M,α := max
{∫ ∞

0

(∫ 2t

t

| f (k)(s)sk|2
ds

s

) 1/2 dt

t
: k = 0, α

}
.

It is readily seen that M
(α)
2,1 is a Banach algebra for pointwise multiplication, and

an ideal of AC(α)
2,1 such that ‖ f h‖M,α ≤ Cα‖ f ‖(α);2,1 ‖h‖M,α for every f ∈ AC(α)

2,1

and h ∈ M
(α)
2,1 , if α > 1/2 (for this we need to observe that ‖ f ‖∞ ≤ C‖ f ‖(α);2,1 if

f ∈ AC(α)
2,1 and α > 1/2 [10, Lemma 3.6]).

We finish this section with two more results about the multiplicative structure of

M(α)
∞ and M

(α)
2,1 .

Theorem 2.5 For every α > 0, M(α)
∞ is a Banach algebra with respect to pointwise

multiplication.

Proof Take φ ∈ C(∞)
c (R+), φ ≥ 0, with σ := max(suppφ). Let f , g be C(∞) func-

tions in M(α)
∞ and let s, t > 0. From the Leibniz formula (2.1) we have

|(φ2 ft gt )
(α)(s)| ≤ |(φ ft )

(α)(s)(φgt )(s)| + |(φgt )
(α)(s)(φ ft )(s)|

+
∣∣∣
∫ ∞

s

∫ ∞

s

(ϕα−1
r,u ) ′(s)(φ ft )

(α)(r)(φgt )
(α)(u) drdu

∣∣∣ .

If 0 < α ≤ 1/2, then (ϕα−1
r,u ) ′(s) ≥ 0 for s < min{r, u} [10, Lemma 2.2], whence

the double integral in the previous equality is bounded by

‖(φ ft )
(α)‖∞ ‖(φgt )

(α)‖∞

∫ σ

s

∫ σ

s

(ϕα−1
r,u ) ′(s) drdu.

In turn, the above double integral is equal to cσ(σ − s)α for a certain constant cσ
[10, Lemma 2.4], and so it is bounded by cσσ

α.
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Now assume that α > 1/2. Then |(ϕα−1
r,u ) ′(s)| ≤ cα(u − s)α−2 if s < r < u

[10, Lemma 2.2]. Take ε such that 0 < ε < min{1, α}. Then the double integral at

the beginning of the proof is bounded by the sum (up to constant coefficients) of

∫ ∞

s

∫ u

s

(u − s)α−2|(φ ft )
(α)(r)| |(φgt )

(α)(u)| drdu

plus a similar term where u and r exchange places. Since (u − s)ε−1 ≤ (r − s)ε−1 for

r ≤ u, the last integral is bounded by

(∫ σ

s

(r − s)ε−1|(φ ft )
(α)(r)| dr

)(∫ σ

s

(u − s)α−ε−1|(φgt )
(α)(u)| du

)

≤ Cε(σ − s)α‖(φ ft )
(α)‖∞ ‖(φgt )

(α)‖∞ ≤ Cεσ
α‖(φ ft )

(α)‖∞ ‖(φgt )
(α)‖∞.

The second term in the aforementioned sum is treated similarly.

Hence, for any α > 0,

‖ f g‖∞,α ≈ sup
t>0

‖(φ2 ft gt )
(α)‖∞

≤
(

sup
t>0

‖(φ ft )
(α)‖∞

)(
sup
t>0

‖φgt‖∞
)

+
(

sup
t>0

‖φ ft‖∞
)(

sup
t>0

‖(φgt )
(α)‖∞

)

+ Cσ

(
sup
t>0

‖(φ ft )
(α)‖∞

)(
sup
t>0

‖(φgt )
(α)‖∞

)
≈ C‖ f ‖∞,α‖g‖∞,α

as we wanted to show.

The relationship between Mikhlin algebras and algebras of absolutely continuous

functions of higher order is given by the following result.

Theorem 2.6 For every α > 1/2, M(α)
2,1 is a Banach M(α)

∞ -module, that is,

‖ f g‖M,α ≤ Cα‖ f ‖∞,α‖g‖M,α

for every f ∈ M(α)
∞ , g ∈ M

(α)
2,1 .

Proof Take φ in C(∞)
c ([0,∞)) with φ(s) = 1 if 0 ≤ s ≤ 1, and φ(s) = 0 if s ≥ 2. Put

φk(s) = φ(s/k) for s ≥ 0, k ∈ N. Then suppφk ⊂ [0, 2k], φk(s) = 1 if 0 ≤ s ≤ k and

sups≥0 |s
mφ(m)

k (s)| ≤ 2m‖φ(m)‖∞ for k,m ∈ N.

Let f ∈ M(α)
∞ ∩ C(∞)(R

+) and let g ∈ C(∞)
c (R

+). Fix k such that supp g ⊂ [0, k]

and put ϕ = φk, so that f g = ( fϕ)g. Later on we will apply Leibniz formula (2.1) to

fϕ and g, but before doing so, note that

∫ ∞

s

(t − x)γ−1|( fϕ)(α)(t)| dt ≤ ‖ fϕ‖∞,αxγ−α
∫ ∞

1

(s − 1)γ−1s−α ds

= Cα,γ‖ fϕ‖∞,αxγ−α,

(2.2)
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for all x > 0 and whenever 0 < γ < α. Also, if g̃(x) :=
∫ ∞

x
(u − x)α−1|g(α)(u)| du

Γ(α)

for x ≥ 0, then g̃ ∈ AC(α)
2,1 and ‖g̃‖(α);2,1 = ‖g‖(α);2,1 [10, p. 325].

Now, in formula (2.1) for fϕ and g the double integral is bounded by

C1

∫ ∞

x

∫ u

x

(u − x)α−2|( fϕ)(α)(t)| dt|g(α)(u)| du

+ C2

∫ ∞

x

∫ t

x

(t − x)α−2|g(α)(u)| du |( fϕ)(α)(t)|dt ≡ (I) + (II).

see [10, p. 313, 314]. To estimate (I), we choose ε such that 1/2 < ε < min(1, α).

Then, as in [10, p. 325],

(I) ≤ C1

∫ ∞

x

∫ ∞

x

(t − x)ε−1|( fϕ)(α)(t)|dt (u − x)α−ε−1|g(α)(u)| du

≤ C ′
1‖ fϕ‖∞,α xε−α g̃(ε)(x), x > 0,

where the second inequality is obtained from (2.2) with γ = ε.

Analogously, for δ such that 0 < δ < min{1, α− (1/2)}, we have

(II) ≤ C2

∫ ∞

x

∫ ∞

x

(u − x)δ−1|g(α)(u)| du(t − x)α−δ−1|( fϕ)(α)(t)| dt

≤ C ′
2‖ fϕ‖∞,α g̃(α−δ)(x) x−δ, x > 0.

Hence, for every x > 0,

|( f g)(α)(x)| xα ≤ |( fϕ)(α)(x)| xα |g(x)| + |( fϕ)(x)| |g(α)(x)| xα

+
(

C xε g̃(ε)(x) + C ′ xα−δ g̃(α−δ)(x)
)
‖ fϕ‖∞,α

and therefore

‖ f g‖(α);2,1 ≤ ‖ fϕ‖∞,α ‖g‖(0);2,1 + ‖ fϕ‖∞ ‖g‖(α);2,1

+ C‖ fϕ‖∞,α

(
‖g̃‖(ε);2,1 + ‖g̃‖(α−δ);2,1

)

≤ C‖ fϕ‖∞,α‖g‖Mα
2,1
,

in particular because ε, α−δ > 1/2 [10, Proposition 3.7(i)] . Moreover, ‖ fϕ‖∞,α ≤
C‖ f ‖∞,α ‖ϕ‖∞,α and therefore ‖ϕ‖∞,α ≤ C ′‖ϕ‖∞,n+1 ≤ C ′2n+1‖ϕ(n+1)‖∞ ≡ Cn

where n = [α]. Thus we have that ‖ f g‖(α);2,1 ≤ C‖ f ‖∞,α‖g‖Mα
2,1

. Finally,

∫ ∞

0

(∫ 2y

y

|( f g)(x)|
dx

x

) 1/2 dy

y
≤ ‖ f ‖∞ ‖g‖(0);2,1 ≤ ‖ f ‖∞,α ‖g‖Mα

2,1
.

In conclusion we have obtained that ‖ f g‖Mα
2,1
≤ C‖ f ‖∞,α ‖g‖Mα

2,1
.
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3 Mikhlin Algebras and Besov Spaces

For α > 0 let Λ
α
∞,1(R

+) denote the Besov space formed by all bounded continuous

functions f on R
+ such that ‖ f ‖Λ,α <∞, where

‖ f ‖Λ,α =

∞∑

k=−∞

2|k|α‖F ∗ φ̌k‖∞.

Here F(x) := f (ex), x ∈ R, and {φk}k is a suitable family of functions in Cc(R), see

[4, p. 73], [5, p. 415].

It is clear that Λ
β
∞,1(R

+) is contained in Λ
α
∞,1(R

+) whenever β ≥ α, and that the

inclusion Λ
β
∞,1(R

+) →֒ Λ
α
∞,1(R

+) is a contraction. Moreover, the space Λ
α
∞,1(R

+)

is a Banach algebra for pointwise multiplication [1, p. 163], and this algebra can be

described alternatively as the set of functions f on R
+ of C(n) class such that

‖ f ‖∞ +

∫ ∞

0

‖F(n)(x + y) − F(n)(x)‖∞
y1+δ

dy <∞,

where n = [α], δ = α− n and F = f ◦ exp [13, pp. 9, 11]. The above sum defines a

norm in Λ
α
∞,1(R

+) which is equivalent to the norm ‖ f ‖Λ,α. After exponential change

of variable in the integral, we will use that norm in the form

‖ f ‖∞ +

∫ ∞

1

‖
∑n

j=1 c j{ f ( j)(st)(st) j − f ( j)(s)s j‖∞

(log t)1+δ

dt

t
,

where c j are the Stirling numbers defined by (x d
dx

)n
=

∑n
j=1 c jx

j d j

dx j .

As part of the motivation for [4, Theorem 4.10], it has been pointed out there that

M(k)
∞ →֒ Λ

α
∞,1(R

+), provided that k is a natural number with k > α. We will now

refine this inclusion.

Theorem 3.1 Let α > 0.

(i) M(β)
∞ →֒ Λ

α
∞,1(R

+) for every β > α.

(ii) Λ
α
∞,1(R

+) →֒ M(α)
∞ .

Proof (i) Let α = n +δ, n = [α], 0 < δ < 1. Take β > α and f in M(β)
∞ ∩C(∞)(R

+).

For k = 1, . . . , n and s > 0, put

Ik =

∫ ∞

1

‖ f (k)(st)(st)k − f (k)(s)sk‖∞
(log t)1+δ

dt

t
.

If 1 ≤ k ≤ n − 1,

Ik ≤

∫ 2

1

(
sup
s>0

∫ st

s

| f (k+1)(u)uk + k f (k)(u)uk−1| du
) dt

t(log t)1+δ
+

∫ ∞

2

2‖ f ‖∞,k

(log t)1+δ

dt

t

≤

∫ 2

1

‖ f ‖∞,k+1 + k‖ f ‖∞,k

(log t)1+δ

(
sup
s>0

∫ st

s

du

u

) dt

t
+ Cδ‖ f ‖∞,k

= C ′
δ‖ f ‖∞,k+1 + C ′ ′

δ ‖ f ‖∞,k ≤ Cδ‖ f ‖∞,β .
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If k = n and t > 2, we have as before ‖ f (n)(st)(st)n − f (n)(s)sn‖∞ ≤ C‖ f ‖∞,β .

For k = n and 1 < t ≤ 2 we use the representation

f (n)(ts) − f (n)(s) =
±1

Γ(β − n)

∫ ∞

0

{(u − ts)β−n−1
+ − (u − s)β−n−1

+ } f (β)(u) du,

if s > 0, which holds even for n = 0, see [11, pp. 250, 252]. Then

| f (n)(st)(st)n − f (n)(s)sn|

= sn| f (n)(st)(tn − 1) + f (n)(st) − f (n)(s)|

≤ ‖ f ‖∞,nt−n(tn − 1)

+
sn

Γ(β − n)

∣∣∣
∫ ∞

0

{(u − ts)
β−n−1
+ − (u − s)

β−n−1
+ } f (β)(u) du

∣∣∣ .

The module of the integral is in turn bounded by ‖ f ‖∞,β times the sum of

∫ ts

s

(u − s)β−n−1u−β du ≤ (β − n)−1s−n(t − 1)β−n

and

s−n

∫ ∞

t

[(r − t)β−n−1 − (r − 1)β−n−1]r−β dr = s−nt−β
(t − 1)β−n

β − n

+ s−n β

β − n

∫ ∞

t

(∫ t

1

(β − n)(r − u)β−n−1 du
)

r−(β+1) dr.

Without loss of generality we can assume that β ≤ n + 1, and therefore we obtain∫ t

1
(r − u)β−n−1du ≤

∫ t

1
(t − u)β−n−1du = (β − n)−1(t − 1)β−n. Thus, in summary,

we have

‖ f (n)(st)(st)n − f (n)(s)sn‖∞ ≤ Cβ,n‖ f ‖∞,β(tn − 1 + (t − 1)β−n),

whenever 1 < t ≤ 2.

Hence,

In ≤ C
(∫ 2

1

tn − 1 + (t − 1)β−n

(log t)1+δ

dt

t

)
‖ f ‖∞,β +

∫ ∞

2

2‖ f ‖∞,β

(log t)1+δ

dt

t

≤ C‖ f ‖∞,β ,

since β − n > α− n = δ. (Note that if n = 0, the first term is missing.)

In conclusion, we have proved that ‖F‖Λ,α ≤ C‖F‖∞,β , for β > α.

(ii) The elements of Λ
α
∞,1(R

+) can be approximated in its norm by analytic func-

tions on R
+ [4, p. 74]. So it is enough to check the required estimates for C(∞)
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functions in Λ
α
∞,1(R

+). For such a function f , we use the former Proposition 2.2.

Thus,

∣∣∣
(
−s

d

ds

)α

f (s)
∣∣∣ =

1

Γ(−δ)

∣∣∣
∫ ∞

1

(
s

d

ds

) n

[ f (st) − f (s)]
dt

t(log t)1+δ

∣∣∣

≤
1

Γ(−δ)

∫ ∞

1

∣∣∣
n∑

j=1

c j[ f ( j)(st)(st) j − f ( j)(s)s j]
∣∣∣ dt

t(log t)1+δ

≤
1

Γ(−δ)

∫ ∞

1

∥∥∥
n∑

j=1

c j[ f ( j)(st)(st) j − f ( j)(s)s j]
∥∥∥
∞

dt

t(log t)1+δ
,

and therefore sups>0 |(−s d
ds

)α f (s)| ≤ C‖ f ‖Λ,α.

Analogouosly, if 0 ≤ β ≤ α, sups>0 |(−s d
ds

)β f (s)| ≤ C‖ f ‖Λ,β ≤ C‖ f ‖Λ,α since

Λ
α
∞,1(R

+) →֒ Λ
β
∞,1(R

+) is a contraction. In conclusion, Λ
α
∞,1(R

+) →֒ M(α)
∞ , as

wanted.

Remark 3.2. It is noticed in [4, p. 73] that for every integer m > α, the inclusion

M(m)
∞ →֒ Λ

α
∞,1(R

+) can be established using the norm

‖ f ‖Λ,α =

∞∑

k=−∞

2|k|α‖F ∗ φ̌k‖∞

in Λ
α
∞,1(R

+). The way to do this is to apply the estimate ‖Imφ̌k‖1 ≤ Cm2−|k|m in

the convolution F ∗ φ̌k = F(m) ∗ Imφ̌k. Here I is the integration operator Ih(x) :=∫ x

−∞
h(y) dy on R. This argument also works for fractional β > α, but it turns out to

be more involved. In this case it is also convenient to replace the usual derivation with

the Hadamard derivation (−s(d/ds))β , as well as to replace I with the corresponding

adjoint operator of (−s(d/ds))β on R
+.

4 Algebras of Analytic Functions on Sectors

The algebras which we consider here are those linked to the H∞ calculus such as

they are introduced in [4], see also [16]. We present these algebras under a slightly

different viewpoint which is more suitable for our aims. In this section we show that

such algebras are closely related to the Mikhlin algebras of Section 2, via a Cauchy

formula for fractional derivatives.

For τ such that 0 < τ < π, set Sτ = {λ ∈ C \ {0} : | arg(λ)| < τ}, where arg(λ)

is the argument of λ which takes values in [−π, π). Let H∞(Sτ ) be the usual Banach

algebra of bounded analytic functions on Sτ with norm ‖ · ‖∞ (reference to the angle

τ is omitted in this norm; it will not cause any trouble). Let Ab(Sτ ) denote the Banach

subalgebra of H∞(Sτ ) formed by all functions of H∞(Sτ ) which are continuous on

Sτ \ {0}. Set ψ(λ) := λ(1 + λ)−2, if λ ∈ Sτ . For δ > 0, we define Aδ
0(Sτ ) as the

subalgebra of all functions f of Ab(Sτ ) for which f (λ)ψ−δ(λ) → 0 as |λ| → ∞ or

|λ| → 0. Endowed with the norm ‖ f ‖δ,∞ := ‖ fψ−δ‖∞, Aδ
0(Sτ ) is a Banach algebra
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and a Banach module of Ab(Sτ ). Moreover, Ab(Sτ ) is the multiplier algebra of Aδ
0(Sτ )

for every δ > 0, Ab(Sτ ) = Mul(Aδ
0(Sτ )) [9].

Extensions of Cauchy formulae on suitable paths are tools usually considered to

define complex fractional derivatives [14, p. 422]. The following lemma is a sort of

Cauchy formula for Weyl and Cossar–Weyl derivatives of functions in Ab(Sτ ). In the

statement and proof, the mapping z 7→ zα+1
= |z|α+1e(α+1) arg(z), α > 0, corresponds

to the continuous branch of the argument on C \ (−∞, 0] defined by arg(zα+1) = 0

when z > 0.

Lemma 4.1 Let α > 0. For every 0 < τ < π/2 and h ∈ Ab(Sτ ) there exists h(α) and

we have

h(α)(x) = (−1)[α]+1 Γ(α + 1)

2πi

∫

γ(τ ,x)

h(λ)

(x − λ)α+1
dλ

+ (−1)[α]+1 sinαπ

π
Γ(α + 1)

∫ +∞

(1+sin τ )x

h(u)

(u − x)α+1
du

for each x > 0, where γ(τ , x) is the circle |λ− x| = (sin τ )x positively oriented.

Proof If h ∈ Ab(Sτ ), then h ∈ M(m+1)
∞ for all integer m. This follows from the

Cauchy formula h(m+1)(x) = (2πi)−1(m + 1)!
∫
γ(τ ,x)

h(λ)(λ− x)−(m+2)dλ, x > 0. We

will use this fact for n = [α]. So in particular we have

h(α)(x) =
−1

Γ(n + 1 − α)

∫ ∞

0

yn−αh(n+1)(x + y) dy

for every x > 0. We want to represent h(n+1)(x + y) as an integral on a path inde-

pendent of y. Fix x > 0. For R > 0, set γ(R, τ ) := {λ : |λ| = R, | arg(λ)| ≤ τ},

ρ±(τ , x) := {λ : (cos τ )x ≤ |λ|, arg(λ) = ±τ} and denote by γ l(τ , x) the sub-arc of

γ(τ , x) which joins (cos τ )xeiτ and (cos τ )xe−iτ to the left of x. Take y > 0.

For R > 2(x + y),
∣∣∣
∫

γ(R,τ )

h(λ)

[λ− (x + y)]n+2
dλ

∣∣∣ ≤ C
R

[R − (x + y)]n+2
‖h‖∞ →R→∞ 0,

and therefore the Cauchy formula implies that

h(n+1)(x + y) =
(−1)n(n + 1)!

2πi

∫

Λ(τ ,x)

h(λ)

(x + y − λ)n+2
dλ,

where Λ(τ , x) = ρ+(τ , x) ∪ γ l(τ , x) ∪ ρ−(τ , x) is positively oriented.

Put z = x + y. Then,
∫

ρ+(τ ,x)

|h(λ)|

|z − λ|n+2
|dλ| ≤ ‖h‖∞

∫ ∞

(cos τ )x

dr

|z − reiτ |n+2

= Cz−(n+1)

∫ z
(cos τ)x

0

sn

|s − eiτ |n+2
ds

≤ Cn,τ z−(n+1)

∫ ∞

0

ds

|s − eiτ |2
≡ Cz−(n+1).
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A similar estimate is obtained on ρ+(τ , x). Further,

∫

γl(τ ,x)

|h(λ)|

|z − λ|n+2
|dλ| ≤ C(x)[z − (cos τ )x]−(n+2).

Then Fubini’s theorem can be applied to get

h(α)(x) =
(−1)n+1 (n + 1)!

2πiΓ(n + 1 − α)

∫

Λ(τ ,x)

∫ ∞

0

yn−α

(x + y − λ)n+2
dyh(λ)dλ.

The integral in the variable y defines an analytic mapping in λ ∈ C \ [x,+∞) and

then its value is readily obtained, using the identity principle, as cn(x−λ)−(ν+1), with

cn =
∫ ∞

0
rn−ν(1 + r)−(n+2)dr = B(n − α + 1, α + 1). Thus we have that

h(α)(x) = (−1)n+1 Γ(α + 1)

2πi

∫

Λ(τ ,x)

h(λ)

(x − λ)α+1
dλ

for every x > 0.

Take ε > 0. By z±ε we denote the intersection point of γ(τ , x) and the line ℑλ =

±ε such that ℜz±ε > x. Put σ(ε)± := {λ : ℑλ = ±ε,ℜλ ≥ ℜz±ε }. Let γr
±(τ , x) be

the sub-arc of γ(τ , x) joining (cos τ )xe±iτ and z±ε in the shortest way. Application of

Cauchy’s theorem to suitable domains implies now that

h(α)(x) = (−1)n+1 Γ(α + 1)

2πi

∫

K(τ ,x)

h(λ)

(x − λ)α+1
dλ, x > 0,

where K(τ , x) is the path K(τ , x) = σ(ε)+ ∪ γr
+(τ , x) ∪ γ l(τ , x) ∪ γr

−(τ , x) ∪ σ(ε)−,

positively oriented. It is readily seen that

lim
ε→0+

∫

σ(ε)±
h(λ)(x − λ)−(α+1) dλ = ∓e±(α+1)πi

∫ +∞

(1+sin τ )x

h(u)(u − x)−(α+1) du,

and from this we obtain that

h(α)(x) = (−1)n+1 Γ(α + 1)

2πi

∫

γ(τ ,x)

h(λ)

(x − λ)α+1
dλ

+ (−1)n+1 sinαπ

π
Γ(α + 1)

∫ +∞

(1+sin τ )x

h(u)

(u − x)α+1
du.

The lemma tells us in particular that H∞(Sτ ) is contained in M(ν)
∞ . More precisely,

we have the following.

Proposition 4.2 Let α, δ > 0, and let τ be such that 0 < τ < π.

(i) Ab(Sτ ) →֒ M(α)
∞ , with ‖h‖∞,α ≤ Cτ−α‖h‖∞ for every h ∈ Ab(Sτ ).

(ii) Aδ
0(Sτ ) →֒ M

(α)
2,1 , with ‖h‖M,α ≤ Cδτ

−α‖h‖δ,∞ for every h ∈ Aδ
0(Sτ ). Moreover,

Aδ
0(Sτ ) generates a dense ideal of M

(α)
2,1 .
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Proof (i) This is immediately obtained from the formula in Lemma 4.1.

(ii) Take τ such that 0 < τ < π/6 and put κ := 1 + sin τ . We need to estimate

the functional Lα( · ) ≡
∫ ∞

0

(∫ 2y

y
| · |2x2α−1dx

) 1/2 dy
y

on each integral in the Cauchy

formula of h(α). First, note that

∣∣∣
∫

γ(τ ,x)

h(λ)

(x − λ)α+1
dλ

∣∣∣ ≤ 2π(x sin τ )−α‖h‖δ,∞( max
λ∈γ(τ ,x)

|ψδ(λ)|),

where |ψδ(λ)| ≤ Cδ min(|λ|−δ, |λ|δ) and (x/2) ≤ |λ| ≤ (3x/2) (since 0 < τ < π/3)

for each λ ∈ γ(τ , x). Thus

Lα

(∫

γ(τ ,x)

h(λ)

(x − λ)α+1
dλ

)
≤ Cδ

2π‖h‖δ,∞
(sin τ )α

[∫ 1/3

0

( 3

2

) δ(∫ 2y

y

x2δ−1 dx
) 1/2 dy

y

+

∫ 2

1/3

6δ
(∫ 2y

y

dx

x

) 1/2 dy

y

+

∫ ∞

2

2δ
(∫ 2y

y

x−(2δ+1) dx
) 1/2 dy

y

]

= Cδ(sin τ )−α‖h‖δ,∞.

Now, for the second integral entering the Cauchy formula of h(α), we have

Lα

(∫ ∞

κ.x

h(u)

(x − u)α+1
du

)

≤ ‖h‖δ,∞Lα

(∫ ∞

κ.x

uδ

(1 + u)2δ

du

(u − x)α+1

)

= ‖h‖δ,∞Lδ

(∫ ∞

κ

rδ

(1 + xr)2δ

dr

(r − 1)α+1

)

≤ ‖h‖δ,∞

∫ ∞

κ

∫ ∞

0

(∫ 2ry

ry

z2δ

(1 + z)4δ

dz

z

) 1/2 dy

y

dr

(r − 1)α+1

= ‖h‖δ,∞

∫ ∞

κ

∫ ∞

0

(∫ 2s

s

z2δ

(1 + z)4δ

dz

z

) 1/2 ds

s

dr

(r − 1)α+1

≤ 2δ(log 2)‖h‖δ,∞

∫ ∞

κ

∫ ∞

0

sδ

(1 + s)2δ

ds

s

dr

(r − 1)α+1
=

Cδ

α
(sin τ )−α‖h‖δ,∞,

where, for the third inequality, we have used the vector Minkowsky inequality as well

as Fubini’s rule. Moreover, since the above arguments also work for α = 0, we have
∫ ∞

0

(∫ 2y

y
|h(x)|2 dx

x

) 1
2 dy

y
≤ Cδ‖h‖δ,∞.

Finally, M
(α)
2,1 is a Banach algebra, and the density of Aδ

0(Sτ ).M(α)
2,1 in M

(α)
2,1 follows

from the density of C(∞)
c (R

+) in M
(α)
2,1 .
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Remark 4.3. (i) In Proposition 4.2(i), the algebra Ab(Sτ ) can be replaced by the

algebra H∞(Sτ ) (with the same estimate). This is a consequence of the fact that

H∞(Sτ ) →֒ Ab(Sτ/2) for every τ > 0.

(ii) As a consequence of Proposition 4.2(i) and [4, Theorem 4.10], we obtain the

bounded homomorphism Λ
α
∞,1(R

+) →֒ M(α)
∞ . This inclusion has been shown di-

rectly in the above section, see Theorem 3.1(ii).

(iii) An estimate of the same type as that of Proposition 4.2(i) is given in

[6, p. 481] by interpolation. This is

sup
t>0

sup
λ∈Sτ

∣∣∣
(

I −
d2

dλ2

)α/2

(ηh)(λ)
∣∣∣ ≤ Cετ

−(α+ε)‖h‖∞

where η ∈ C(∞)
c (R) is fixed and ε > 0. Note that ε is not needed in our proposition.

5 Mikhlin Theorems for Sectorial Operators

Let X be a Banach space and let T be a closed one-to-one operator with dense domain

and dense range in X. Suppose that the spectrum σ(T) of T lies in the closed sector

Sω , where ω ∈ (0,∞), and that ‖(z − T)−1‖ ≤ Cτ |z|
−1 whenever τ ∈ (ω, π) and

z ∈ C \ Sτ . Then T is said to be a sectorial operator of type ω. An operator which is of

type ω for all ω > 0 is called sectorial operator of type 0.

Set DR(Sτ ) :=
⋃
δ>0 Aδ

0(Sτ ) and F(Sτ ) :=
⋃
δ>0 ψ

−δ H∞(Sτ ) in the notation of

Section 4. Note that DR(Sτ ) ⊂ H∞(Sτ ) ⊂ F(Sτ ). For a sectorial operator T (of type

ω) it is possible to construct, on the basis of the Cauchy operator-valued formula,

a functional calculus (the Dunford–Riesz calculus) f 7→ f (T),DR(Sτ ) −→ L(X),

for all τ > ω, which extends to F(Sτ ). In general, f (T) is unbounded, even though

f ∈ H∞(Sτ ). We say that T admits a bounded H∞ calculus (on Sτ ) if f (T) ∈ L(X)

with ‖ f (T)‖ ≤ C‖ f ‖∞ for all f ∈ H∞(Sτ ).

When T is of type 0, then the H∞ calculus for T is connected with a functional

calculus for T having the Besov algebra Λ
α
∞,1(R

+) as domain.

Theorem 5.1 ([4, Theorem 4.10]) Let T be a sectorial operator of type 0. Then the

following are equivalent.

(i) There exist constants α,C > 0 such that for every τ > 0 the operator T has a

functional calculus H∞(Sτ ) → L(X) with ‖ f (T)‖ ≤ Cτ−α‖ f ‖∞ for all f ∈
H∞(Sτ ).

(ii) T admits a bounded Λ
α
∞,1(R

+) functional calculus, that is, a bounded algebra

homomorphism Λ
α
∞,1(R

+) −→ L(X) such that (z − u)−1 7→ (z − T)−1 if z ∈

C \ R+.

According to results obtained in previous sections we can give a variant of the

above theorem, which tells us that the Besov calculus and the Mikhlin calculus are

equivalent.

Theorem 5.2 Let T be a sectorial operator of type 0. Let α > 0. Then the following

are equivalent.
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(i) T admits a bounded H∞ calculus on Sτ , for all τ > 0, such that for every ν > α
there exists Cν > 0 with

‖ f (T)‖ ≤ Cντ
−ν‖ f ‖∞, τ > 0, f ∈ H∞(Sτ ).

(ii) T admits a bounded Λ
ν
∞,1(R

+) calculus for every ν > α.

(iii) T admits a bounded M(ν)
∞ calculus for every ν > α.

Proof (i) ⇒ (ii). This is the implication (i) ⇒ (ii) of Theorem 5.1.

(ii) ⇒ (iii). This is a consequence of Theorem 3.1(i).

(iii) ⇒ (i). This is a consequence of Proposition 4.2(i). See Remark 4.3(i).

X. T. Duong [5] used Theorem 5.1 to establish a multiplier theorem for certain

sub-Laplacians L on Lie groups, in terms of the Besov calculus. His method of proof

consists in showing that the structure of Lp spaces on the group G, for 1 < p <∞, is

good enough to obtain the appropriate scaled H∞ calculus. In this way, we obtain the

following improvement to [5, Theorem 2]. As usual, if h is a bounded Borel function

on the spectrum σ(L), then h(L) denotes the corresponding bounded operator on

L2(G) given by the spectral theorem for L.

Corollary 5.3 Let L be a sub-Laplacian operator on a homogeneous nilpotent Lie

group G such that the heat kernel e−zL, (ℜz > 0) generated by −L satisfies property

(HGα) ‖e−zL‖1 ≤ Cα

(
|z|

ℜz

)α

, (ℜz > 0),

where α is a fixed, non-negative, real number. Then f (L) extends to a bounded operator

on Lp(G) for all p ∈ (1,∞) whenever f ∈ M(ν)
∞ with ν > α + 1.

Proof Let p be a real number such that 1 < p < ∞. If L is as in the statement,

it is proved in [5] that L admits a calculus Ψ : H∞(Sτ ) →֒ L(Lp(G)), τ > 0, as

in Theorem 5.2(i), where h(L) = Ψ(h) for every h ∈ H∞(Sτ ). Then the corollary

follows from the equivalence between parts (i) and (iii) of Theorem 5.2 above.

Remark 5.4. (i) Condition HGα is a natural assumption in our setting. The map-

ping s 7→ e−zs, where s,ℜz > 0, defines a holomorphic semigroup in M(ν)
∞ , (ν > 0),

such that

sup
s>0

|(e−zs)(ν)(s)sν | = |z|ν
(

sup
s>0

|sνe−zs|
)

= (ν/e)ν(|z|/ℜz)ν .

Hence, assuming that T admits the calculus M(ν)
∞ → L(X), the application of this

calculus to the function e−zs shows that −T is the infinitesimal generator of a holo-

morphic semigroup (az)ℜz>0 in L(X) satisfying condition (HGν) for all ν > α. On

the other hand, there are many semigroups az satisfying property (HGα) on L1-spaces

X for which, as is well known, it is not possible to get Mikhlin multiplier theorems.

(ii) It is known that the sectorial H∞ calculus provides us in general with opera-

tors which are not necessarily bounded, see [4,16]. It has been shown [8,9] that these

operators can always be regarded as regular quasimultipliers, in the sense defined by
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J. Esterle [7]. In this way, the resulting operators of the H∞ calculus enjoy interesting

algebraic and spectral properties [7, 9].

There is a link between the above two remarks. Namely, the infinitesimal genera-

tor of an analytic semigroup satisfying property (HGα) admits a Mikhlin-type calcu-

lus, where the resulting operators are regular quasimultipliers. This calculus may be

obtained as a consequence of the following facts.

Let −T be the infinitesimal generator of an analytic C0-semigroup (az)ℜz>0 in

L(X) which satisfies condition (HGα), with α ≥ 0. In [10], a functional calculus

for T has been given in the form of a bounded algebra homomorphism Φ : AC(ν)
2,1 →

L(X), whenever ν > α + (1/2), such that Φ(AC(ν)
2,1 )X is dense in X. Incidentally,

such an operator T is sectorial: if n ∈ N, n > ν, then (T − zI)−1
= Φ((u − z)−1)

and therefore ‖(T − zI)−1‖ ≤ C‖(u − z)−1‖(ν+1/2);2,1 ≤ Cn,ν

∫ ∞

0
un|u − z|−(n+2) du

for every z /∈ [0,∞), by [10, Proposition 3.7]. Moreover, the last integral is equal to

|z|−1
∫ ∞

0
rn|r − ei arg(z)|−(n+2)dr ≡ C|z|−1, so T is sectorial of type 0.

Let Φ0 denote the restriction map of Φ to M
(ν)
2,1 . Set A := span{az : ℜz > 0}

in L(X) and let A0 be the closed ideal of A generated by Ta1, A0 := (Ta1)A. Then

Φ0 goes from M
(ν)
2,1 into A0. For δ, τ > 0, let C denote the (bounded) inclusion

Aδ
0(Sτ ) →֒ M

(α)
2,1 given by the Cauchy formula in Proposition 4.2. Then it is readily

seen that the Dunford–Riesz calculus (see the beginning of this section) factors as

A
δ
0(Sτ )

C

→֒ M
(ν)
2,1

Φ0→ A0 →֒ A.

Furthermore, this factorization can be extended to the corresponding algebras of

quasimultipliers, so that we obtain the H∞ functional calculus of [4, 16] (for the

operator T) given by

H∞(Sρ) →֒ Ab(Sτ ) →֒ M
(ν)
∞ →֒ Mul(M(ν)

2,1) →֒ QMr(M
(ν)
2,1) → QMr(A0),

if ρ > τ . Note that the inclusion M(ν)
∞ →֒ Mul(M(ν)

2,1) is Theorem 2.6. (For definitions

and properties about algebras QMr(A) of regular quasimultipliers, see [7]. For the

existence of QMr(M
(ν)
2,1) and QMr(A

δ
0(Sτ )) = Ab(Sτ ), see [9].)

We find the above result interesting in that it reveals a natural and consistent

framework for the unbounded operators (on general Banach spaces X) obtained from

Mikhlin-type conditions. Also, the algebras QMr(A) are inductive limits of certain

multiplier Banach algebras. In this way, the calculus yields (many) generalized mul-

tipliers on X, defined on Banach spaces suitably associated with X. Details of these

results will be given in a subsequent paper.
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