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Introduction

If R is a commutative semiprime ring with identity Kist [4], [5] has shown
that R can be embedded into a commutative Baer ring B(R), and has given some
properties of this embedding. More recently Mewborn [7] has given a construction
which embeds R into a commutative Baer ring with the stronger property that
every annihilator is generated by an idempotent. Both of these constructions
involve a representation of R as a ring of global sections of a sheaf over a Boolean
space.

In this note we do two things — firstly we give a unification of the abovemen-
tioned results by constructing a family of extensions of R, the smallest of which is
Kist's and the largest Mewborn's; secondly we give entirely algebraic construc-
tions which relate to ones used in the theory of /-groups [2], [3]. Our extensions
reduce to the familiar m-completions of R [8] in the case R a Boolean algebra,
and we thus generalise the result of Brainerd and Lambek, see [6].

The author would like to thank Dr. A. C. Mewborn for supplying the pre-
print [7].

1. Preliminaries

For our notation we follow the previous notes: in particular if a e R where R
is a commutative ring, we write (a)R [(a)|] for the principal ideal generated by
[annihilator of] a; subscripts will be dropped when no confusion is likely to
result. | A | denotes the cardinality of A and m denotes a cardinal greater than 1.
Also we write ER for the Boolean algebra of idempotents of the commutative
ring R.

DEFINITION 1.1 A commutative ring B is called a commutative Baer m-ring
[commutative complete Baer ring~\ if for any S s B with S\ ^ m \iffor any
S s 5] there is an idempotent eeEB with (S)% = (e)B.

In the case m finite we call B a commutative Baer ring, see [10], [11].
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16 T. P. Speed [2]

DEFINITION 1.2 A ring morphism <f>:R-+R' is said to be om-compatible
if for any S, T £ R with \s\^m, | T | g m and (S)£ = (T)R* we naue

LEMMA 1.3 Let J be an ideal of the commutative Baer m-ring B. Then the
following are equivalent:

(i) For any S £ B with \S| g, m, we have S^J iff(S)** £ J.
(ii) For S,T^B with | S | ^ m, | T ] g m and (S)* = (T)* we have SsJ

iff T£ J.
(iii) J is a Baer ideal (see [10]) and J (~\EB is a Boolean m-ideal.

The simple proof is omitted.

We call an ideal J satisfying the conditions of 1.3 a Baer m-ideal; if J is a
Baer m-ideal for all cardinals m, we call J a complete Baer ideal. The fol-
lowing lemma also has its easy proof omitted.

LEMMA 1.4 Let (j):B—*B' be a surjective ring morphism between two
commutative Baer m-rings. Then the following are equivalent:

(i) (j> is pm-compatible.
(ii) her (f> is a Baer m-ideal.
(iii) (f> is a Baer morphism (see [10]) and <j>\EB is a Boolean m-morphism.

A ring morphism satisfying the conditions of 1.4 is called a Baer m-morphism; if
(j) is a Baer m-morphism for all cardinals m, we call <j> a complete Baer morphism.

2. Baer m-Extensions

The construction which follows was suggested by Conrad's direct limit
construction of the orthocompletion of a representable /-group [3] which goes
back, via Bernau [2], to Amemiya [1]. We also recall that Kist's construction of
the Baer extension of a commutative semiprime ring derived from [1].

Let R be a commutative semiprime ring and denote by A(R) the complete
Boolean lattice of all annihilator ideals of R, Lambek [6] p. 43. If we write
HR = {(a)**: aeR} then it is easily seen that nR is a dense sub-semi-lattice of
A(R) and that A(R) is the normal completion of fiR, the Boolean sublattice of
A(R) generated by nR. By Am(R) (m an infinite cardinal) we mean the Boolean
m-sublattice of A(R) generated by [xR; clearly Am(R) is the Boolean m-completion
o f J1R.

A finite partition of Am(R) is a family 3s of elements of Am(R) such that for
distinct D,Ee@ we have DnE = (0), and (E D e S D)** = R. Let nm(R) be the
(directed) set of all finite partitions of Am(R); we will define a family
{Rs: @enm(R)} of commutative rings and a family of ring morphisms

-v ~* R& whenever # ^ Qi.
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(i) For £>enm(R) put RB=XDe$RID*-
(ii) For ^ ^ 3> in 7im(R) we proceed as follows: write C = CLdDd)** for any

C e # ; then C* = OaD* and so we obtain a canonical isomorphism of R/C*
into ~XdRjD*. Doing this for all C we obtain a canonical isomorphism

re«9: X R/C*-+ X K/0*.

Now the family {R3, nva :'£,!2ie nm{R), <& ^ 3>\ forms a direct system of
commutative rings and we write Bm(R) = lims Ra for the direct limit taken as
2 e nm(R). Let fi: R -> Bm(P) be the injection embedding R into Bm(R) as a subring.

LEMMA 2.1 Let xeBm(R). Then there is a family {et: I ^i ^ n} of orthog-
onal idempotents such that Hiei = I and a family {at: 1 ^ i ^ n) £ .R SMC/I f/jaf

i

Further the idempotents {ej can be represented by elements {<1 + D*, 0 + Df>}
where {Df: 1 g i g n} 6 7rm(i?).

PROOF. By our construction x can be represented by an ordered n-tuple

<x, + D f : l | i ^ n )

where {/)<: 1 ^ i g n} e7rm(«) and {xj •£ JR. Put

where 5,-y is the Kronecker delta, a; = x; and the Lemma follows.
Call the representation given in 2.1 the standard form for

LEMMA 2.2 Bm(R) is a commutative Baer ring.

PROOF. For aeR we define (a)?)* e Bm(R) to be the element represented by

<0 + (a)*, 1 + („)••>,

and we will prove that {afl)*Brr(B) = ((flj8)*)Bir(R), i.e. that the annihilator of afi is
the principal ideal of Bm{R) generated by the idempotent element (a/?)* just defined.

Take x e Bm(R) in standard form, x = laia^ei. Then (a/?)x = if and only if

(a/J)(a»/0e« = O ( l ^ i ^ n ) ,

and we will now show that this is the case if and only if

(afi)* (a/j8)e, = (a,0)e, (1 ^ i ^ n).

Suppose e, = <1 + Df.O + !>;> where Die^m(i?); then

<a; + Df, 0 + D,>.
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We now refine {(a)*, (a)**} and {/);*, D j to

{(a)* nDt, (a)** nDf, (a)* nDt, (a)** nDt}

and then relative to this partition we have:

(fl(/0e, = <a, + (D, O(a)*r, fl, + (A n(a)**)*, 0 + (2>f n(a)*)*,
0 + (Df n(a)**)*>

(a;jS)* = <1+ (D, O(a)*)*, 0 + (D, n(«)*•)*, 1 + (Df n(a)*)*,
0 + (D*n («)**)*>

From these expressions we see that we have (a/?)*(a;/>)ei = (a,/?)^ if
and only if OjeCDj n (a)**)*, while (a/?) (a,j3)e, = 0 iff aa.ef);*. Thus we will
be nearly through when we have proved the following:

SUBLEMMA. ai6(Din(a)**)* iff aateDf.

PROOF. Suppose aa;e.D* and let (6D;n(fl)**. Then taaie{a)** and also
t a at = 0 whence (a; = 0 proving that D; r\(a)** £ (a,)* and so

0,6(0,)** £ (D, n (a)**)*.

For the converse assume that a, e (D, n (a)**)* and take (e Dt. Then (aeDjO (a)**
whence t a a, = 0 proving that a a, e Df.

We have thus shown that for any aeR the annihilator (a/?)Bm(R) is a direct
summand of Bm(R). Now for an arbitrary element y (in standard form)
y = Zjibjftfj

which is certainly idempotent generated. Thus Bm(/?) is a commutative Baer ring.

LEMMA 2.3 Bm(R) is a commutative Baer m-ring.

PROOF. In the previous lemma we saw that for any x e Bm(R) there was an
idempotent x* such that (x)Bm(R) = (x*)Bm(R). An examination of the construction
shows that each such x* is of the form <0 + D*, 1 + D> for some D e Am(R). Take
a subset S £ £m(.R) with | S | ^ m; then

S* = n{(s)*:seS}
= n{(s*):s6S}
= n { « 0 + D(s)*, 1 + D(s)}) :seS} where D(s) e Am(R) for s e S,

= 0)B (K)>

where e = <0 + nsD(s)*, 1 + (nsD(s)*)*>. Thus Bm(R) is a commutative Baer m-
ring; in fact we have also proved the following:
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COROLLARY 2.4 The map D-> <1 + £>*, 0 + D} defines an isomorphism
Am(R)^ EBmlR).

We now collect the preceding results and prove a characterisation of the
extension Bm(R) of R.

THEOREM 2.5 Let R be a commutative semiprime ring. Then there is a
commutative Baer m-ring Bm(R) and a pm-compatible ring monomorphism
ft: R-* Bm(R) with the following property: for any pm-compatible ring morphism
$: R->B of R into a commutative Baer m-ring B there is a unique Baer m-
morphism $:Bm(R)^>B such that jl <,$ = 4>. Further, the pair (f},Bm(R)) is
unique.

PROOF. We refer to the preceding lemmas for the construction of Bm(R) with
the embedding /?. To prove that /? is pm-compatible take, S, T c R with | S | g m,
| T | ^ m and S* = T* in R. Then (SP)^m = (eV ( R ) and we readily see that
e = <0 + S*, 1 + S**> whence e = <0 + T*, 1 + T**> and so (SP)£ (R)

Let <j): R->B be a /^-compatible ring morphism into a commutative Baer
m-ring. We extend </> to Bm(R) as follows: for a e i ? put (a/?)0 = a^>; for
e = <0 + S*, 1 + S**> put e^ = (S<£)* where (S^)* is the idempotent generator
of (S(j))B. in B. Finally if x = ^{a^e-, put x$ = Y.{a,<j))(ei<f)). It is easy to check
that </> is well defined and it also follows from the fact that <f> is pm-compatible that
^ is a Baer m-morphism. Clearly /? o $ = <j>.

Finally standard category arguments establish that the pair (P,Bm(R)) is
unique; we have in fact constructed a left adjoint for the forgetful functor from
commutative Baer m-rings (with Baer m-morphisms) to commutative semiprime
rings (with the usual ring morphisms).

The following theorem (whose proof we omit) gives another characterisation
ofthepairO?,£m(/r».

THEOREM 2.6 The pair (P,Bm(R)) satisfy the following conditions:

(i) p: R-*Bm(R) is a pm-compatible ring monomorphism of R into a
commutative Baer m-ring;

(ii) The induced map P%: [iR -»EB^R) given by (a)** /?.,. =(aP)** embeds
HR as a dense subsemi-lattice of EBrri(R) and P% lifts to an isomorphism Am(R)

(Hi) For any xeBm(R) there are elements {at} £ R and orthogonal
idempotents {ej such that S ; e; = 1 and x = 2j(a,-jS)e(.

Conversely, if (k,Km(R)) is an extension of R satisfying (i),(ii),(iii) above,
then Km(R) and Bm(R) are Baer m-isomorphic over R.

https://doi.org/10.1017/S1446788700012702 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012702
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3. Relation to Q(R)

We close this note by indicating how the extensions Bm(R) fit inside Q(R), the
complete ring of quotients of R, as .R-subalgebras.

PROPOSITION 3.1. Bm(R) is isomorphic to an R-subalgebra of Q{R).

PROOF. We recall that Q{R)= lim_HomJj (A,R) where the direct limit is
taken over all dense ideals A of R. Now for & e nm(R), SD 6 3 D is a dense ideal of R,
and we will see that there is a canonical isomorphism:

HomR I X D,R I.59: R

For, if <x(£>) + D*}De3 is an element of Rs, then the map <x(D) + D*}59

which sends 'LDsaaDto HDe3 x(D) aD is easily seen to be an .R-homomorphism
from E D E 3 Z > to R. Further the map Ss is a monomorphism.

Now if # g Si, it is clear that X C E ^ C 2 ~LDe3D, and the map

E C,R)->Homi Z D,R)
CE« / ' ,CES /

is simply given by restriction. A calculation which we omit shows that the following
diagram:

C,R) ^ ^ > H o m R ( s D,R)

is commutative. Thus the monomorphisms {5@} lift to define a monomorphism

8: UmR -> lim HomK(A, R),
a A

and the proposition is proved.

COROLLARY 3.2 Bm(R) is a ring of quotients of R.

PROOF. This is immediate from 3.1 and Proposition 6 page 40 of [6].
From now on we identify Bm(R) with its isomorphic copy in Q(R) and turn

to giving a simple description of it. For any S e Am(R) consider the idempotent
fseQ(R) given by
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[7] A note on commutative Baer rings III 21

The Boolean algebra of all such idempotents fs is a subring of Q(R) isomorphic
to Am(R) which we denote by Am{R).

THEOREM 3.3 BJR) is the R-subalgebra of Q(R) generated by Am(R).

PROOF. This is immediate from the standard form for elements of Bm(R) and
the description of Am(R) just given.

COROLLARY 3.4 The Baer hull of R (Mewborn [7]) is identical with the
complete Baer extension of R.

PROOF. This follows from Proposition 2.5 of [7] and 3.3 above.

COROLLARY 3.5 The Baer extension of R(Kist [4]) is a ring of quotients
of R.

PROOF. This follows from 3.3.

REMARKS. It can also be shown that the classical ring of quotients of B(R)
is the epimorphic hull [7] of R. This will appear in a forthcoming paper of M.
W. Evans.
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