
New windows on massive stars: asteroseismology, interferometry, and
spectropolarimetry
Proceedings IAU Symposium No. 307, 2014
G. Meynet, C. Georgy, J. H. Groh & Ph. Stee, eds.

c© International Astronomical Union 2015
doi:10.1017/S1743921314006899

Basics of Optical Interferometry:
A Gentle Introduction

Gerard T. van Belle
Lowell Observatory

email: gerard@lowell.edu
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1. Introduction: Interferometry is Inevitable
Stars are, from an angular size standpoint, small. This rather qualitative, relative

statement can actually be easily quantified in a back-of-the-envelope fashion. Using our
sun – an object of 30 minutes of arc in angular diameter† – as a prototype, we can rapidly
derive the size regime in which we must work to be directly examining the sizes, shapes,
and ultimately surface morphologies of stars. Since the sun delivers a (mildly staggering)
apparent magnitude of V ≈ −26, with the next nearest star (in terms of brightness) at
about V ≈ 0, we see that from V� − Vstar = −2.5 log(I�/Istar) that the difference in
intensity is roughly a factor of 10 billion. Under this back-of-the-envelope approach, with
all stars having identical surface brightnesses, intensity scales simply with disk area, and
we estimate angular diameter θ:

I�
Istar

=
A�

Astar
=

(
θ�

θstar

)2

(1.1)

From our value of 30’ for the sun, we arrive at a size of 12 milliarcseconds (mas) for
the nearest, brightest stars; this number diminishes rapidly into the sub-mas regime for
sample sizes greater than one or two dozen.‡

Given that conventional ground-based telescopes are limited by the atmosphere to
resolutions of roughly 0.25-0.50 arcseconds (under ideal observing conditions that occur
less than 10% of the time), already this regime is out of reach. Adaptive optics ameliorates
the atmospheric resolution limit somewhat, but aperture size still imposes its limits - eg.
the Keck 10-m telescopes can reach a limiting resolution of 1.22λ/D ≈ 30 mas (assuming
AO-enabled J-band observations). Again, an angular resolution that is insufficient for
the task of stellar surface imaging.

This problem becomes even more daunting when considering things we may wish to
accomplish in the not-so-distant future. The notion of surface imaging of extrasolar plan-
ets is one that provokes the ‘giggle factor’ response in many, and yet the ravenous hunger
of the field for increased knowledge of these objects will ultimately lead to considering
solutions for this challenge. A 10,000km object at a distance of 10 parsecs is roughly 10

† About the size of your thumbnail at arm’s length.
‡ As an aside, much of the concepts in this article are presented in far greater detail – and

far more precisely – in the summer school writeups such as that of Lawson (2000).
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Figure 1. Path lengths through a ‘conven-
tional’ single aperture telescope. All paths for
the on-axis star (solid lines) from the star,
through the atmosphere, and through the op-
tical system, to the detector, are equal to opti-
cal tolerances (σd < 100nm); the same is true
of the off-axis star (dotted line). Although only
the edge light rays from both stars are show,
this applies to the entire ensemble of rays across
the entrance aperture. Meeting this pathlength
equality condition dictates the specific shapes of
the primary and secondary mirrors, relative to
the sky and relative to each other.

microarcseconds (μas) in size – a regime where clearly the highest angular resolution ca-
pabilities will be needed. The need for angular resolution at this scale is intimidating but
any future astrophysics roadmap ultimately arrives there: interferometry is inevitable.

2. Interferometry is Already Here
Although you, gentle reader, are now faced with the prospect of interferometry being

inevitable, do not despair! For one main unrealized lesson of many is that all telescopes
are interferometers – the technique of interferometry is already here throughout as-
tronomy. Illustrated in Fig. 1 is this little-acknowledged fact, which can be best thought
of in this context as a question of path length: all paths through the instrument, from
stars in the field of view to detector, must be equal to optical tolerances. If this condition
is not met, the telescope will not be diffraction limited.

The best example of failing to meet this condition is the original Hubble Space Tele-
scope: the shape of the primary, rather than meeting its prescription to its specified
tolerance of roughly λ/100, actually came in at 10 × λ. However, since the error in the
primary was a smooth deviation, corrective optics could be introduced into its optical
path to return the overall system to a condition where the pathlength equality condition
was satisfied†.

A second instructive example here are the largest telescopes currently available to
astronomy – those based upon giant segmented mirrors, such as the existing Keck-1 and
Keck-2 telescopes, or the planned E-ELT, TMT, or GMT telescopes. These facilities have
primary mirrors (and in the case of the next generation, secondary mirrors as well) that
are built up of many individual elements. As a whole, the general shape of the resulting
mirrors still satisfy the pathlength equality condition, albeit with slight gaps between the
individual segments. If one were to increase the size of the gaps between the segments,
while maintaining the pathlength equality condition, a useful diffraction-limited signal

† You can think of it as an adaptive optics system with an actuator response rate of 10 nHz.
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Figure 2. Photometric signal as described in §3 for a two telescope interferometer observing a
point source, combined without matching pathlengths (left), and as the zero-path condition is
met (right). The peaked appearance of the right-hand signal leads to the moniker ‘fringes’.

would still fall upon the detector. In this fashion one could leverage the benefits of such a
telescope being an interference device – an interferometer – while increasing its resolving
power.

In the end, a long-baseline optical interferometer (LBOI) is simply such a device: the
space between its mirrors segments is large – very large – but it is still meeting this
important pathlength equality condition. The additional wrinkle introduced with LBOI
is that the segments have been replaced by telescopes themselves; the practical impact
of this wrinkle is that the on-sky field-of-view of a LBOI is much smaller than that for a
conventional telescope.

3. What Does a Simple Interferometer ‘See’?
For the simplest case of a two-telescope interferometer, one may think of the light

collected from the two telescopes – let’s call them ‘A’ and ‘B’ – passing through the
optical system, meeting up with each other at a 50% transmission / 50% reflection beam
splitter, and one of those two combined beams then being concentrated upon a single-
element photodetector†.

If the light from ‘A’ and ‘B’ arrives at the photodetector without the paths through
each of the interferometer’s arm, through the atmosphere, and back to the star, being
exactly equal‡, all that the detector will register is the amount of light from telescope ‘A’
in combination with ‘B’ (Fig. 2, left). However, if care is taken to match the pathlengths
from the two telescopes, a much different signal is seen – the signal will appear to fluctuate
above and below the A+B level (Fig. 2, right). This is the phenomenon of constructive
and destructive interference happening as a zero-path differential is achieved.¶

If our maximum constructive (V+) and destructive (V−) signals are measured, we can
characterize the amplitude of these ‘fringes’ simply as:

V =
V+ − V−
V+ + V−

(3.1)

† This is in fact the exact architecture for some of the early facilities and/or ‘first light’
instrumentation of later facilities: IRMA (Dyck et al. 1993), IOTA (Dyck et al. 1995), CHARA
(ten Brummelaar et al. 2005).

‡ Well, ‘exactly’ here means to within a fraction of operational wavelength.
¶ A frequently asked question: “Is this ‘creating’ signal on the detector?” No. Bear in mind

that the 50/50 beam splitter has two outputs; the other of the two combined beams shows an
equal but opposite signal from Figure 2, right – conservation of energy applies even here.
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which is often referred to as the visibility. For a perfect optical system (including an
atmosphere that does not degrade the signal) observing an unresolved star, V = 1.

This is all good and well, but where things get interesting is with a resolved star (Figure
3). A resolved star can be thought of as sending light through one’s optical system from
each of two halves. Each side of the star individually is unresolved, but the angular
separation upon the star corresponds to a slightly different zero-path condition through
the optical system. Since the interference patterns of each half is seen simultaneously,
they smear each other out, reducing the contrast or viability of the star’s signal . The
reason why this is interesting is that there is a direct relationship between the amount
of reduction in visibility and the angular size of a star:

V =
2J1(x)

x
, where x =

θUDπB

λ
(3.2)

with J1 is the first-order Bessel function, θUD is the angular diameter of an equivalent
uniformly illuminated disk†, B is the projected baseline between the two telescopes, π is
simply the familiar numerical constant, and λ is the operational wavelength.

As such, in the most straightforward case‡ a measurement of V can be used to directly
establish the angular diameter of a star. In practice, rigorously measuring V is compli-
cated by an uncooperative atmosphere, necessitating short integration times (typically
shorter than an atmospheric coherence time, ∼a few milliseconds), and non-perfect op-
tical systems, necessitating unresolved calibrator-science target-calibrator observational
interleaves to explicitly measure the true point-response of the instrument.¶

The underlying physical description of what is being observed is provided by the van
Cittert-Zernike theorem (van Cittert 1934; Zernike 1938); for a LBOI, the effective
implication of this theorem is that the visibility measurements we make in this context
correspond to the real components of the Fourier transform of the image of the object
being observed.

4. Fundamental Stellar Parameters from Interferometry
Angular sizes of stars are, by themselves, not terribly useful. It is in conjunction with

ancillary data products where such data reveal their true strength. The most immediate
fundamental stellar parameter – and the necessary ancillary data product – is fairly
obvious, namely linear size. If we know the distance to a star, the linear size is realized
immediately from R = πθ, where R is the linear radius‖, and π is the parallax. In many
cases, the real challenge is determination of π – not always readily accomplished, even
in this age of Hipparcos and Gaia.

The second immediate fundamental parameter, effective temperature, comes from
the definition of luminosity, L:

L = 4πσR2T 2
eff → Teff ∝

(
Fbol

θ2

)1/4

(4.1)

when we divide by distance on both sides: L becomes the bolometric flux, Fbol, and R

† A poor but ultimately serviceable zeroth-order approximation of the intensity distribution
across the face of a star.

‡ The star isn’t over-resolved, is a reasonably uniform disk, isn’t non-spherical, etc. etc.
¶ One interesting aspect of measuring V , typically at the 1-5% level, to arrive at θ in Equation

3.2: the resolution limit is in this specific regime is not 1.22 λ/D but more like 0.25λ/D. Hence
the spatial resolution of LBOI is typically better than people näıvely expect.

‖ Historically, angular sizes have always been in terms of ‘angular diameter’, whereas linear
sizes have been in terms of ‘linear radius’. Another one of the many idiosyncracies of astronomy.
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Figure 3. An optical in-
terferometer has sufficient
resolving power that, for
each of the two halves of
a star that is sufficiently
large, there is a slight path
length difference. Each half
creates ‘perfect’ fringes, but
the two halves combine inco-
herently, effectively smearing
the resulting interference sig-
nal and reducing the ampli-
tude of the fringes.

becomes θ. Here we see one of the major strengths of this approach: determination of
effective temperature – an essentially macroscopic quantity – is being accomplished by
macroscopic means, in contrast to ‘microscopic’ means such as spectroscopy. As with
linear size, the real challenge in many cases is not the determination of θ but the deter-
mination of FBOL. Direct observation of the entire flux budget arriving here at Earth for
a star is complicated by unobservable windows, and estimates of losses due to interstellar
reddening are typically somewhat model dependent.

5. What Does a More Complicated Interferometer ‘See’?
Modern facilities such as VLTI, CHARA and NPOI are building upon these fundamen-

tals by incorporating more than 2 telescopes feeding light to the back end instrumentation
– for the former, up to 4 beams can be combined simultaneously, while for the latter two
facilities, up to 6 beams can be combined at once. Each pair of telescopes can in theory
produce a single visibility measurement of the object being observed, with rapid gains as
the number of telescopes NT is increased – the number of visibility points NV goes as

NV =
NT (NT − 1)

2
(5.1)

However, where a 3-plus element interferometer gains is in its ability to observe the
closure phase of an object. As illustrated in Figure 4, consider the case where 3 telescope
are each pointed at the same object. The true path length back to the star for a given
telescope, seen in Figure 4a can be represented by an absolute phase value φ. Returning to
the formality of the van Cittert-Zernike theorem, the phase corresponds to the imaginary
part of a component in the Fourier transform of the image of the object being observed.
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Figure 4. An illustration of observing closure phase, as discussed in §5.

Unfortunately, the atmosphere induces for each telescope an unknown about of ‘piston’
error (Figure 4b), which is a time-variable amount of pathlength error, typically many
times greater than the operational optical wavelength†. For even single-baseline observing
with a pair of telescopes, this necessitates some form of fringe tracking, such that the
position of a delay line joining the two apertures can account for the atmospheric piston
error σ1 + σ2 (Figure 4c). Unfortunately, in the single-baseline case, positive acquisition
and tracking of interference fringes between the two telescopes does not provide any
information on the phases - the single observable, that of the necessary delay line position
(Φ12) to obtain fringes - is insufficient to solve for the two unknowns σ1 and σ2 and arrive
at some knowledge of the object’s phases {φ1 , φ2}.

However, in the case of 3 telescopes, the landscape alters in a subtle but signifi-
cant way. In this situation, the 3 unknowns {σ1 , σ2 , σ3} are matched by 3 observables
{Φ12 ,Φ23 ,Φ31}. Mathematically, we can see this by summing around the closure phase
triangle:

Φ12 = (φ1 + σ1) − (φ2 + σ2) (5.2)
Φ23 = (φ2 + σ2) − (φ3 + σ3) (5.3)

† For example, for visible light or near-infrared observing, piston error is on the order of
∼1-10μm, on ∼1-10ms timescales.
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Figure 5. An illustration of the utility of closure phase: the appearance of α Cep as seen in van
Belle et al. (2006) (left; only visibility data was available) and Zhao et al. (2009) (right; visibility
and closure phase data). The overall scale of the object and its oblateness is well captured in
both – a characteristic of visibility data – but the asymmetric surface brightness characteristic
of the non-edge-on von Zeipel effect is missed in the earlier study.

Φ31 = (φ3 + σ3) − (φ1 + σ1) (5.4)

which leads to
Φ123 = Φ12 + Φ23 + Φ31 = φ1 + φ2 + φ3 (5.5)

Although the closure phase Φ123 is not an individual absolute phase measurement (such
as φ1), we see in Equation 5.5 that it is related to the combined true phase information
of the observed object and is free of atmospheric noise. In the case of a single triple of
telescopes, 1/3 of the ‘true’ image information is thus recovered. As with visibility points,
the number of closure phases rapidly increases with number of telescopes:

NC P =
(NT − 2)

NT
(5.6)

In the case of 4 telescopes, 50% of the object phase information is recovered; for 6, that
number is 66%.

In general terms, the closure phase information is related to the imaginary part of
the Fourier transform of the image upon the sky; the visibility is the real part. A more
practical short-hand way of thinking of closure phase is that it is related to the degree
of asymmetry of the object’s intensity distribution upon the sky. Without closure phase,
significant morphology features can be difficult to recover from interferometric data
(Figure 5).

6. Summary
The new 4- and 6-way closure phase instruments that are available or soon to be

deployed are enabling a second revolution in optical interferometry’s impact upon as-
tronomy through high resolution (Monnier 2007). This includes MIRC on CHARA†;
MATISSE, GRAVITY and PIONIER on VLTI; and Classic and VISION on NPOI.

Overall, the technique of optical interferometry is one that has achieved a significant
degree of maturity since the simple beginnings of its modern era, roughly 25 years ago.

† VEGA and PAVO are also notable new CHARA instruments but are only 3T devices.
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The modern instruments and the supporting infrastructure of data analysis tools are
significantly extending its community accessibility and scientific reach. Although the
technique is viewed by some as still somewhat esoteric, grappling with the basic con-
cepts of fringe visibility (essentially, the size of a interference signal) and fringe phase
(essentially, the position of a interference signal) help de-mystify the underlying concepts.
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Discussion

Aerts: We made several efforts to get interferometric radii of B-type pulsators (β Crucis,
σ Scorpii, β Centauri) but in each case we faced the problem of systematic uncertainties
due to lack of good enough calibrators resulting in highly inaccurate estimates (incom-
patible with other data from spectroscopy and asteroseismology). How can this be solved
or improved? Can you do, e.g., 12 Lac, HD 180642 and try to get the radius of these
bright B-type pulsators as test case?

van Belle: Using the crude {V,K} angular size predictor in van Belle (1999) (updated
nicely in Boyajian et al. 2014), we can examine the rough angular sizes we should expect
for these stars, which reveals some of the answer:

Star Spectral
Type

V
(mag)

K
(mag)

theta
(mas)

β Cru B1 IV 1.25 1.99 1.05
σ Sco B1 III 2.89 2.40 1.15
β Cen B1 IV 0.60 1.28 1.5
12 Lac B1 III 5.23 5.62 0.22
HD 180642 B1 II 8.29 7.79 0.10

The key here is that these stars are small - angular sizes measures of less than 1.5mas
are very hard to do and require facilities with the highest amounts of angular resolution;
since these are all southern hemisphere objects I presume that the attempts have been
made with VLTI, which would find these angular scales challenging. For the first three,
a facility such as CHARA or NPOI should be able to resolve the northern hemisphere
counterparts of these objects (and a corresponding set of sufficiently small calibration
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objects, as described in a suitable reference such as van Belle & van Belle 2005). NPOI has
greater spatial resolution by virtue of the fact it operates at ∼ 3× shorter wavelengths on
similar baselines to VLTI; CHARA has ∼ 3× longer baselines (and is starting to operate
at ∼ 3× shorter wavelengths for additional spatial resolution).

The latter two stars are particularly small, but more significantly, they are very faint
relative to the capabilities of modern facilities which is an additional challenge.

Mason: Regarding the relative magnitude limit of Gaia and interferometers – will the
fundamental limit on diameters (eg. nearby stars) be set by Hipparcos parallax errors?

van Belle: It’s an interesting question where the ‘fundamental limit’ may be connected
not so much to specific missions, but to basic astrophysics or particular objects. Cool
evolved stars tend to have a certain intrinsic luminosity (eg. very roughly, 104 − 105L�)
which means that at a given distance, they’ll have a given angular size which ‘competes’
with its parallax. What this translates to in slightly more quantitative terms of a specific
example is that, for Mira variable stars, the angular size for a given star is typically 3×
greater than the parallax, so to make a parallax measurement, one is trying to measure
substellar diameter photocenter shifts. Coupling this fact to the expectation that these
objects will have surface morphologies and rotational periods that both change on month
to year time scales – which matches the cadence of any parallax program – and you can
see that there are challenges in obtaining a parallax for these objects that are above
and beyond objects with smaller angular sizes (this is discussed in more detail in §3.4 of
van Belle et al. 2002). This is a mission independent phenomenon. A sufficiently large
ensemble of data can lead to meaningful results (Whitelock et al. 1997) but this does
mean that, for individual stars, distances remain an unsolved problem.

For the hot stars of interest for this symposium, though, the relationship between
their angular sizes and parallaxes mean that sub-photocenter measures are not being
attempted, and this specific problem is not a concern.

On the point of Gaia: Gaia is going to be not simply an amazing mission but a truly
revolutionary one; however, the specific performance in the regime of its bright limit
remains to be seen. It is possible that its distances for (the relatively bright) stars of
interest to interferometry will not improve substantially upon the Hipparcos results.

Gerard van Belle
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