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DIRECT SUMS OF TORSION-FREE COVERS 

THOMAS CHEATHAM 

In [4, Theorem 4.1, p. 45], Enochs characterizes the integral domains with 
the property that the direct product of any family of torsion-free covers is a 
torsion-free cover. In a setting which includes integral domains as a special 
case, we consider the corresponding question for direct sums. We use the notion 
of torsion introduced by Goldie [5]. Among commutative rings, we show that 
the property "any direct sum of torsion-free covers is a torsion-free cover" 
characterizes the semi-simple Artinian rings. 

In what follows, R will denote an associative ring with identity, and modules 
will be unital left i^-modules. The modules M for which Homi2(ikT, —) com
mute with direct sums have been called ^-modules by Rentschler [7], A syste
matic study of such modules is given in his thesis [6]. It will be useful to note 
that M is a 2-module if and only if HomR(M, —) commutes with direct sums 
of injective modules. We will also make use of the following result of Rentschler 
[7, Remark 7, p. 931]: Over a left Noetherian ring a S-module is finitely 
generated. 

Let A and B be i^-modules with A Ç B. We say that A is large (or essential) 
in B if (0) is the only submodule of B which has trivial intersection with A, 
and in this case we write A Ç 'B. The singular submodule is defined as 

Z(B) = {x\x G B and (0 : x) C 'R}. 

Throughout, ( ^ , #~ ) will denote the Goldie torsion theory; i.e., & is the 
collection of all modules B with Z(B) Ç 'B, and J^~consists of those modules A 
with Z(A) = (0). We say that A is ( ^ — ) torsion-free if and only if A G ^ . 

It follows from [9, Theorem 2.7, p. 459] and [3, Theorem 3] that every 
i^-module has a unique (up to isomorphism) ^-torsion-free cover if and only 
if Z(R) = (0) and R has finite (left) Goldie dimension (i.e., R contains no 
nontrivial infinite direct sum of left ideals). We now impose these two restric
tions on the ring R. Then R has a semi-simple Artinian maximal left quotient 
ring Q [8, Theorem 1.6, p. 115]. For a module A, T(A) will denote its torsion-
free covering module. Exactly as in the integral domain case [4, Corollary 1, 
p. 42], we can prove that A is injective if and only if T(A) is injective. 

Note that any torsion-free injective i?-module A becomes a Q-module in a 
natural way: if x G A, defined : R —> A via, tx(r) = rx. Since 4 G Hom^CR, A), 
it has an extension tx

f G YiomR(Q, A). Hence, we define qx = tx'(q) for q G Q. 
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Using the torsion-freeness of A, we easily see that this scalar multiplication 
gives A a left Q-module structure extending the action of R. 

LEMMA 1. HomR(Q, —) commutes with the direct sum of any family {A{} of 
torsion-free infective R-modules. 

Proof. If each At is a torsion-free infective module, so is their direct sum, 
®AU (cf. [8, Theorem 2.5, p. 119]). Hence© At and each At are left Q-
modules. But for any left Q-module F we have, Hom^Ç, F) = HomQ(<2, F). 
The desired conclusion follows since HomQ(Q, —) commutes with direct sums 
of Q-modules. 

THEOREM 1. The R-module RQ is a 2 -module if and only if the canonical R-
homomorphism 

Homfî(<2, © T(Et) -> HomB(Q, © Et) 

is a surjection, for each family {Et} of injective modules. 

Proof.het{Et} beany family of injective modules. Since each T{Et) —>Et is a 
torsion-free cover, the sequence 

(0) -> UomR(Q, T(Et)) - • HomR(Q, Et) -> (0) 

is exact for each i. Thus we have the following exact sequences: 

(1) (0) -> © Hom*(<2, T(Et)) ^ © HomB(Q, Et) -> (0), 

(2) (0) - ^ H o m ^ Ç , © T(Et)) Âu0mR(Q, © £ , ) , 

(3) (0) - • ©Hom*(<2, r ( £ , ) ) -^Hom^CQ, © r ( E , ) ) , 

(4) (0) -^®UomR(Q, Et)±HomB(Q, © £*)• 

It is straightforward to check that ôa — fia. Since Et is injective, so is T{Ei). 
Hence a is an isomorphism by Lemma 1. A simple diagram chase now shows 
that j8 is a surjection if and only if ô is an isomorphism. Since 8 being an iso
morphism is equivalent to Q being a 2-module, the desired result is established. 

LEMMA 2. For any family {4>t : T(Et) —> Et} of torsion-free covers, if 
®4>i '• ®P(Ei) —> © Etis also a torsion-free cover, then R is left Noetherian. 

Proof. Let {Ei\ be a family of injective modules. As remarked earlier, each 
T(Et) is injective. Therefore, © T(Et) is injective. Thus, if © <j>i • © T(Et) —> 
© Ei is a torsion-free cover, © Et is injective. The proof is completed by Bass' 
observation [2] that left Noetherian rings are characterized by the property 
that their injective modules are preserved by direct sums. 

THEOREM 2. The following statements are equivalent: 
(a) For each family {#* : T(Et) -^Et} of torsion-free covers, 

© 0 , : © r ( E < ) - > © £ i 
is a torsion-free cover. 
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(b) R is a left Noetherian ring, and the left R-module Q is a S -module. 

Proof, (a) => (b). By Lemma 2, (a) implies that R is left Noetherian. It 
also follows from (a) that, for any family of modules {£*}, the canonical 
homomorphism HomB(Q, © T(Et)) —» HomR(Q, ® Et) is a surjection. There
fore, Theorem 1 implies that Q is a 2-module. 

(b) => (a). In [1, Proposition 1], it is shown that a torsion-free cover (T(E), 
g') for a left i^-module £ can be obtained as follows: T(E) = { / £ Homfl(Ç, 
/ ( £ ) ) | / ( 1 ) G £ } , where 1(E) denotes an injective hull of the module E; and 
g' : T(E) —» E is defined by gf (f ) = / ( l ) . For each module £* in a family of 
modules {£*}> let gf : HomR(Q, / (£*)) -+I(Et) denote the evaluation map; 
that is, gt(f ) = / ( l ) for / 6 HomB(Q, /(£<))• The restriction g / of g7- to the 
submodule T(Et) = {/ £ HomB(Q, J (£ f ) ) | / (1 ) ê £*} is a torsion-free cover 
of Et. We shall show that 0 gt : 0 T{Et) —> 0 £^ is a torsion-free cover. 

Consider the commutative diagram 

0Hom*(<2, / ( £ , ) ) > HornR(Q, © / ( £ , ) ) 

©/(£,) ^ S ©/(£,), 
where g is the obvious evaluation map and h is the canonical injection. This 
diagram induces a second commutative diagram 

®T(Ef) £__>r(0E«) 

©Et ^^X ®Et, 
where the ' denotes the obvious restrictions. Using this convention we have, 
( 0 gi)' = © gt- Since R is left Noetherian, 0 /(£*) is an injective hull of 
© Et. It follows that g' is a torsion-free cover for © Et. 

We shall complete the proof by showing that h' is an isomorphism. Since h 
is an injection, so is the restriction h!. To see that hf is a surjection, let 
/ ' £ T(fBEt) = {/G Hom*((?,© J ( E f ) | / ( l ) G © £ , } . The assumption that 
Q is a S-module yields an element (/*) in © Homfl(Q, I(Et)) such that 
*((/<)) = / '• Noting that ( / , (1)) = / ' ( l ) £ © £ „ we see that (/<) G © r(£<). 
Therefore, h'((fi)) = &((/*)) = / ' ; so, h! is an isomorphism, and 
© gt : © T(Ei) —> © £z- is a torsion-free cover. The proof of Theorem 2 is 
complete. 

COROLLARY. For a commutative, finite dimensional ring R, with Z(R) = (0) 
and maximal quotient ring Q, statement (a) of Theorem 2 is equivalent to R = Q. 

Proof. Assuming statement (a) of Theorem 2, the ̂ -module Q is a 2-module. 
By the result of Rentschler quoted above, it follows that Q is a finitely gener-
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ated R-modu\e, say Q = J2 R<Lu where qt £ Q for each i = 1, 2, . . . , n. T h e n 
the ideal / = C\n

i=i(R : at) is essential in i?. Clearly IQ Ç i£. But , by 
[8, Theorem 1.6, p . 155], IQ = Q; so Q = J?. 

Over a semi-simple ring, every module is Goldie torsion-free. Thus , the con
verse is clear. 

Remark. I t follows t ha t proper ty (a) of Theorem 2 holds over an integral 
domain if and only if the domain is a field. I t should also be pointed ou t t h a t 
if {<j>i : T(Ei) —» Ei) is a finite family of torsion-free covers, then 
0 0i : 0 T{Et) — > 0 Ei is a torsion-free cover, regardless of whether (b) 
of Theorem (2) is valid. The ring of 2 X 2 upper tr iangular matrices over a 
division ring provides a non-commutat ive example of ring for which the 
corollary does not hold. 
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