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AUTOMORPHISM GROUPS OF DENUMERABLE 
BOOLEAN ALGEBRAS 

RALPH McKENZIE 

We are concerned with the extent to which the structure of a Boolean algebra 
2Ï (or BA, for brevity) is reflected in its group of automorphisms, Aut 21. In 
particular, for which algebras can one conclude that if Aut 21 = Aut 33, then 
2Ï = 33? Monk has conjectured [3] that this implication holds for denumerable 
BA's w îth at least one atom. We shall refute his conjecture, but show that the 
implication does hold if 21 and 93 are denumerable, if each has at least one atom, 
and if the sum of the atoms exists in 21. In fact, under those assumptions the 
algebra 21 can be rather neatly recovered from its abstract automorphism 
group. 

The assumption of denumerability is important. It is well-known that the 
automorphism group of any denumerable BA has the power of the continuum. 
S. Shelah has recently constructed in every uncountable cardinal K, a BA of 
power K having only one automorphism. (This very significant result that 
concludes a long chain of investigations by de Groot, Jônsson, Lozier, Monk, 
Balcar and Stëpânek, and others, is yet unpublished.) 

M. Rubin [4] has shown how to recover 21 from Aut 21 if 21 = 2t\ is the 
atomic saturated BA of uncountable power X = Xx. (His result is actually much 
stronger than this implies.) 

Shelah independently discovered our example refuting Monk's conjecture. 

Our notation is the same as in [2], or [3], 21, 93 denote Boolean algebras of 
cardinality Ko. The universe of 21 is denoted A, its set of atoms is denoted by 
At 21. The principal ideal algebra determined by a £ A is denoted 21 \ a. 

Throughout, we denote by Q a denumerable atomless BA (any two such 
are isomorphic), and g = Aut G. If K is any cardinal number, Sym K denotes 
the group of all permutations of a /c-element set. Monk proved that Aut 21 == 5 
if and only if 21 = G or 21 is isomorphic to the direct product of G and a 
2-element BA. And he proved that if m ^ 2 is an integer, then Aut 21 = 
Sym m X % if and only if 21 has exactly m atoms (21 is isomorphic to the 
product of G with m copies of a 2-element algebra). Hence we can restrict our 
attention to algebras with denumerably many atoms. 
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By Fin 31 we mean the subgroup of Aut 31 consisting of automorphisms that 
move only finitely many atoms, and fix every element disjoint from all the 
atoms moved. Each finite permutation of At 31 is the restriction of a unique 
member of Fin 31. We focus attention on the members of Fin 31 which move 
exactly two atoms. Let us call these atomic transpositions. 

LEMMA 1. Let TT £ Aut 31, where \A\ = |At 3l| = Ko. Then -K is an atomic 
transposition if and only if it satisfies in Aut 31 the following formula 6(w) : 

7T2 = 1 and ~ir = 1 and (^/X){{X-KX~1TT~1Y = 1). 

Proof. Let w be an atomic transposition. Clearly ir2 = 1. Let a £ Aut 31 and 
put aTa~1ir~l = y. Now, ana"1 is an atomic transposition. There are two cases, 
depending on whether (TTTG~1 moves some atom moved by 7r, or does not. In the 
first case, y is essentially only acting in an interval 31 \ c that is finite with at 
most 3 atoms. Hence 76 = 1. In the second case, a-rra"1 commutes with IT, so 
72 = (cr™-1)2^-1)2 = 1. 

The above remarks show that 6(ir) holds in Aut 31. 
Let us suppose, conversely, that T is an element of Aut 31 satisfying 6. 

It must move some element of 31, and we can find a £ A so that a • ir(a) = 0 ^ 
a. We can even suppose that a is an atom or 3Ï \ a is atomless. It must be that 
a is an atom, because if 31 \ a is atomless it has an automorphism of infinite 
order, and we can concoct y £ Aut 31 such that y \ 31 \ ira = id \ 31 \ ira, 
y (a) = a, and 7 \ 31 \ a is of infinite order — then 77r7-17r_1 acts like 7 on 31 f a 
and has infinite order. 

So we have an atom a with wa 9e a. It remains to show that T is the atomic 
transposition exchanging a and ir(a). In other words, that w on the interval 
31 f — (a + ira) is trivial. If not, then the above argument shows that there are 
additional atoms moved by ir. We break the argument into cases: (i) w moves 
at least four atoms but fixes at least two atoms; (ii) T moves at least eight 
atoms. 

In case (i), say au • • • » #4 are moved, irai = ai, iraz = a4; and a5 and a& are 
fixed. Then let a Ç Fin 31 be a mapping that includes the cycles (a3a2a5) (a4a6) (ai). 
One calculates that <nr(j~lTr~l has the cycle (aia6a2a5), hence its order does not 
divide 6. 

In case (ii), say ir includes the cycles ( a ^ ) (a3a4) (a5a6) (a7<28). Let a G Fin 31 
be so that aira"1 includes {a2az){a\a^){ar>a1){aia%). By computation, awa^T"1 

includes (aia^a^) so its sixth power is not 1. 
This concludes the proof. 

We remark that the formula 6 was used in [1] to characterize the transposi
tions in Sym K, where K is an infinite cardinal. 

Lemma 1 opens the way to recovering 31 from its automorphism group. We 
define some further group-theoretic formulas. (Here [x, y] is an abbreviation 
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for xyx~ly~l.) 

A(x,y,z):d(x) andflfj) and 6(z) and [x,y] 9e l a n d [x, z] ^ l a n d [y,z] ^ 1. 

E(xh x2, xziyi, y2, yz) ' A (xh x2, x3) and A (yh y2, y*) and 

A ([Xi,yj] = l-*Xi = yf). 

M(u) xij x2i x3; yu y2j ;y3): A(x) a n d ^ ( ^ ) and 
E(ux\u~ , ux2u~ , ux%u~ , yi, y2, ;y3). 

Let §1 be a BA, let ® = (G, •) be its automorphism group, and let M be the 
predicate defined by: 

M(a, a,b) «=> a € G and a G At 31 and cr(a) = 6. 

Consider the 2-sorted s t ructure Aut *3I = (G, At 31, -, M ) . T h e above formulas 
serve to interpret Aut *3l in @, provided t h a t 31 is denumerable and has 
infinitely many a toms. More precisely, @ t= A (o-i, a2, o-3) if and only if <n, a2, cr3 

are distinct atomic transpositions with jus t one a tom moved by all ; © 1= E(â, r) 
if and only if â and f are nested over the same common a tom. Clearly, E defines 
an equivalence relation on A and A/E is canonically isomorphic to At 31. If 
equivalence classes â/E and r/E are canonically associated with the a toms a 
and b, then © t= M(TT, <T, f) if and only if ir(a) = b. 

T h e following should now be obvious. 

COROLLARY 2. Let 31 and 33 fre denumerable BA1 s having infinitely many atoms. 
If Aut SI ^ Aut 33, then Aut *3Ï ^ Aut *33. 

COROLLARY 3. For every definable property <i> of structures of the type of 
Aut *3I, there is a corresponding property <£' of groups so that for denumerable 3( 
with denumerably many atoms, Aut *2l t= 3> i / and ow/;y i / Aut SI t= $ ' . 

Monk proved [3, T h m . 4] t h a t the proper ty of 31 t h a t it is a tomic is reflected 
faithfully in a proper ty of Aut 31, viz t h a t it is not simple and t h a t it has a 
smallest non-trivial normal subgroup. We have a similar result for the proper ty : 
the sum of all a toms exists in St. 

T H E O R E M 4. Let 3Ï and 33 be denumerable BA's such that Aut SI ~ Aut 33. 
Then J2 At 3Ï exists in 3Ï if Yl At 33 exists in 33. 

Proof. Relying on Monk ' s results for algebras with finitely many atoms, we 
can assume tha t each of 31 and 33 has infinitely many a toms. T h e formula 
(Va) (At(a) —> M(T, a, a)) defines in Aut *3Ï the subgroup34? of Aut 31 con
s t i tu ted by the automorphisms t ha t fix all a toms. If the sum of a toms exists 
in 31, then the g r o u p s either is trivial (31 is atomic) or is simple (isomorphic 
to g ) . If the sum of a toms does not exist, then 34? has a large normal subgroup 
composed of those TV such t h a t for some atomless a ^ 0 in 31, IT \ 31 \ — a is the 
identi ty function. 

We shall show tha t this is a proper subgroup of Jf7. Let (an: n < co) be an 
enumerat ion of A, and (cn : n < co) be an enumerat ion of the non-zero atomless 
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elements of 21. Since there is no least element above all the a toms of SI, like
wise the set of atomless elements has no least upper bound in 21. We con
s t ruct by induction a sequence (dn: n < co) of atomless elements, and a 
sequence (bn : n < co) such tha t in 21 \ bn the sum of a toms does not exist. 

P u t b0 = a0, or b0 — —a0 according as the sum of a toms does not, or does 
exist in 21 \ a0. Then there is an atomless d S bo with d • Co = 0 ^ d. P u t 
d0 = d. Having obtained bn, dn, pu t bn+\ = bn • an+i or bn+i = bn • — an+i so t ha t 
the sum of a toms ^ bn+i does not exist. Then choose for dn+\ a non-zero a tom
less element such tha t dn+1 • ( X ^ w dt + X ^ n + i £*) = 0 a n d ^n+i ^ ^+i -

The sequence (dn : n < co) has the following properties: (1) for each x £ A, 
either x • dn = 0 for large n, or x ^ dw for large w; (2) for each atomless x G A, 
wre have # • dw = 0 for n large. 

Now we can define an automorphism -K as follows. Fix, for each n < co, an 
isomorphism <rn : 21 \ d2n >-> 2Ï \ d2n+i. Then put (where either x • dm = 0 for 
m ^ 2^, or else x ^ dmiorm ^ 2&): 

?r(x) = x • — X ^< + X K ( x ' ^2;) + v3~
l(x • d2j+i)]. 

i<2k j<k 

Clearly, w G Jtif and its action is not bounded by any atomless element. 
We have produced a property of Aut *2l tha t determines whether the sum 

of a toms exists in 21. By Corollary 3, this is equivalent to a definable property 
of Aut 21. 

T H E O R E M 5. Let 21 and 33 be denumerable BA's not isomorphic to Q , with 
Aut 21 = Aut 33. / / the sum of atoms exists in 21, then 21 = 33. 

Proof. By [3], we can assume tha t each algebra has denumerably many 
atoms. By Theorem 4, the sum of a toms exists in 33. Hence 21 = 2Ii X 2I\ 
33 = 33i X 331, where 211, 331 are either atomless or 1-element algebras, 2Ii and 
33i are atomic. By Monk 's result, 21 is atomic if and only if 33 is, i.e. 2I1 = 331. 
By Corollary 2, Aut *2I = Aut *33. Pa r t of this isomorphism is a bijection 

j : At 21 <-> At 33. Now 2li is canonically isomorphic to an algebra of subsets of 
At 21, whose universe is {â: a £ A] = À, where a = {x Ç At 21: x ^ a}. And 
likewise for 33i. T o establish the theorem, it is sufficient to prove tha t j carries 
Â onto B. Actually, we can define Â in the s tructure Aut *2I, as follows. 

P) Let X C At SI. There exists a £ A with X = â if and only if {aX: a £ 
Aut 21} is countable. 

The proof of the forward implication in P) is trivial. For the converse, we 
first prove 

Q) Let X C At 21, X Q Â. There is a convergent set Y C At 21 such t ha t 
YC\ X and Y ~ X are infinite. (By "convergent" is meant tha t for all a Ç A, 
one of the sets Y C\ â, Y ~ â is finite.) 

T o prove Q) , s tar t with an enumeration (an: n < co) of A. Assume tha t 
X (? A. Then put cQ = a0 or — a0 so t ha t X f~\ Co (L Â. Having generated 
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Co ^ . . . ^ cn_ and X C\cn £ A, put cn+ï = cn • an+i or cn • - an+i so that 
X H cn+i g A Now with the sequence (cn: n < co) so constructed, we can 
choose distinct atoms an, bn(n < co) with an (z cnC\ X, bn G cn ~ X. (Since 
cnC\ X Q Â, also cn ~ X £ Â, so both sets are infinite.) Put Y = {an: n < co} 
U {&n: n < co}. This set has the desired properties. 

To finish the proof of P), let X G Â, and let F be as in Q). By [3, Lemma 1.1], 
every permutation of Y extends to an automorphism of 2Ï. This gives con
tinuum many automorphic images of X in 21. 

The proof of Theorem 5 is complete. 

Remarks. The Cantor-Bendixson derivative of 21 is the factor algebra 
2I(1) = 21// where I is the ideal generated by the atoms in 21. Restricted to 
isomorphism types of atomic denumerable algebras, the Cantor-Bendixson 
derivative gives a one-to-one map onto all isomorphism types of countable 
algebras excepting that of the 1-element algebra. If 2l(-1) denotes the unique 
atomic denumerable algebra whose derivative is 21, then by Theorem 5, the 
map 21 —> Aut 2l(_1) provides a one-to-one map of isomorphism types of 
countable BA's with at least two elements into isomorphism types of groups 
of permutations of a denumerable set, each group having continuum many 
elements. 

THEOREM 6. There exist denumerable BA's 21 and 93, each having denumerably 
many atoms, such that Aut 2Ï == Aut 93 and 21 is not isomorphic to 93. 

Proof. Let 21/ be the algebra of finite and co-finite subsets of co. Let D be 
an ultrafilter in G (the denumerable atomless algebra). Let 21/' be the sub-
algebra of 21/ X O whose universe is 

{(a, b): a co-finite <-» b G D}. 

Set 2Io = 2I/-1) , 2ti = 2t/>(-1\ S = 2t0 X 2li. Now 2l0 has an ultrafilter DQ 

which is the inverse image under the projection 21 o -» 21/ of the filter of cofinite 
subsets of co. In 2li we have an ultrafilter D\ which is the inverse image under 
2Ii -» 21/' of the filter 

{(a, b): a is cofinite and 6 Ç D). 

These filters have unique extensions to ultrafilters in 6, which we also denote 
by Do, DL 

Claim. Let TT G Aut S. Then TT*DO = J90 and ir*D\ = D\. In fact, it's easy 
to see that for c G C, c G D0 if and only if there exists t ^ c, 6 \ t = 2ïoî and 
c G Dx if and only if there exists t S c, 6 \ t ^ 2li. 

Now we define 2Ï and 93 as the subalgebras of 6 X Q with respective universes 

{(c,q):ce Do^qe D}, 

{(c,q):c G £>i *->g G D}. 
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In 33 there is an interval 33 \ x that is atomic and has derivative isomorphic 
to 21/. In 21 there is no such element. Hence 21 qk 33. 

Now let @ be the group of automorphisms of G that fix D. We claim that 

Aut 21 ^ (Aut 6) X © ^ Aut 33. 

To see it, let 7r G Aut 21, x = (ci, <?i) 6 ^4, y = (c2, #2) G -4, 7rx = (£/, g / ) , 
TT̂  = (£2', #2'), x © y the symmetric difference of x and y. Now gi = q2 <=> x © 3/ 
is atomic <=> 7rx © iry is atomic <=> #/ = qj'. Similarly, c\ = Zi <=> # © y is 
atomless <=> c/ = c2'. It follows that we can write -K = (71-0, TTI) where 7r0 is a 
permutation of 6, 71-1 a permutation of G. 

Since very automorphism of S fixes Do, it's very easy to see that the above 
analysis yields an isomorphism Aut 21 = (Aut S) X ©. The proof for 33 is 
the same. 

Remarks. In view of Theorem 5, it is natural (although a bit naive) to 
expect that the automorphism group may be a one-to-one function of infinite 
atomic Boolean algebras. To demolish this possibility, we note that by [2, 
Thm 3.1] there is for every infinite K, an atomic BA 2Ï whose automorphism 
group is naturally isomorphic to the group of finite permutations of K, while 
2l(1) is a free BA of power 2 \ On the other hand, it is known that there exists 
a rigid, complete, and atomless BA 33. Let 5 be the Stone space of such a 33. 
Let £ be the algebra of subsets of 5 generated (by finite operations) from 
5 U { J 5 ) : 5 Ç 5 ) . Then 8<x> ^ 33, while it is not hard to show that Aut 2 is 
naturally isomorphic to the group of finite permutations of S (8 is atomic). 

I offer two conjectures that ought not be too hard to prove or disprove: 
Let 21 and 33 be denumerable Boolean algebras not isomorphic t o G . If Aut 21 
= Aut 33 (or if these groups are elementarily equivalent), then 21 and 33 are 
elementarily equivalent—in the sense of first order logic. 

REFERENCES 

1. R. McKenzie, On elementary types of symmetric groups, Algebra Universalis 1 (1971), 13-20. 
2. R. McKenzie and J. D. Monk, On automorphism groups of Boolean algebras, to appear in 

proceedings of the International Colloquium of Infinite and Finite Sets, Keszthely, 
Hungary, 1973. 

3. J. D. Monk, On the automorphism groups of denumerable Boolean algebras, submitted to 
Math. Annalen. 

4. M. Rubin, On the automorphism groups of saturated atomic Boolean algebras, to appear, 
Algebra Universalis. 

University of California, 
Berkeley, California 

https://doi.org/10.4153/CJM-1977-050-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-050-x

