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Multiplicity one theorems over positive
characteristic
Dor Mezer
Abstract. In Aizenbud et al. (2010, Annals of Mathematics 172, 1407–1434), a multiplicity one
theorem is proved for general linear groups, orthogonal groups, and unitary groups (GL, O, and
U) over p-adic local fields. That is to say that when we have a pair of such groups Gn⊆Gn+1 , any
restriction of an irreducible smooth representation of Gn+1 to Gn is multiplicity-free. This property
is already known for GL over a local field of positive characteristic, and in this paper, we also give
a proof for O, U , and SO over local fields of positive odd characteristic. These theorems are shown
in Gan, Gross, and Prasad (2012, Sur les Conjectures de Gross et Prasad. I, Société Mathématique
de France) to imply the uniqueness of Bessel models, and in Chen and Sun (2015, International
Mathematics Research Notice 2015, 5849–5873) to imply the uniqueness of Rankin–Selberg models.
We also prove simultaneously the uniqueness of Fourier–Jacobi models, following the outlines of
the proof in Sun (2012, American Journal of Mathematics 134, 1655–1678).

By the Gelfand–Kazhdan criterion, the multiplicity one property for a pair H ≤ G follows from
the statement that any distribution on G invariant to conjugations by H is also invariant to some
anti-involution of G preserving H. This statement for GL, O, and U over p-adic local fields is proved
in Aizenbud et al. (2010, Annals of Mathematics 172, 1407–1434). An adaptation of the proof for GL
that works over of local fields of positive odd characteristic is given in Mezer (2020, Mathematische
Zeitschrift 297, 1383–1396). In this paper, we give similar adaptations of the proofs of the theorems
on orthogonal and unitary groups, as well as similar theorems for special orthogonal groups and for
symplectic groups. Our methods are a synergy of the methods used over characteristic 0 (Aizenbud
et al. [2010, Annals of Mathematics 172, 1407–1434]; Sun [2012, American Journal of Mathematics
134, 1655–1678]; and Waldspurger [2012, Astérisque 346, 313–318]) and of those used in Mezer (2020,
Mathematische Zeitschrift 297, 1383–1396).

1 Introduction

Let F be a local field of positive characteristic different from 2. Let K be either equal
to F or an extension of it of degree 2. Let V be a vector space of dimension n over
K. Let W ∶= V ⊕Kvn+1 be an (n + 1)-dimensional vector space containing it. Assume
that we have a nondegenerate Hermitian (symmetric in the case K = F) form on W,
with respect to which V is orthogonal to vn+1. Note that this implies, in particular, that
⟨vn+1 , vn+1⟩ ≠ 0. We will denote G to be either the group O or SO in the case K = F or
U in the case K ≠ F. Consider the group G(V) as a subgroup of G(W).

The following theorem is among the main theorems proved in this paper.
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Multiplicity one theorems over positive characteristic 1019

Theorem 1.1 Let π and ρ be irreducible smooth representations of G(W) and G(V),
respectively. Then

dim HomG(V)(π, ρ) ≤ 1.

Let us define an anti-involution σ of G(W) for all three families of classical groups:
In the case of O, define σ ∶ g ↦ g−1.
In the case of SO, choose T ∈ G(V) of order 2 with det T = (−1)⌊ n+1

2 ⌋: One may
choose such an element by taking a basis of V with respect to which the symmetric
form is diagonal, and in this basis, take a diagonal matrix of ±1 with the appropriate
parity of −1 entries. Define σ ∶ g ↦ T g−1T .

In the case of U, choose a basis of W for which the Hermitian product of all pairs
lies inF (for example, by choosing a basis that diagonalizes the Hermitian form). Then
we have an involution T ∶ v ↦ v̄ (writing v as a vector in this basis). Define an anti-
involution of G(W) by σ ∶ g ↦ T g−1T .

Consider the action of G(V) on G(W) by conjugation. The following theorem
implies Theorem 1.1 using the Gelfand–Kazhdan criterion.

Theorem 1.2 Any G(V)-invariant distribution on G(W) is also invariant under σ.

The proof of this implication in zero characteristic is given in [12, Appendix B], [3,
Section 1], and [14], and the same proofs apply verbatim in arbitrary odd characteristic.

We also prove another theorem which we shall now describe, given in [12] for
characteristic 0. One may also look there for more extensive explanations about the
basic notations and definitions used. This theorem will be related to the uniqueness of
Fourier–Jacobi models, and will regard all the previous families of classical groups, as
well as Sp.

Let A be a finite-dimensional commutative involutive algebra over F, and let V be
a finitely generated A-module. Let ε = ±1, and let τ be the involution of A. Assume
that V is equipped with a nondegenerate ε-Hermitian form, i.e., a nondegenerate F-
bilinear map ⟨⋅, ⋅⟩ ∶ V × V → A satisfying A-linearity in the first argument, and ⟨v , u⟩ =
ε⟨u, v⟩τ . Denote by S the group of all A-module automorphisms of V which preserve
this form. It is a finite product of general linear groups, unitary groups, orthogonal
groups, and symplectic groups. Denote by Aτ=−ε the subset of A of elements a
satisfying aτ = −εa. Let H be the Heisenberg group defined as {(v , t)∣v ∈ V , t ∈ Aτ=−ε}
with multiplication

(v , t)(v′ , t′) = (v + v′ , t + t′ + ⟨v , v′⟩
2

− ⟨v
′ , v⟩
2

).

We have a natural action of S on H. Denote by J ∶= H ⋊ S the semidirect product of H
and S with respect to this action. We prove in this paper the following theorem.

Theorem 1.3 Let π and ρ be irreducible smooth representations of J and S, respectively.
Then

dim HomS(π, ρ) ≤ 1.

Again, we shall use the method of Gelfand and Kazhdan. Choose an F-linear
involution σ of V such that ⟨σu, σv⟩ = ⟨v , u⟩. To see that it is always possible, write
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1020 D. Mezer

G as a product of unitary, orthogonal, symplectic, and general linear groups with the
corresponding orthogonal decomposition of V over F. In each of these cases, we are
able to construct such an involution, and we can take the product of these involutions
as σ . The involution σ extends to an anti-involution of H by (v , t) ↦ (−σv , t), which
together with the anti-involution g ↦ σ g−1σ of S gives an anti-involution of J (which
we shall also call σ). Let S act on J by conjugation. The following theorem implies
Theorem 1.3 using the Gelfand–Kazhdan criterion.
Theorem 1.4 Any S-invariant distribution on J is also invariant under σ.

The implication is proved in [12, Appendix B] in zero characteristic, and the same
proof applies verbatim in arbitrary odd characteristic.

Sections 3–8 are dedicated to the simultaneous proof of Theorems 1.2 and 1.4.
Remark 1.5 One could ask whether an analog of Theorem 1.1 holds for the subgroup
SU of Hermitian operators with determinant 1. However, the answer turns out to be
negative even for the most simple case of dim V = 1. In this case, SU(V) = {1}, while
SU(W) is noncommutative, showing that the two groups do not satisfy a multiplicity
one property.
Remark 1.6 The assumption of F having positive characteristic is not used anywhere
in this paper, and is given mainly to distinguish the work in this paper from the already
existing proofs of the discussed theorems when the characteristic of F is 0.

1.1 Corollaries of the main theorems

There are corollaries of Theorems 1.1 and 1.3 which were shown over characteristic 0,
and the proofs of implication still apply over positive characteristic. We list them here
with references.

An analog of the following theorem appears in [12] as Theorem B, and its implica-
tion from the analog of Theorem 1.3 is shown in Appendix A of the same.
Theorem 1.7 Let G denote one of the groups GL(n), U(n), and Sp(2n) (note that
U(n) is dependent on the choice of a Hermitian form), regarded as a subgroup of
Sp(2n) as usual. Let G̃ be the double cover of G induced by the metaplectic cover
S̃p(2n) of Sp(2n). Denote by ωψ the smooth oscillator representation of S̃p(2n)
corresponding to a nontrivial character ψ of F. Then, for any irreducible smooth
representation π of G, and for any genuine irreducible smooth representation π′ of G̃,
one has that

dim HomG(π′ ⊗ ωψ ⊗ π,C) ≤ 1.

An analog of the following theorem appears in [7], along with its implication from
the analog of the above theorem (see [7] for the definitions and notation used).
Theorem 1.8 (Uniqueness of Rankin–Selberg models) For all irreducible smooth
representations π of GL(n) and σ of GL(r), and for all generic characters χ of the rth
Rankin–Selberg subgroup Rr of GL(n), one has that

dim HomRr(π ⊗ σ , χ) ≤ 1.

Analogs of the following two theorems appear in [8, Chapters 12–16], along with
their implications from the analogs of Theorems 1.1 and 1.3 and the multiplicity
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one property for GL(n + 1), GL(n), which is proved for positive characteristic in [9,
Theorem 1.2] and in [1].

Theorem 1.9 (Uniqueness of Bessel models) Let V be a linear space with a symmetric
or Hermitian (including the case K = F × F) form. Denote the respective orthogonal or
unitary group G(V). Let W be a subspace of odd codimension on which the form is
nondegenerate and so that W⊥ is split. Let H be the Bessel group corresponding to W,
considered as a subgroup of G(V) ×G(W), and let ν be a generic character of H. Then,
for any irreducible smooth representations π of G(V) and π′ of G(W), one has

dim HomH(π ⊗ π′ , ν) ≤ 1.

Theorem 1.10 (Uniqueness of Fourier–Jacobi models) Let V be a linear space with
a skew-symmetric or skew-Hermitian (including the case K = F × F) form. Denote
the respective symplectic or unitary group G(V). Let W be a subspace of even codi-
mension on which the form is nondegenerate and so that W⊥ is split. Let H be
the Fourier–Jacobi group corresponding to W, considered as a subgroup of G(V) ×
G(W). Let H̃ be its appropriate double cover, and let ν be the representation of
H̃ constructed in [8, Chapter 12] (depending on some choices of characters). Take
either π to be an irreducible smooth representations of G̃(V) (an appropriate double
cover of G(V)) and π′ to be such a representation of G(W), or the other way
around, i.e., π to be an irreducible smooth representation of G(V) and π′ to be such
a representation of an appropriate G̃(W). Then one has

dim HomH̃(π ⊗ π′ , ν) ≤ 1.

1.2 Comparison with previous works

In [9], the proof of a multiplicity one theorem for GLn in characteristic 0 is extended to
include also positive odd characteristic. The premise of this paper is to use these meth-
ods to extend the proof of additional multiplicity one theorems from characteristic 0
to positive odd characteristic. The proofs for characteristic 0 on which we base this
paper are given in [3, 12, 14]. Let us give an overview of the methods and steps of this
paper, explaining which ones are taken from [3, 12, 14], which ones were introduced
in [9], and which ones are new to this paper.

In Section 3, we give reformulations of the problems in a way identical to the ones
given in [3, 12, 14].

In Section 4, we use a certain analog of the Harish–Chandra descent method for
positive characteristic, that gives weaker results than in the zero characteristic case.
The entirety of this method as used in [3, 12, 14] fails over positive characteristic fields,
due to nonseparable extensions, and in fact, this is the crucial point in which these
proofs fail for a positive characteristic.

In Section 5, we pass from the group to its Lie algebra using Cayley transform.
The difference from the analogous linearization in [3, 12, 14] is that, in these papers,
linearization is done after using the method of Harish–Chandra descent to restrict the
possible support to the unipotent cone, whereas we only have a weaker restriction on
the support.
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1022 D. Mezer

In Section 6, we adapt the main new ideas of [9] to the unitary, orthogonal, and
symplectic settings, introducing a new family ρ of automorphisms playing the same
role as ρ in [9].

Section 7 uses the method of stratification to reduce the problem to a problem on
a single orbit. The contents of this section are completely analogous to what is done in
[3, 12, 14], only without the restriction of nilpotency, which is not truly needed, as was
the case in [9].

In Section 8, we solve the previous problem on a single orbit by repeating the
arguments and ideas used in [3, 12, 14], sometimes giving slight generalizations of
them.

The archimedean version of Theorems 1.1 and 1.4 can be found in [13]. Special cases
of Theorems 1.1 and 1.2 can be found in [4].

2 Preliminaries and notation

Most of this section is borrowed from the preliminaries sections of [2, 3], and also of
[9] (which was also mostly borrowed from the previous two).

Let us now introduce a uniform notation for all the groups O , SO , U , and Sp. Note
that the case G = Sp was not included in Theorems 1.1 and 1.2, but it will be relevant
for Theorems 1.3 and 1.4. Let F be a local field of characteristic different from 2. Let
K be a field which is either equal to F or a quadratic field extension of it. Let λ ↦ λ̄
be either the nontrivial automorphism of K/F or the identity automorphism if K = F.
Let V be a K-linear space of dimension n. Assume that we have on V a nondegenerate
sesquilinear form B which is either symmetric, Hermitian, or symplectic (in the
Hermitian case K ≠ F and in the other cases K = F). Denote by G = G(V) one of
the groups O(V), SO(V), U(V), or Sp(V). Denote by g = g(V) the Lie algebra of G,
which is either o(V),u(V), or sp(V), i.e., linear transformations A satisfying A∗ = −A
with respect to the symmetric, Hermitian, or symplectic form. In the O , SO , U cases,
assume that we have W ⊇ V of dimension n + 1 with an extension of ⟨⋅, ⋅⟩ to a form on
W of the same type. In these cases, we have also G(W), and we may consider G as a
subgroup of it.

Let G̃ denote the subgroup of AutF(V) × {±1} consisting of all (T , δ) such that
⟨Tu, Tv⟩ = ⟨u, v⟩ if δ = 1 and ⟨Tu, Tv⟩ = ⟨v , u⟩ if δ = −1. In the case that G = SO,
we also require that det T = δ⌊ n+1

2 ⌋. This group contains G as a subgroup of index
2. Denote by χ ∶ G̃ → ±1 the character (T , δ) ↦ δ. We have natural actions of G on
G(W), G , g, V (by conjugation on all but V, on which we let G act in the usual way).
This action extends to an action of G̃ by (T , δ).A ∶= TAδ T−1 on G(W) and G, by
(T , δ).A ∶= δTAT−1 on g, and by (T , δ).v ∶= δTv on V.
Notation 2.1 Let Δ ∶ G → K[x] be the characteristic polynomial map. We shall also
consider it as a map from G × V , by first projecting onto G.

We shall use the standard terminology of l-spaces introduced in [6, Section 1]. We
denote by S(Z) the space of Schwartz functions on an l-space Z, and by S∗(Z) the
space of distributions on Z equipped with the weak topology.
Notation 2.2 (Fourier transform) Let W be a finite-dimensional vector space over F
with a nondegenerate bilinear form B on W. We denote by FB ∶ S∗(W) → S∗(W) the
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Multiplicity one theorems over positive characteristic 1023

Fourier transform defined using B and the self-dual Haar measure on W. If W is clear
from the context, we sometimes omit it from the notation and denote F = FW .

Remark 2.3 In the Hermitian case, we take for Fourier transform theF-bilinear form
given by taking the trace of the Hermitian form.

Theorem 2.4 (Localization principle; see [5, Section 1.4]) Let q ∶ Z → T be a contin-
uous map of l-spaces. We can consider S∗(Z) as an S(T)-module. Denote Zt ∶= q−1(t).
For any M which is a closed S(T)-submodule of S∗(Z),

M =⊕
t∈T
(M ∩ S∗(Zt)).

Informally, it means that, in order to prove a certain property of distributions on
Z, it is enough to prove that distributions on every fiber Zt have this property.

Corollary 2.5 Let q ∶ Z → T be a continuous map of l-spaces. Let an l-group H act
on Z preserving the fibers of q. Let μ be a character of H. Suppose that, for any t ∈ T,
S∗(q−1(t))H ,μ = 0. Then S∗(Z)H ,μ = 0.

Corollary 2.6 Let H i ⊂ H̃ i be l-groups acting on l-spaces Z i , for i = 1, . . . , k. Suppose
that S∗(Z i)H i = S∗(Z i)H̃ i for all i. Then S∗(∏Z i)∏H i = S∗(∏Z i)∏ H̃ i .

Theorem 2.7 (Frobenius descent [5, Section 1.5]) Let H be a unimodular l-group
acting on two l-spaces E and Z, with the action on Z being transitive. Suppose that we
have an H-equivariant map φ ∶ E → Z. Let x ∈ Z be a point with a unimodular stabilizer
in H. Denote by F the fiber of x with respect to φ. Then, for any character μ of H, the
following holds:

(i) There exists a canonical isomorphism Fr ∶ S∗(E)H ,μ → S∗(F)StabH(x),μ .
(ii) For any distribution ξ ∈ S∗(E)H ,μ , Supp(Fr(ξ)) = Supp(ξ) ∩ F.

(iii) Frobenius descent commutes with Fourier transform.

To formulate (iii) explicitly, let W be a finite-dimensional linear space over F with
a nondegenerate bilinear form B, and suppose that H acts on W linearly preserving B.
Then, for any ξ ∈ S∗(Z ×W)H ,μ , we have FB(Fr(ξ)) = Fr(FB(ξ)), where Fr is taken
with respect to the projection Z ×W → Z.

Remark 2.8 Let Z be an l-space, and let Q ⊂ Z be a closed subset. We may identify
S∗(Q) with the space of all distributions on Z supported on Q. In particular, we can
restrict a distribution ξ to any open subset of the support of ξ.

Definition 2.9 An element A ∈ gl(V) is said to be regular if its minimal polynomial
is equal to its characteristic polynomial. In case that this polynomial f of A is a power
of an irreducible polynomial, we call A a minimal regular element.

Theorem 2.10 (Rational canonical form) Any element A ∈ gl(V) can be represented
as a direct sum of minimal regular elements. Moreover, the isomorphism classes of these
elements are uniquely determined by the conjugacy class of A inside GL(V) and vice
versa.

This form is called the rational canonical form of A.
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Definition 2.11 For any polynomial f given by f (x) = ∑n
i=0 a i x i , define

f ∗(x) =
n
∑
i=0
(−1)i ā i x i ,

f †(x) =
n
∑
i=0

an−i x i .

Remark 2.12 For any A ∈ g (resp. A ∈ G(V)), we have f (A)∗ = f ∗(A) (resp. f (A)† =
A−n f †(A)).

Lemma 2.13 Let A ∈ g (A ∈ G). Let ( f i)i∈I be the different irreducible factors in the
characteristic polynomial of A. Let (Vi)i∈I be the generalized eigenspace associated with
each. Take i , j ∈ I, not necessarily different. If f ∗i ≠ ± f j (resp. f †

i ∤ f j), then Vi ⊥ Vj .

Proof We give the proof in the A ∈ g case (the A ∈ G case is analogous). Take u ∈
Vi , v ∈ Vj . Then, for k large enough,

0 = ⟨ f i(A)ku, v⟩ = ⟨u, f ∗i (A)kv⟩.

Thus, Vi ⊥ f ∗i (A)k Vj , but if f ∗i ≠ ± f j , then they are coprime to each other, and so
f ∗i (A)k Vj = Vj . ∎

Definition 2.14 (1) An operator A ∈ g will be called a simple split operator (or
block) if the following conditions hold:
• There is a possibly nonorthogonal decomposition V = V ′ ⊕ V ′∗.
• V ′ and V ′∗ are isotropic, and the sesquilinear form B induces the natural

pairing between them.
• The action of A on V ′ ⊕ V ′∗ decomposes as A′ ⊕ A′′.
• ⟨A′u, v⟩ = ⟨u,−A′′v⟩ for any u ∈ V ′ , v ∈ V ′∗.
• A′ (and so also A′′) is a minimal regular operator (see Definition 2.9).
• The irreducible factor f of the minimal polynomial of A′ is not equal to f ∗.

(2) An operator A ∈ g will be called a simple nonsplit operator (or block) if:
• It is a minimal regular operator.
• Its characteristic polynomial is not equal to xd with d even if g = o, and it is not

equal to xd with d odd if g = sp.
(3) An operator A ∈ o will be called a simple even nilpotent operator (or block) if the

following conditions hold:
• Its minimal polynomial is xd for some even d.
• V has a basis of the form e , Ae , . . . , Ad−1e , f , Af , . . . , Ad−1 f .
• For all i , j we have ⟨Ai e , A j e⟩ = ⟨Ai f , A j f ⟩ = 0.

• For all i , j we have ⟨Ai e , A j f ⟩ =
⎧⎪⎪⎨⎪⎪⎩

(−1) j , if i + j = d − 1,
0, otherwise.

(4) An operator A ∈ sp will be called a simple odd nilpotent operator (or block) if the
following conditions hold:
• Its minimal polynomial is xd for some odd d.
• V has a basis of the form e , Ae , . . . , Ad−1e , f , Af , . . . , Ad−1 f .
• For all i , j we have ⟨Ai e , A j e⟩ = ⟨Ai f , A j f ⟩ = 0.
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Multiplicity one theorems over positive characteristic 1025

• For all i , j we have ⟨Ai e , A j f ⟩ =
⎧⎪⎪⎨⎪⎪⎩

(−1) j , if i + j = d − 1,
0, otherwise.

The following useful proposition will be proved in Appendix A.

Proposition 2.15 Each A ∈ u decomposes as an orthogonal sum of simple split blocks
and simple nonsplit blocks. Each A ∈ o decomposes as an orthogonal sum of simple split
blocks, simple nonsplit blocks, and simple even nilpotent blocks. Each A ∈ sp decomposes
as an orthogonal sum of simple split blocks, simple nonsplit blocks, and simple odd
nilpotent blocks.

Remark 2.16 The contents of Proposition 2.15 are contained in known papers and
books such as [11, 15]. However, for clarity and completeness, we formulated only the
propositions we need and give short proofs of them in Appendix A.

Proposition 2.17 [9, Appendix A] Let V be a linear space of finite dimension n over a
field K, A ∈ gl(V), v ∈ V, and ϕ ∈ V∗. The following are equivalent.
(1) ∀k ≥ 0, ϕAkv = 0.
(2) For all λ ∈ K, ch(A+ λv ⊗ ϕ) = ch(A).
(3) There exists λ ∈ F× such that ch(A+ λv ⊗ ϕ) = ch(A).
(4) ∂

∂λ ch(A+ λv ⊗ ϕ)∣λ=0 = 0.

Let V be a vector space over a local field F of characteristic different from 2. Let
GL(V) act on gl(V) × V × V∗ by conjugation, and the natural actions on V , V∗.
Consider also the transposition involution, which involves a choice of an isomorphism
t ∶ V → V∗, and sends (A, v , ϕ) to At , ϕt , v t . As immediate corollaries of [9, Theorem
3.1] (and of the proof that it implies Theorem 1.1 of the same paper), we have the
following theorems.

Theorem 2.18 Any GL(V)-invariant distribution on GL(V) × V × V∗ is also invari-
ant to transposition.

Theorem 2.19 Any GL(V)-invariant distribution on gl(V) × V × V∗ is also invariant
to transposition.

3 Reformulations of the problem

Let V , G , G̃ , χ be as in Section 2. Both Theorems 1.2 and 1.4 follow from the following
theorem.

Theorem 3.1 Any (G̃ , χ)-equivariant distribution on G × V is 0.

Proof that Theorem 3.1 implies Theorem 1.2 This proof is the same as the
proof of [3, Proposition 5.1]. Use the notations given in the introduction (e.g.,
V , W , G(V), G̃(V)). We actually prove that Theorem 3.1 for W implies Theorem 1.2
for V. The idea is to consider the set

Y ∶= {w ∈ W ∣⟨w , w⟩ = ⟨vn+1 , vn+1⟩},

and use Frobenius descent (Theorem 2.7) on the projection G(W) × Y → Y . The
group G̃(W) acts on Y with centralizer G̃(V). The fiber of the projection is G(W).
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So we get a bijection between (G̃(V), χ)-equivariant distributions on G(W) and
(G̃(W), χ)-equivariant distributions on G(W) × Y . The latter of which has no
nonzero elements by the assumption on W. Thus, any (G̃(V), χ)-equivariant distri-
bution on G(W) is 0, which immediately implies Theorem 1.2. ∎

Proof that Theorem 3.1 implies Theorem 1.4 The group S in the formulation of
Theorem 1.4 decomposes as a product of groups of types O , SO , U , Sp, with σ a
product of appropriate anti-involutions. By Corollary 2.5 of the localization principle,
it follows that Theorem 3.1 implies an analogous claim for S, which can be seen to
easily imply Theorem 1.4. ∎

The proof of the theorem is by induction on dim V , proving simultaneously the
following theorem.

Theorem 3.2 Any (G̃ , χ)-equivariant distribution on g × V is 0.

For n = 0, Theorems 3.1 and 3.2 are trivial.

Remark 3.3 In [14], the needed induction basis was n = 1, n = 2, as the proof given
there used the triviality of the center of G (up to ±1). However, we do not use this fact
and so the trivial case n = 0 suffices for us as a basis for the induction.

Theorem 3.2 (along with Theorem 3.1) is proved in the end of Section 7.

4 Harish–Chandra descent

In this section, we use the technique of Harish–Chandra descent to restrict the support
of an equivariant distribution as discussed in Theorems 3.1 and 3.2. For the course of
this section assume that Theorems 3.1 and 3.2 hold for all smaller dimensions, over all
finite field extensions of K.

Let (A, v) be a point in the support of a (G̃ , χ)-equivariant distribution either
on G × V (the group case) or on g × V (the Lie-algebra case). Let g(X) be the
characteristic polynomial of A. Consider also the characteristic polynomial map Δ ∶
G × V → K[x] (or Δ ∶ g × V → K[x] in the Lie algebra case). Note that g ∣ g† in the
group case, and g = ±g∗ in the Lie algebra case (recall Definition 2.11 of g† and g∗).

Theorem 4.1 Unless we are in the group case and G = SO, the polynomial g cannot be
factorized into two coprime factors g1 , g2 satisfying g1 ∣ g†

1 and g2 ∣ g†
2 (resp. g1 = ±g∗1

and g2 = ±g∗2 in the Lie algebra case). In the case G = SO, it is still true that it is
impossible for g to be divisible by both x − 1 and x + 1.

Proof We give the proof for the group case and for the Lie algebra case simultane-
ously. By the localization principle (Corollary 2.5), it is enough to show that there
is no (G̃ , χ)-equivariant distribution ξ on any of the fibers of Δ which is above a
polynomial not satisfying the condition we gave on g. Let F be such a fiber lying above a
polynomial g(x) = g1(x)g2(x) with g1 , g2 coprime and of positive degree, satisfying
g1 ∣ g†

1 and g2 ∣ g†
2 (g1 = ±g∗1 and g2 = ±g∗2 in the Lie algebra case). If we are in the

group case and G = SO, we further assume that g1(x) = (x − 1)k for some k > 0. Let
d1 , d2 be the degrees of g1 , g2. Given A with characteristic polynomial g(x), one may
consider V1 , V2, its generalized eigenspaces associated with g1(x), g2(x), respectively.
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By Lemma 2.13, V1 , V2 are perpendicular to each other. Consider

Λ = {V1 , V2 ⊂ V ∣V = V1 ⊕ V2 , V1 ⊥ V2 , dim Vi = d i}

to be the space of decompositions of V as an orthogonal sum V1 ⊕ V2 to subspaces
of dimensions d1 , d2. There is a natural G̃-equivariant map ρ ∶ F → Λ. Consider the
stratification on Λ given by G-orbits. Note that these are the same as G̃-orbits. To show
that this is indeed a stratification, we must show that there are finitely many G-orbits.
Recall that there are finitely many isomorphism classes of sesquilinear forms of the
same type as B (symmetric, Hermitian, or symplectic) on a K-vector space of a given
dimension. If two elements in Λ share the isomorphism classes of the restrictions of
B to V1 , V2, then these isomorphisms can be extended orthogonally to an element of
G (in the case G = SO, it will only be an element of O. However, it is enough to prove
that there are finitely many O orbits). This implies that the two elements we had in Λ
are in the same G-orbit (O-orbit if G = SO). It follows that there are indeed finitely
many G-orbits, and so partition into orbits is a stratification.

Let S be the union of strata intersecting ρ(supp(ξ)), and let Ω be a stratum of the
largest dimension in it (we assume by contradiction that ξ ≠ 0, i.e., S is nonempty). It
is open in S, and so we may restrict ξ to ρ−1(Ω). Since Ω⊆S, this restriction is not the
zero distribution.

For the following, assume that we are not in the groups case where G = SO.
The action of G̃ on Ω is transitive by definition, and the stabilizer of a point in
Ω (call it H) is a subgroup of index 2 of G̃(V1) × G̃(V2), which is a unimodular
group (thus, it is also unimodular). H also contains G(V1) ×G(V2) as a subgroup
of index 2. Using Frobenius descent (Theorem 2.7) on ξ, we get an (H, χ)-equivariant
distribution on the fiber, which is a closed subspace of (G(V1) × V1) × (G(V2) × V2).
In particular, this distribution is G(V1) ×G(V2)-invariant. Hence, this distribution
is G̃(V1) × G̃(V2)-invariant by the induction hypothesis and Corollary 2.6 to the
Localization Principle. In particular, it is also H-invariant; thus, it is 0, in contradiction
to our assumption.

In the case G = SO, we have a similar situation. The action of S̃O(V) on Ω is
transitive, and the stabilizer of a point in Ω, which we will call H, is a unimodular
subgroup of index 4 inside Õ(V1) × Õ(V2). This group H contains SO(V1) × SO(V2)
as a subgroup of index 4, on which the character χ is trivial. Since the determinant of
an operator acting on V1 with characteristic polynomial g1(x) = (x − 1)k and on V2
with characteristic polynomial g2(x) is 1, we get that g2(0) = (−1)dim V2 . If dim V2 was
odd, it would imply that g†

2 = −g2, and in particular g2(1) = 0. By assumption, this is
not the case, and so we have that dim V2 must be even. It follows that

(−1)⌊
dim V1+1

2 ⌋(−1)⌊
dim V2+1

2 ⌋ = (−1)⌊
dim V1+1

2 ⌋+
dim V2

2 = (−1)⌊ dim V+1
2 ⌋ .

Take elements (g1 ,−1) ∈ S̃O(V1)/SO(V1) and (g2 ,−1) ∈ S̃O(V2)/SO(V2). From the
above, it follows that γ ∶= (g1 ⊕ g2 ,−1) is an element of (S̃O(V1) × S̃O(V2)) ∩ H,
on which χ gives −1. The fiber of ρ above (V1 , V2) is SO(V1) × SO(V2), because
any element in it acts with characteristic polynomial (x − 1)k on V1, and thus
has determinant 1 when restricted to it. It follows that the restriction to V2 also
has determinant 1. As before, we get that any (H, χ)-equivariant distribution on
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SO(V1) × SO(V2) is invariant to S̃O(V1) × S̃O(V2) (using the localization princi-
ple and the induction hypothesis). In particular, it is γ-invariant, and thus it is 0,
since χ(γ) = −1. Using Frobenius descent, we get that this implies ξ = 0, giving a
contradiction. ∎

We give the following theorem only in the Lie algebra case as this is what will be
used. However, it also holds in the group case, with the same proof.

Theorem 4.2 Assume that we are in the Lie algebra case. The polynomial g must be a
power of an irreducible polynomial.

Proof Again, we use the localization principle. Let F be the fiber above a polynomial
of the form g(x) = g1(x)g2(x) with g2 = ±g∗1 , and the two are coprime to each other.
(By Theorem 4.1, it is enough to consider this case.) Given A with characteristic
polynomial g(x), one may consider V1 , V2, its generalized eigenspaces associated with
g1(x), g2(x), respectively. By Lemma 2.13, V1 , V2 are both isotropic. Consider

Λ = {V1 , V2 ⊂ V ∣V = V1 ⊕ V2 , B∣V1 = 0, B∣V2 = 0, dim V1 = dim V2 =
dim V

2
} .

There is a natural G̃-equivariant map ρ ∶ F → Λ.
To see that G acts transitively on Λ, take (V1 , V2), (V ′1 , V ′2) ∈ Λ. Choose arbitrary

bases E1 , E′1 of V1 , V ′1 . We may take E2 to be the basis of V2 dual to E1 with respect
to the pairing between V1 , V2 induced by B. Similarly, we may take E′2. The linear
transformation which sends E1 to E′1 and E2 to E′2 preserves B, and thus it is an element
of G. So the actions of both G and G̃ on Λ are transitive, and the stabilizer inside G̃ of
a point in Λ is isomorphic to G̃L(V1), which is a unimodular group. Using Frobenius
descent (Theorem 2.7) on ξ, we get a (G̃L(V1), χ)-equivariant distribution on the fiber,
which is isomorphic to

gl(V1) × V1 × V2 ≅ gl(V1) × V1 × V∗1 .

By Theorem 2.19, this distribution must be equal to 0, and so is the original one. ∎
We formulate the next theorem only for the Lie algebra case, and g = sp, although

again it is also true for all the other cases.

Theorem 4.3 Consider the Lie algebra case of g = sp. In this case, the irreducible factor
of g is either linear or inseparable.

Proof Again, we use the localization principle. Let F be the fiber above a polynomial
g(x) = f (x)s with f irreducible, separable, of degree d > 1, and satisfying f ∗ ≠ ± f .
Given A with characteristic polynomial g(x), we may consider its additive Jordan
decomposition into semisimple and unipotent parts, As and Au (that is in virtue
of the characteristic polynomial being separable). Let Fs be the space of possible
As ’s, that is the space of semisimple elements of g with characteristic polynomial
g(x). We have a G̃-equivariant map θ ∶ F → Fs . By [11], Fs is a disjoint union of
finitely many G-orbits, all of the same dimension. By [10, Chapter 4, Proposition
1.2], for each point A ∈ Fs , there is an element in G̃/G which centralizes it (see the
details of this implication in Lemma 8.5). Thus, G-orbits in Fs are G̃-invariant. So
it is enough to show that, for any orbit O⊆Fs , any (G̃ , χ)-equivariant distribution

https://doi.org/10.4153/S0008414X2200027X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2200027X


Multiplicity one theorems over positive characteristic 1029

on θ−1(O) is 0. By Frobenius descent, this is equivalent to showing that, for some
A ∈O, any (G̃A, χ)-equivariant distribution on θ−1(A) is 0 (G̃A being the stabilizer of
A in G̃).

In order to prove this, let us describe the stabilizer of a point A in Fs . Let m ∶=
F[T]/ f (T). We define an F-linear involution of m by σ ∶ h(T) ↦ h∗(T) = h(−T)
(that is the same as saying T ↦ −T). Let m0 be the fixed subfield of this involution.
It is a subfield of m of index 2. Fix a nonzero F-linear functional � ∶ m → F which
satisfies that �(σ h) = �(h) for all h ∈ F. Any other F-linear functional can be written
as h ↦ �(λh) for some unique λ ∈ m. Being semisimple, f (A) must be equal 0. Thus,
V can be given the structure of a linear space over m, by hv ∶= h(A)v. Given v , v′ ∈ V ,
the map h ↦ ⟨h(A)v , v′⟩ is an F-linear functional m → F, and so can be written as
⟨h(A)v , v′⟩ = �(S(v , v′)h) for some S(v , v′) ∈ m. One may check that S(v , v′) is m-
sesquilinear (with respect to σ) considering V as a linear space over m by h ⋅ v ∶=
h(A)v. The form S is also nondegenerate, and satisfies S(v′, v) = −σS(v , v′). Fix a ∈ m
such that σ a = −a (e.g., a = T ∈ F[T]/ f (T)). Then it follows from the above that
aS(⋅, ⋅) is a nondegenerate Hermitian form on Vm (with respect to the involution
σ), where Vm is V as a linear space over m. To say that a linear automorphism of
V commutes with A is to say that it is m linear, and for such an automorphism to say
that it is in G(V) is to say that it preserves aS. Thus, we have that the centralizer of
A in G(V) can be described as U(Vm). Moreover, the stabilizer of A in G̃(V) can be
described as Ũ(Vm). Moreover, the centralizer of A inside g(v) can be described as
u(Vm).

Recall that we need to show that any (Ũ(Vm), χ)-equivariant distribution on
θ−1(A) is 0. The space θ−1(A) is identified with un(Vm) × Vm , un(Vm) being the
space of nilpotent elements in u(Vm). This in turn is a closed subspace of u(Vm) × V .
Thus, our claim follows from the fact that any (Ũ(Vm), χ)-equivariant distribution
on u(Vm) is 0, which follows from our induction hypothesis of Theorem 3.1, as
dim Vm < n. ∎

5 Separation of 1,−1 as eigenvalues, and passage to the Lie algebra

In this section, we pass from the group case to the Lie algebra case, showing that
Theorem 3.2 implies Theorem 3.1.

Definition 5.1 Let G(1) be the open subset of G consisting of elements of which 1 is
not an eigenvalue. Similarly, define G(−1) to be the open subset of elements of which
−1 is not an eigenvalue. Define also Ξ ∶= G/(G(1) ∪G(−1)), i.e., elements of which both
1,−1 are eigenvalues.

The following proposition is an immediate corollary of Theorem 4.1.

Proposition 5.2 To prove Theorem 3.1, it is enough to show that any (G̃ , χ)-equivariant
distribution on G(±1) × V is 0.

Definition 5.3 (Cayley transform) Define C1 ∶ G(1)(V) → g by C1(A) = I+A
I−A . Simi-

larly, define C−1 ∶ G(−1)(V) → g by C−1(A) = I−A
I+A .
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This definition makes sense since, for A ∈ G(1)(V),

( I + A
I − A

)
∗

= I + A∗

I − A∗
= I + A−1

I − A−1 =
A+ I
A− I

= − I + A
I − A

,

and similarly for C−1.

Definition 5.4 Let g0 be the subspace of g not having ±1 as eigenvalues.

Proposition 5.5 The maps C±1 are G̃-homeomorphisms from G(±1)(V) (respectively)
to g0, unless we are in the case G = SO, considering C1, and dim V is even. In this case,
SO(1)(V) = ∅.

Proof First, exclude the case G = SO. We will give the proof for C1. The proof for C−1
is similar. First, notice that indeed C1(A) does not have±1 as eigenvalues. If it did have,
then (I + A)v = ±(I − A)v, which leads to either v = 0 or Av = 0, and A is invertible.
Second, we construct an inverse, B ↦ B−I

B+I : One can see that the inverse map is indeed
into G(1), as

(B − I
B + I

)
∗

= B∗ − I
B∗ + I

= −B − I
−B + I

= B + I
B − I

= (B − I
B + I

)
−1

and also B−I
B+I cannot have 1 as an eigenvalue, as then (B − I)v = (B + I)v, and hence

v = 0. To see that we indeed constructed an inverse map,

I + B−I
B+I

I − B−I
B+I

= B + I + B − I
B + I − (B − I) =

2B
2I

= B,

I+A
I−A − I
I+A
I−A + I

= I + A− (I − A)
I + A+ I − A

= 2A
2I

= A.

There are similar arguments for C−1 showing it is a G̃-isomorphism to g0.
For the case G = SO, it simply holds that SO(−1) = O(−1), SO(1) = O(1) when dim V

is even, and SO(1) = ∅ when dim V is odd. ∎

Proposition 5.6 To prove Theorem 3.1, it suffices to show that any (G̃ , χ)-equivariant
distribution on g0 × V is 0.

Proof Use C±1. ∎

Proposition 5.7 Theorem 3.1 follows from Theorem 3.2.

Proof Take ξ to be a (G̃ , χ)-equivariant distribution on g0 × V . Assume by contra-
diction that it is not 0, and let (A0 , v0) be a point in its support. Let t = det((A0 −
I)(A0 + I)) ≠ 0. One can choose f ∈ S(K) s.t. f (t) ≠ 0, f (0) = 0. Note that g0 is an
open subset of g, and g(A) ∶= f (det((A− I)(A+ I))) is a locally constant function,
compactly supported inside g0. Thus, we can extend g ⋅ ξ to a (G̃ , χ)-equivariant
distribution on g × V with (A0 , v0) in its support. In particular, this distribution is
not 0, which creates a contradiction to our assumption. ∎
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6 An important lemma and automorphisms

Lemma 6.1 Any (G̃ , χ)-equivariant distribution on g × V is supported on g × Γ, where
Γ ∶= {v ∈ V ∣⟨v , v⟩ = 0}.

Proof We do not consider in the following the case g = sp, as in this case Γ = V and
there is nothing to prove. This proof is the same as the proof of [3, Proposition 5.2].
The idea is to consider the map g × V → K given by (A, v) ↦ ⟨v , v⟩, and apply the
localization principle (Corollary 2.5) to it to restrict to a fiber. Then apply Frobenius
descent (Theorem 2.7) on the projection on the second coordinate, to reach a point
where it is enough to show that any (G̃(V ′), χ)-equivariant distribution on g(V ′) is
0, for some subspace V ′⊆V of codimension 1. We have a decomposition g = g(V ′) ⊕
V ′ ⊕ E, with E being either a zero- or one-dimensional vector space overFwith trivial
G̃(V ′)-action, and so we can use the induction hypothesis to finish. ∎

Denote by ϕv the linear transformation u ↦ ⟨u, v⟩v.
The following definition will be relevant for the cases of u and sp.

Definition 6.2 For any λ ∈ K, requiring λ̄ = −λ if g = u, we define an automorphism
of g by νλ(A, v) ∶= (A+ λϕv , v). This is an automorphism of g as a space with a G̃
action.

The following definition will be relevant only for case of o.

Definition 6.3 For any λ ∈ F, define an automorphism of g × V by

μλ(A, v) ∶= (A+ λAϕv + λϕv A, v).

This is an automorphism of g × V as a space with a G̃ action.

Fix a fiber F of Δ ∶ g × V → K[x] at a polynomial f. Recall that we must have
f ∗(x) = (−1)n f (x). Choose a polynomial g ∈ K[x] coprime to f that also satisfies
g∗(x) = g(x)mod f (x). Then we can define the following definition.

Definition 6.4 Define an automorphism of F by ρg(A, v) = (A, g(A)v).

To show that it is invertible, notice that there is an “inverse” polynomial g−1

such that g g−1 = 1mod f . It also satisfies (g−1)∗(x) = g−1(x)mod f (x), as for some
polynomial a,

1 = ((g−1 g + a f ))∗(x) = (g−1)∗(x)g∗(x) + a∗(x) f ∗(x)
= (g−1)∗(x)g∗(x) + (−1)n a∗(x) f (x).

The last being equal to (g−1)∗(x)g(x) modulo f (x). This implies that we have ρg−1

which is inverse to ρg . To show that ρh commutes with the action of G̃, the only
nontrivial part is to show that it commutes with the action of an element x ∈ G̃/G.
Consider x as an element of EndF(V) satisfying ⟨xu, xw⟩ = ⟨w , u⟩ for any u, w ∈ V .
In particular, x satisfies axu = xāu for any a ∈ K, u ∈ V . To show commutation, we
need to show that −x g(A)v = g(−xAx−1)(−xv). This is true as

g(−xAx−1)(−xv) = −x g∗(A)x−1(xv) = −x g∗(A)v = −x g(A)v .
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For the last equation, we used the condition imposed on g, and the fact that
f (A) = 0.

Thus, we get that ρg is a G̃-automorphism of F.
In the case g = sp, we give the following lemma by using the automorphisms νλ to

amplify the restriction of Theorem 4.3.

Lemma 6.5 Assume that g = sp. Then any (G̃ , χ)-equivariant distribution on g × V
is supported on g × Γ1, where Γ1 ∶= {v ∈ V ∣⟨Av , v⟩ = 0}.

Proof Given A ∈ End(V), write the characteristic polynomial of A as

xn + c1(A)xn−1 + c2(A)xn−2 +⋯

with the convention that c0(A) = 1. Let (A, v) be a point in the support of a (G̃ , χ)-
equivariant distribution on g × V . From Theorem 4.3, we deduce that we have c1(A) =
nα and c2(A) = (n

2)α2 for some α ∈ F (if the characteristic polynomial is a power of a
linear polynomial this is clear, and if it is a power of an inseparable polynomial, then
we indeed have c1(A) = c2(A) = 0). Note that using this condition, c1(A) determines
uniquely c2(A). Now, we may translate by νλ and then apply the above condi-
tion to get c1(A+ λϕv) = nβ, c2(A+ λϕv) = (n

2)β2. However, by [9, Theorem A.2],
we have

c1(A+ λϕv) = c1(A) − ⟨v , v⟩

and

c2(A+ λϕv) = c2(A) − c1(A)⟨v , v⟩ − ⟨Av , v⟩.

Since ⟨v , v⟩ = 0, this is saying that c1(A+ λϕv) = c1(A), and hence β = α and so also
c2(A+ λϕv) = c2(A), and from the second equation c2(A+ λϕv) = c2(A) − ⟨Av , v⟩.
Thus, ⟨Av , v⟩ = 0. ∎

Definition 6.6 For any A ∈ g, denote

RA ∶= {v ∈ V ∣∀k ≥ 0, ⟨Akv , v⟩ = 0}.

Denote also

R = {(A, v) ∈ g × V ∣v ∈ RA}.

Proposition 6.7 Any (G̃ , χ)-equivariant distribution on g × V is supported on R.

Proof By the localization principle (Corollary 2.5), it is enough to show that any
(G̃ , χ)-equivariant distribution on a fiber F of Δ at a polynomial f is supported on
R ∩ F (note that R is G̃-invariant). Let ξ be such a distribution, and let (A, v) be a
point in supp(ξ). Let us start with the case of u.

Choose ω ∈ K× with ω̄ = −ω. Let g ∈ F[x] and consider g1(x) = g(x2) and g2(x) =
ωx g(x2). They satisfy g1(−x) = g1(x), g2(−x) = g2(x). Choose g such that g1 will be
coprime to f. We can apply ρg1 to ξ and extend back to g × V to get that by Lemma
6.1, ⟨g1(A)v , g1(A)v⟩ = 0. We know this for a Zariski dense subset of polynomials
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g ∈ F[x], and so for all g ∈ F[x]. The same goes for g2. So, in particular,

⟨A2kv , v⟩ = ⟨(A2k + I)v , (A2k + I)v⟩ − ⟨A2kv , A2kv⟩ − ⟨v , v⟩
2

= 0

⟨A2k+1v , v⟩ =ω−1⟨ωA2k+1v , v⟩ = ω−1

2
(⟨(ωA2k+1 + I)v , (ωA2k+1 + I)v⟩

− ⟨ωA2k+1v , ωA2k+1v⟩ − ⟨v , v⟩) = 0.

Note that indeed it follows from A∗ = −A that ⟨A2kv , v⟩ = ⟨v , A2kv⟩ and that
⟨ωA2k+1v , v⟩ = ⟨v , ωA2k+1v⟩.

Now, for the case of o, we still have g1, and the same proof as before shows that
⟨A2kv , v⟩ = 0. However, it is always true that

⟨A2k+1v , v⟩ = ⟨v ,−A2k+1v⟩ = −⟨A2k+1v , v⟩,

and hence ⟨A2k+1v , v⟩ = 0.
For the case of sp, we use the same technique but to the condition imposed from

Lemma 6.5. This way we get that for a Zariski dense subset of F[x] (and thus for all
g ∈ F[x]) that ⟨Ag(A2)v , g(A2)v⟩ = 0. From this, we are able to get

⟨A2k+1v , v⟩ = 1
2
(⟨A(A2k + I)v , (A2k + I)v⟩

− ⟨A ⋅ A2kv , A2kv⟩ − ⟨Av , v⟩) = 0.

Moreover, it is always true that

⟨A2kv , v⟩ = ⟨v , A2kv⟩ = −⟨A2kv , v⟩,

and hence ⟨A2kv , v⟩ = 0. ∎
Lemma 6.8 Given (A, v) ∈ R, we have:
(i) For any λ ∈ K for which νλ is defined, Δ(νλ(A, v)) = Δ(A, v).

(ii) For any λ ∈ F, Δ(μλ(A, v)) = Δ(A, v).
Proof For Δ(νλ(A, v)), this follows directly from Proposition 2.17. For Δ(μλ(A, v)),
this also follows from Proposition 2.17, but with an iterative use.

Since ⟨Ak Av , v⟩ = 0 for all k ≥ 0, Δ(A) = Δ(A+ Aϕv). To prove that we also have
Δ(A+ Aϕv) = Δ(A+ Aϕv + ϕv A), we must check that ⟨(A+ Aϕv)kv , A∗v⟩ = 0 for all
k ≥ 0. Now, for any k ≥ 0, we have ϕv Akv = ⟨Akv , v⟩v = 0, so

⟨(A+ Aϕv)kv , A∗v⟩ = ⟨Akv , A∗v⟩ = ⟨Ak+1v , v⟩ = 0.
∎

7 Stratification

For any g ∈ K[x]which is a power of an irreducible polynomial, let Yg be the subspace
of g consisting of elements with characteristic polynomial g. By the localization
principle (Corollary 2.5), the previous reformulations, and Theorem 4.2, it is enough
to prove that any (G̃ , χ)-equivariant distribution on Δ−1(g) = Yg × V is 0, for any g as
above. Let us fix g and prove this claim for it.

We proceed similarly to [3, 9]. The strategy will be to stratify Yg and restrict stratum
by stratum the possible support for a (G̃ , χ)-equivariant distribution (note that Yg is
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a union of finitely many G̃ orbits). For the unitary case, choose ω ∈ K s.t. ω̄ = −ω (in
the symplectic case denote ω = 1). For λ ∈ F, denote by ηλ either νλω or μλ , depending
on which case we are in.

Notation 7.1 Denote by Pi(g) the union of all G̃-orbits of Yg of dimension at most i,
and let R i(g) ∶= R ∩ (Pi(g) × V). Moreover, for any open G̃-orbit O of Pi(g), set

Õ ∶= (O × V) ∩ ⋂
λ∈F

η−1
λ (R i(g)).

Note that Pi(g) are Zariski closed inside Yg , Pk(g) = Yg for k big enough, and
P−1(g) = ∅.

We denote by FV the Fourier transform on V with respect to the nondegenerate F-
bilinear form (u, v) ↦ trK/F(⟨u, v⟩). It will also be used to denote the partial Fourier
transform on V when applied to X × V for some space X. In the cases of g = o and g =
u, FV commutes with the action of G̃. In the case of g = sp, it is not true. Instead, the
action on G̃ after applyingFV is compatible with the action of G̃ on V by (g , δ).v ∶= gv
(recall that the usual action of G̃ on V is by (g , δ).v ∶= δgv). Since−1 ∈ Sp, we still have
that Fourier transform maps S∗(X × V)H ,τ into itself for any X⊆sp, any subgroup H
of S̃p containing −1, and any τ ∈ {1, χ}.

Claim 7.2 Let g ∈ K[x] be a polynomial which is a power of an irreducible poly-
nomial f satisfying f = ± f ∗. Let O be an open G̃-orbit of Pi(g). Suppose that ξ is a
(G̃ , χ)-equivariant distribution on O × V such that

supp(ξ)⊆Õ

and

supp(FV(ξ))⊆Õ .

Then ξ = 0.

This claim will be proved in the next section.
Let us now show how it implies the main theorems. Recall that Theorem 3.2, which

states that any (G̃ , χ)-equivariant distribution on g × V is 0, implies Theorems 1.2 and
1.4. This is by virtue of Theorem 5.7 and what is shown in Section 3.

Proof of Theorem 3.2 We prove the following claim by downward induction—any
(G̃ , χ)-equivariant distribution on Δ−1(g) is supported inside R i(g). This claim for i
big enough follows from Proposition 6.7, and the claim for i = −1 implies Theorem 3.2
by the localization principle (Corollary 2.5) and Proposition 4.2, as already explained
in the top of this section. For the induction step, take such a distribution ξ. As
Pi(g)/Pi−1(g) is a disjoint union of open orbits, it is enough to show that the
restriction of ξ to any O × V , where O is an open orbit of Pi(g), is zero. Let ζ = ξ∣O×V
be such a restriction. By the induction hypothesis applied to ηλ(ξ), we know that
supp(ζ)⊆Õ and similarly supp(FV(ζ))⊆Õ. Hence, by Claim 7.2, ζ = 0. ∎
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8 Handling a single stratum—proof of Claim 7.2

8.1 Nice operators

This subsection closely follows [3, Section 6] and [9, Section 4.3], but we give it here
for completeness.
Notation 8.1 For A ∈ gl(V), set, in the cases g = u, sp,

QA ∶= {v ∈ V ∣ϕv ∈ [A, g(V)]}.

In the case g = o, set

QA ∶= {v ∈ V ∣Aϕv + ϕv A ∈ [A, g(V)]}.

Here, [B, C] ∶= BC − CB is the Lie bracket, and [A, g(V)] = {[A, B]∣B ∈ g(V)}.
Proposition 8.2 If (A, v) ∈ Õ, then v ∈ QA.
Proof Consider a point (A, v) ∈ Õ. The Zariski tangent space to O at A is [A, g(V)].
Denote by Aλ the operator A+ λωϕv in the unitary case, A+ λϕv in the symplectic
case, or A+ λ(Aϕv + ϕv A) in the orthogonal case. Since Aλ is contained in O for
λ small enough (as ηλ keeps A inside Pi(g), in which O is open), we get that ϕv ∈
[A, g(V)] (or Aϕv + ϕv A ∈ [A, g(V)] in the orthogonal case). ∎
Theorem 8.3 Unless we are in the case g = o and the characteristic polynomial of A is
equal to xn , we have QA⊆RA. In this case, we still have ⟨Akv , v⟩ = 0 for any v ∈ QA and
k ≥ 1.
Proof For the unitary and symplectic cases: Assume that ϕv = [A, B], for some B ∈
G. Then

⟨Akv , v⟩ = trAk ϕv = tr[A, Ak B] = 0.

For the orthogonal case: Assume that Aϕv + ϕv A = [A, B], for some B ∈ G. Then

trAk Aϕv = trAk ϕv A = tr(Ak+1ϕv + Ak ϕv A)
2

= trAk(AB − BA)
2

= tr[A, Ak+1B]
2

= 0.

Now, trAk Aϕv = ⟨Ak+1v , v⟩, so we know for any k ≥ 1 that ⟨Akv , v⟩ = 0. If the char-
acteristic polynomial g (which is a power of an irreducible polynomial) is not a
power of x, then there is a polynomial h(A) s.t. Ah(A) = Id. This implies that ⟨v , v⟩ =
⟨Ah(A)v , v⟩ = 0, and so v ∈ RA. ∎
Notation 8.4 Let A ∈ g. We denote by CA the stabilizer of A in G and by C̃A the
stabilizer of A in G̃.
Lemma 8.5 For any A ∈ g, C̃A ≠ CA.
Proof We give here the proof for all cases except G = SO. The proof for G = SO
is given in Appendix B. By [10, Chapter 4, Proposition 1.2], There exists an F-linear
map T ∶ V → V which satisfies TAT−1 = −A, such that, for any u, v ∈ V , we have that
⟨Tu, Tv⟩ = ⟨v , u⟩ (this condition implies that sλu = λu). Consider s = (T ,−1) as an
element of G̃. Then s.A = −TAT−1 = A. Thus, s ∈ C̃(A)/CA. ∎
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Thus, the G̃-orbit of A is equal to its G-orbit. It is known that CA is unimodular, and
hence C̃A is also unimodular. Claim 7.2 follows now from Frobenius descent (Theorem
2.7), Proposition 8.2, and the following proposition.

Proposition 8.6 Let A ∈ g. Let η ∈ S∗(V)CA . Suppose that both η and FV(η) are
supported in QA. Then η ∈ S∗(V)C̃A .

Definition 8.7 Call an element A ∈ g “nice” if the previous proposition holds for A.
Namely, A is “nice” if any distribution η ∈ S∗(V)CA such that both η and F(η) are
supported in QA is also C̃A-invariant.

Lemma 8.8 Let A1 ∈ g(V1) and A2 ∈ g(V2) be nice. Then A1 ⊕ A2 ∈ g(V1 ⊕ V2) is
nice.

Proof See the proof of [3, Lemma 6.3]. ∎

8.2 A “simple” operator is nice

Using the classification of Proposition 2.15, we need to check that simple nonsplit,
simple even nilpotent, and simple odd nilpotent blocks are nice (recall that we
assumed the characteristic polynomial of our original operator to be a power of an
irreducible polynomial, and thus we need not check simple split operators). Let A be
a block of one of these types. Let s = (T ,−1) be an element of C̃A with χ(s) = −1. We
have A = s.A = −TAT−1, and so TA = −AT . We need to prove the following claim for
each of the possible block types.

Claim 8.9 Let ξ be a CA-invariant distribution on V, such that both ξ and F(ξ) are
supported on QA. Then ξ is also s-invariant.

We shall prove this claim in the following subsections. This claim implies
Claim 7.2.

8.2.1 Simple nonsplit blocks

Assume that A is a simple nonsplit block with minimal polynomial f d , f irreducible,
and f ∗ = ± f . If we are in the case g = o, assume also that f (x) ≠ x. We know by Propo-
sition 8.3 that QA⊆RA. Consider the self-dual increasing filtration V i = ker f (A)i .
One can easily see that RA = V ⌊d/2⌋. The fact that F(ξ) is supported on V ⌊d/2⌋ means
that ξ is invariant to shifts by (V ⌊d/2⌋)⊥ = V ⌈d/2⌉. Now, consider two cases:
(1) d is odd. Then V ⌊d/2⌋ ⊊ V ⌈d/2⌉. Choosing a vector v ∈ V ⌈d/2⌉/V ⌊d/2⌋, we get that ξ

is the same as ξ shifted by v, and that it is supported on V ⌊d/2⌋ ∩ (v + V ⌊d/2⌋) = ∅,
and thus ξ = 0.

(2) d is even. Then V ⌊d/2⌋ = V ⌈d/2⌉ = V d/2. Thus, ξ is the extension by 0 of ξ∣V d/2 ,
which is a shift invariant distribution on V d/2. Thus, it is a multiple of the
Lebesgue measure on V d/2. So it is left to check that if the Lebesgue measure
ζ on V d/2 is CA invariant it is also s-invariant. For this, first check that V d/2 is
T-invariant (and so s invariant):

TV d/2 = T f (A)d/2V = f̄ (TAT−1)d/2TV = f̄ (−A)d/2V = f (A)d/2V = V d/2 .
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So s multiplies ζ by a constant c, which is positive, because s preserves the
positivity of the Lebesgue measure. Since s2 ∈ CA, we have by assumption s2ζ = ζ.
So unless ζ = 0, c2 = 1, hence by positivity c = 1, and we are done.

8.2.2 Simple nonsplit nilpotent blocks in the orthogonal case

Note that a simple nonsplit nilpotent block is such that V has a basis of the form
e , Ae , . . . , Ad−1e, the minimal polynomial of A is equal to xd , and for some nonzero
constant c ∈ F,

⟨Ai e , A j e⟩ =
⎧⎪⎪⎨⎪⎪⎩

(−1) jc, i + j = d − 1,
0, otherwise.

Note that this implies that d must be odd. Let A be such a block. Denote

V1 ∶=Span(e , . . . , A(d−3)/2e),

V2 ∶=Span(A(d−1)/2e),

V3 ∶=A(d+1)/2V = Span(A(d+1)/2e , . . . , Ad−1e).

Then, by Theorem 8.3, QA⊆V2 ⊕ V3. So ξ is supported on V2 ⊕ V3, and is invariant to
shifts by (V2 ⊕ V3)⊥ = V3. So it is of the form δ1 ⊗ R ⊗ dv3, where dv3 is the Lebesgue
measure on V3, δ1 is the Dirac measure at 0 on V1, and R is some distribution on V2.
Since it is enough to prove our claim for any valid choice of s = (T ,−1) ∈ C̃A, we may
simply take T(Ai e) = (−1)(d+1)/2+i Ai e. Then s acts on V by Ai e ↦ (−1)(d−1)/2+i Ai e.
The spaces V1 , V2 , V3 are s invariant, and s acts on V2 by identity. It is also clear that
dv3 , δ1 are s-invariant. Thus, ξ is s invariant, and we are done.

8.2.3 Simple even nilpotent blocks

Let A ∈ o be a simple even nilpotent block. Denote

E ∶= Span(e , Ae , . . . , Ad−1e)

and

F ∶= Span( f , Af , . . . , Ad−1 f ).

Denote also

E1 ∶= Span(e , Ae , . . . , Ad/2−1e), E2 ∶= Span(Ad/2e , Ad/2+1e , . . . , Ad−1e)

and

F1 ∶= Span( f , Af , . . . , Ad/2−1 f ), F2 ∶= Span(Ad/2 f , Ad/2+1 f , . . . , Ad−1 f ).

Let P ∶ V → V be defined by PAi e = Ai f , PAi f = Ai e. So PA = AP. For any two
vectors u, w ∈ V , define the linear operator ϕu ,wv ∶= ⟨v , w⟩u. For any X ∈ End(V),
denote by X∣E the linear operator from E to itself which sends v ∈ E to uE ,
where Xv = uE + uF and we have uE ∈ E , uF ∈ F. Let v ∈ QA. By definition, we have
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Aϕv ,v + ϕv ,v A = [A, B] for some B ∈ g. We have

(P(Aϕv ,v + ϕv ,v A))∣E =(P[A, B])∣E = (PAB − PBA)∣E = (APB − PBA)∣E
=[A∣E , (PB)∣E].

The last equation following from the fact that A preserves E and F. From this, it follows
that, for any k ≥ 0,

tr((P(Aϕv ,v + ϕv ,v A)Ak)∣E) =tr([A∣E , (PB)∣E](A∣E)k)
=tr([A∣E , (PB)∣E(A∣E)k]) = 0.

However,

tr((PAϕv ,v Ak)∣E) =tr((APϕv ,v Ak)∣E) = tr(A∣E(Pϕv ,v Ak)∣E)
=tr((Pϕv ,v Ak)∣E A∣E) = tr((Pϕv ,v Ak+1)∣E).

So this expression is equal to half of the left-hand side of the previous equation,
and so

tr((Pϕv ,v Ak+1)∣E) = 0.

However,

tr((Pϕv ,v Ak+1)∣E) = tr(ϕPv ,(−A)k+1v ∣E) = tr(ϕPvF ,(−A)k+1vF )⟨PvF , (−A)k+1vF⟩,

where v = vE + vF , vE ∈ E , vF ∈ F. Thus, for any k ≥ 1, we have ⟨Ak PvF , vF⟩ = 0. Sim-
ilarly, ⟨Ak PvE , vE⟩ = 0. This implies v ∈ E2 ⊕ F2. Thus, if ξ is a distribution as in the
statement of Claim 8.9, it must be supported on E2 ⊕ F2 and invariant to translations
by (E2 ⊕ F2)⊥ = E2 ⊕ F2. Thus, it is equal to a multiple of the Lebesgue measure on
E2 ⊕ F2. As it is enough to prove the claim for any specific choice of s = (T ,−1) ∈ C̃A,
we can choose T to be

Ai e ↦ (−1)i Ai e , Ai f ↦ (−1)i+1Ai f .

For this choice, s acts by Ai e ↦ (−1)i+1Ai e , Ai f ↦ (−1)i Ai f , and so fixes ξ as
desired.

8.2.4 Simple odd nilpotent blocks

Let A ∈ sp be a simple odd nilpotent block. Denote

E ∶= Span(e , Ae , . . . , Ad−1e)
and

F ∶= Span( f , Af , . . . , Ad−1 f ).

Denote also

E1 ∶=Span(e , Ae , . . . , A
d−3

2 e),

E2 ∶=Span(A
d−1

2 e),

E3 ∶=Span(A
d+1

2 e , . . . , Ad−1e),
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and

F1 ∶=Span( f , Af , . . . , A
d−3

2 f ),

F2 ∶=Span(A
d−1

2 f ),

F3 ∶=Span(A
d+1

2 f , . . . , Ad−1 f ).

The following is done similarly to the previous case, of simple even nilpotent blocks.
Let P ∶ V → V be defined by PAi e = Ai f , PAi f = Ai e. So PA = AP. For any two
vectors u, w ∈ V , define the linear operator ϕu ,wv ∶= ⟨v , w⟩u. For any X ∈ End(V),
denote by X∣E the linear operator from E to itself which sends v ∈ E to uE , where Xv =
uE + uF and we have uE ∈ E , uF ∈ F. Let v ∈ QA. By definition, we have ϕv ,v = [A, B]
for some B ∈ g. We have

(Pϕv ,v)∣E =(P[A, B])∣E = (PAB − PBA)∣E = (APB − PBA)∣E
=[A∣E , (PB)∣E].

From this, it follows that, for any k ≥ 0,

tr((Pϕv ,v Ak)∣E) =tr([A∣E , (PB)∣E](A∣E)k)
=tr([A∣E , (PB)∣E(A∣E)k]) = 0.

However,

tr((Pϕv ,v Ak)∣E) = tr(ϕPv ,(−A)k v ∣E) = ⟨PvF , (−A)kvF⟩,

where v = vE + vF , vE ∈ E , vF ∈ F. Thus, for any k ≥ 0, we have ⟨Ak PvF , vF⟩ = 0.
Similarly, ⟨Ak PvE , vE⟩ = 0. This implies v ∈ E3 ⊕ F3. Thus, if ξ is an equivariant
distribution as in the statement of Claim 8.9, it must be supported on E3 ⊕ F3 and
invariant to translations by (E3 ⊕ F3)⊥ = E2 ⊕ E3 ⊕ F2 ⊕ F3. This clearly implies that
ξ = 0.

A Conjugacy classes and “simple” elements in the orthogonal and
unitary groups

Our goal in this appendix is to prove Proposition 2.15. We will focus on the classifica-
tion of G-conjugacy classes inside g, although most of the work, if not all of it, applies
also for conjugacy classes in G(V). The classification will be in three parts. The first
is, using Lemma 2.13, to separate the different nonrelated eigenvalues, the second is to
separate the different sizes of rational (or Jordan) blocks, and the third is to separate
blocks of the same size one from the other.

A.1 Separating nonrelated eigenvalues

Recall Definition 2.11.
Lemma 2.13 has the following corollary, using also Theorem 2.10.

Corollary A.1 Any A ∈ g splits to a direct orthogonal sum of block of two types:
(A) simple split blocks;
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(B) blocks of which the characteristic polynomial is f d , and f is irreducible and satisfies
f ∗ = ± f .

Now, we continue with the classification of blocks of Type (B).

A.2 Classifying blocks of Type (B)

Let A ∈ g(V) be a block of Type (B), with minimal polynomial f d , f irreducible and
satisfying f = ± f ∗.

Definition A.2 An operator X ∈ g(W) (for some W) which is of Type (X) will be
called homogeneous if, for any 0 ≤ j ≤ d, we have f (X) jV = ker f (X)d− j . That is
equivalent to saying that the rational canonical form of X consists of blocks all of the
same size.

We dedicate this subsection to proving the following proposition.

Proposition A.3 V can be decomposed as an orthogonal sum V = ⊕d
i=1 U i , and

accordingly A = ⊕d
i=1 A i , such that each A i is homogeneous.

Consider the decreasing filtration f (A)i V of V, and the increasing filtration Vi =
ker f (A)i . We have f (A)i V ⊆ Vd−i , and V⊥i = f (A)i V . Let m be the minimal integer
so that Vm ⊊ f (A)V . For any 0 ≤ i ≤ m − 1, we have f (A)i Vm = Vm−i .

Lemma A.4 For any 0 ≤ i ≤ d, V⊥i = f (A)i V.

Proof Obviously, f (A)i V⊆V⊥i . However,

dim f (A)i V = dim V − dim Ker( f (A)i) = dim V − dim Vi = dim V⊥i .

Thus, we have V⊥i = f (A)i V . ∎

Lemma A.5 The form B on V induces a nondegenerate pairing of
f (A)i Vm/ f (A)i+1Vm+1 with f (A)m−i−1Vm/ f (A)m−i Vm+1.

Proof Let v ∈ f (A)i Vm = Vm−i , and assume that v ⊥ f (A)m−i−1Vm = Vi+1.
Then v ∈ V⊥i+1 ∩ Vm−i = f (A)i+1V ∩ Vm−i = f (A)i+1Vm+1. The other direction is
symmetric. ∎

Proof of Proposition A.3 One can naturally give Vm/ f (A)Vm+1 the structure of
a vector space over the field L ∶= K[A]/ f (A). Choose e1 , . . . , ek ∈ Vm which are
the lifts of a basis of Vm/ f (A)Vm+1 over L, and let Um ∶= Span(Ai e j)⊆Vm . We
claim that, for any relation of the form h1(A)e1 +⋯+ hk(A)ek + f (A)rv = 0, with
v ∈ V , all the polynomials h i are divisible by f (A)min(m ,r). To see this, assume
otherwise, and rewrite this relation as f (A)�( f (A)r−�v +∑k

i=1 h̃ i(A)e i) = 0, where
at least one of the polynomials h̃ i(A) is not divisible by f (A). Since � < m, we have
∑k

i=1 h̃ i(A)e i ∈ V� + f (A)V = f (A)V , and thus ∑k
i=1 h̃ i(A)e i is a nontrivial relation

in Vm/ f (A)Vm+1 over L, which is a contradiction. From this claim, it follows that
the map f (A)iUm/ f (A)i+1Um → f (A)i Vm/ f (A)i+1Vm+1 is an isomorphism. Thus,
the form B on V induces a nondegenerate pairing of f (A)i Um/ f (A)i+1Um+1 with
f (A)m−i−1Um/ f (A)m−iUm+1. In particular, its restriction to Um is nondegenerate.
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So Um splits as an A-invariant orthogonal direct summand of V. The restriction of A
to Um is a homogeneous block because

f (A) jUm = f (A) jVm ∩Um = Vm− j ∩Um = ker f (A∣Um)m− j .

Because of the choice of m, dim Um > 0. Furthermore, on V ′ ∶= U⊥m , the minimal m′
s.t. V ′m′ ⊊ f (A)V ′ is bigger than m. So, by induction, we are done. ∎

A.3 Decomposing homogeneous blocks to simple nonsplit blocks

Lemma A.6 Given a nonzero symmetric, Hermitian, or skew-Hermitian form on a
vector space V, there is a non-isotropic vector.

Proof Assume that ⟨v , v⟩ = 0 holds for any V. Then

0 = ⟨u + v , u + v⟩ − ⟨u, u⟩ − ⟨v , v⟩ = ⟨u, v⟩ + ⟨v , u⟩.
Thus, the form is skew-symmetric, which contradicts our assumptions. ∎
Corollary A.7 Any homogeneous operator decomposes as the direct orthogonal sum
of simple nonsplit blocks, unless it is in the o case and its minimal polynomial is xd for
some even d, or it is in the sp case and its minimal polynomial is xd for some odd d. In
these cases, it decomposes as the direct sum of simple even nilpotent blocks (resp. simple
odd nilpotent blocks).

Proof Assume that we are neither in the symplectic case nor in the even nilpotent
orthogonal case which was excluded. Define a nondegenerate sesquilinear form on
U ∶= V/ f (A)V by ⟨u, v⟩U ∶= ⟨ f (A)d−1u, v⟩V . If we are in the unitary case, then it is
either Hermitian or skew-Hermitian, depending on whether ( f d−1)∗ = f d−1 ( f d−1 is
of even degree), or ( f d−1)∗ = − f d−1 ( f d−1 is of odd degree). If we are in the orthogonal
case, ( f d−1)∗ = f d−1, and so this bilinear form is symmetric. So there is a nonisotopic
vector in U, which means that there is a vector v ∈ V such that ⟨ f (A)d−1v , v⟩ = λ ≠ 0.
Let V0 = Span(v , Av , A2v , . . . ). It is an A-invariant space, to which the restriction of
the form B is nondegenerate. It is also generated by one vector (v). By induction, we
are done.

In the symplectic case which is not the case excluded, we have a similar proof.
Again, define a bilinear form on U ∶= V/ f (A)V . If the minimal polynomial is xd

for d even, define as before ⟨u, v⟩U ∶= ⟨Ad−1u, v⟩, and it will be a symmetric form.
Otherwise, A is invertible and we set ⟨u, v⟩U ∶= ⟨Af (A)d−1u, v⟩. Again this bilin-
ear form is symmetric. The rest of the proof follows the same, with noticing that
⟨Af (A)d−1v , v⟩ ≠ 0 implies that V0 ∩ V⊥0 = 0 for V0 = Span(v , Av , A2v , . . . ).

In the orthogonal case, if the minimal polynomial is xd for d even (resp.
the symplectic case and d odd), the bilinear form ⟨u, v⟩U ∶= ⟨Ad−1u, v⟩ on U is
skew-symmetric. Take u1 , u2 ∈ U s.t. ⟨u1 , u2⟩U = 1. Lift them to v1 , v2 ∈ V , and Take
V0 = Span(v1 , Av1 , A2v1 , . . . ) ⊕ Span(v2 , Av2 , A2v2 , . . . ) (note that this sum is indeed
direct). V0 is A-invariant, and V⊥0 ∩ V0 = 0. Now, we are left to show that V0 is a simple
even nilpotent block (resp. simple odd nilpotent block). The first step is to show that
we can alter the lifts of u1 , u2 to v1 , v2 (from V0/AV0 to V0) such that ⟨A jv1 , v1⟩ = 0
for all j. (We will show it for v1, but it is exactly the same for v2.) For odd (resp.
even) j, this holds automatically. We assume for the following that v2 is any lift of
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u2 (the important property is that ⟨Ad−1v1 , v2⟩ = 1). If m is the minimal integer such
that ⟨Ad−mv1 , v1⟩ ≠ 0, we can add a multiple of Am−1v2 to v1 to fix that, as

⟨Ad−m(v1 + λAm−1v2), v1 + λAm−1v2⟩
=⟨Ad−mv1 , v1⟩ + 2λ⟨Ad−1v2 , v1⟩ − λ2⟨Ad+m−2v2 , v2⟩
=⟨Ad−mv1 , v1⟩ − 2λ,

⟨Ad−i(v1 + λAm−1v2), v1 + λAm−1v2⟩ = ⟨Ad−iv1 , v1⟩ = 0

for any i < m, and

⟨Ad−1(V1 + λAm−1v2), v2⟩ = ⟨Ad−1v1 , v2⟩ = 1.

Notice that m must be even and m ≥ 2. So, by applying this consecutively, we
may change the lift of v1 (and similarly v2) in the desired way (notice that indeed
we changed it only by vectors in AV0). Now, all that is left is to again change
v1 , v2 so that ⟨Akv1 , v2⟩ = 0 for any k < d − 1. For this, simply choose a vector ṽ2
which is orthogonal to v1 , Av1 , A2v1 , . . . , Ad−2v1 , v2 , Av2 , . . . , Ad−1v2 and such that
⟨Ad−1v1 , v2⟩ = 1. Note that the vector v2 − ṽ2 is perpendicular to the subspace V2 ∶=
Span(v2 , Av2 , . . . , Ad−1v2), and so v2 − ṽ2 ∈ V⊥2 = V2. This implies that, for all k ≥
0, ⟨Ak ṽ2 , ṽ2⟩ = 0. Moreover, v2 − ṽ2 is perpendicular to Ad−1V0, and so v2 − ṽ2 ∈
AV2. Thus, we can replace v2 with ṽ2, and all of the needed conditions will be
satisfied. ∎

The above immediately implies Proposition 2.15.

B On the centralizers in ̃SO

In this appendix, we prove Theorem 8.5 for the case of G = SO(V). We need to show
that there exists an element T ∈ O(V) such that TAT−1 = −A and det T = (−1)⌊ n+1

2 ⌋.
Assume the decomposition of Proposition 2.15. It is enough to prove Theorem 8.5
for each of the blocks, as then taking the direct sum of the elements Ti found gives
an element T ∈ O(V) with TAT−1 = −A. If all of the dimensions of the blocks n i
are even, then det(⊕Ti) = ∏det Ti = (−1)∑ n i/2 = (−1)n/2. Otherwise, there is an
odd block, and by replacing Ti by −Ti if needed, we can control the sign of the
determinant to be as we wish. Now, we need to check each of the simple block
types.

B.1 Simple split blocks

We have V = V ′ ⊕ V ′∗, with the natural symmetric bilinear form coming from the

pairing. A = [A′ 0
0 −A′∗]. By the well-known theorem claiming that any square matrix

(over any field and of any dimension) is conjugate to its transpose, there is an iso-

morphism B ∶ V ′∗ → V ′ such that BA′∗B−1 = A′. Taking T = [ 0 B
(B∗)−1 0] ∈ O(V),
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we get

TAT−1 = [ 0 B
(B∗)−1 0] [

A′ 0
0 −A′∗] [

0 B∗
B−1 0 ] = [

0 −BA′∗
(B∗)−1A′ 0 ] [ 0 B∗

B−1 0 ]

= [−BA′∗B−1 0
0 (B∗)−1A′B∗] = [

−A′ 0
0 A′∗] = −A.

Furthermore, det T = (−1)dim V ′ = (−1)dim V/2.

B.2 Simple nonsplit blocks

We have V = Span(e , Ae , A2e , . . . ) for some e ∈ V . Define T ∶ V → V by T(g(A)e) =
g(−A)e. It is well defined since g is well defined modulo f (A)d , and f (−A) = ± f (A).
T is an element of O(V), as

⟨g(−A)e , h(−A)e⟩ = ⟨e , g(A)h(−A)e⟩ = ⟨h(−A)g(A)e , e⟩ = ⟨g(A)e , h(A)e⟩.

Clearly, TAT−1 = −A. Moreover, det T = (−1)⌊n/2⌋, which is what we wanted in the
nonnilpotent case (where n is even), and in the nilpotent case (where n is odd), we
may replace T by −T if needed, in order to achieve the desired sign of the determinant
of T.

B.3 Simple even nilpotent blocks

We can choose T(Ai e) = (−1)i Ai e and T(Ai f ) = (−1)i+1Ai f . It clearly satisfies
TAT−1 = −A and T ∈ O(V). It only remains to note that det T = (−1)dim V/2, which
is exactly what we wanted.
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