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The pivotal roles of regulatory jurisdictions in the feed additive sector cannot be over-emphasized. In the European Union (EU),
antioxidant substances are authorized as feed additives for prolonging the shelf life of feedstuffs based on their effect for
preventing lipid peroxidation. However, the efficacy of antioxidants transcends their functional use as technological additives in
animal feeds. Promising research results have revealed the in vivo efficacy of dietary antioxidants for combating oxidative
stress in production animals. The in vivo effect of antioxidants is significant for enhancing animal health and welfare. Similarly,
postmortem effect of dietary antioxidants has been demonstrated to improve the nutritional, organoleptic and shelf-life qualities of
animal products. In practice, dietary antioxidants have been traditionally used by farmers for these benefits in livestock production.
However, some antioxidants particularly when supplemented in excess could act as prooxidants and exert detrimental effects on
animal well-being and product quality. Presently, there is no exclusive legislation in the EU to justify the authorization of
antioxidant products for these in vivo and postmortem efficacy claims. To indicate these efficacy claims and appropriate dosage on
product labels, it is important to broaden the authorization status of antioxidants through the appraisal of existing EU legislations
on feed additives. Such regulatory review will have major impact on the legislative categorization of antioxidants and the efficacy
assessment in the technical dossier application. The present review harnesses the scientific investigations of these efficacy
claims in production animals and, proposes potential categorization and appraisal of in vivo methodologies for efficacy assessment
of antioxidants. This review further elucidates the implication of such regulatory review on the practical application of
antioxidants as feed additives in livestock production. Effecting these regulatory changes will stimulate the innovation of more
potent antioxidant products and create potential new markets that will have profound economic impacts on the feed additive
industry. Based on the in vivo efficacy claims, antioxidants may have to contend with the legislative controversy of either to be
considered as veterinary drugs or feed additives. In this scenario, antioxidants are not intended to diagnose or cure
diseases as ascribed to veterinary products. This twisted distinction can be logically debated with reference to the stipulated
status of feed additives in Commission Regulation (EC) No 1831/2003. Nonetheless, it is imperative for relevant stakeholders
in the feed additive industry to lobby for the review of existing EU legislations for authorization of antioxidants for these
efficacy claims.
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Implications

A multitude of studies have shown that dietary antioxidants
can alleviate oxidative stress in livestock and improve the
quality of animal products. This review highlights the need
for appraisal of feed additive legislations in the European
Union to exclusively ascribe these efficacy claims to the
authorization of antioxidants. This will give broader and† E-mail: sayodeji14@yahoo.com
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defined marketing perspectives to the uses of antioxidants
with consequent impacts on the feed additive industry and
market. Inclusion of these claims and required dosages on
product labels will better guide feed manufacturers, nutri-
tionists and livestock producers in their purchasing decisions
and application of antioxidants.

Introduction

Historically, antioxidants have been added to commercial
feeds to prevent lipid peroxidation and oxidative rancidity
during production, processing and storage of feeds. More
importantly, the current trend of formulating diets with
polyunsaturated fatty acids (PUFAs)-rich ingredients has
heightened the use of antioxidants in animal feeds. Indeed,
PUFA-rich foods and feeds are highly susceptible to lipid
peroxidation (Decker et al., 2012). The use of exogenous
antioxidants in commercial feeds helps to preserve the
sensory qualities of the feed and prevent the destruction of
critical nutrients such as pigments and vitamins (Calabotta
and Shermer, 1985). Interestingly, the biological activities of
antioxidants have been well-established in both humans and
animals aside from their activities in foods and feeds
(Halliwell and Gutteridge, 1999; Surai, 2007; Kalam et al.,
2012). As illustrated in Figure 1, the biological effects of
supplemental antioxidants could accumulate into in vivo and
postmortem benefits by preventing oxidative stress and
oxidative rancidity in production animals and animal food
products, respectively (Fellenberg and Speisky, 2006).
There is an important global focus on the legislative

frameworks regulating the authorization of feed additive
products due to the overwhelming significance of feed
additives in modern livestock production. There are vast

disparities in the regulatory status of antioxidants as feed
additives when considered across different countries.
Commission Regulation (EC) No 1831/2003 (Commission
Regulation, 2003) guides the authorization of feed additives
in the European Union (EU). Feed additives can be author-
ized, based on their efficacy claims, into one of the five
existing functional groups (i.e. technological, sensory,
nutritional, zootechnical, coccidiostats and histomonostats
additives). Presently, antioxidant substances are authorized
as feed additives for prolonging the shelf life of feedstuffs
based on their effect for preventing lipid peroxidation.
Antioxidant substances are exclusively categorized under the
‘technological additives’ functional group. Moreover,
vitamins and trace minerals are categorized as a functional
group in the category of ‘nutritional additives’ even though
certain vitamins and trace minerals could exhibit
antioxidative activity. It is crystal clear that the present EU
regulations for authorization of antioxidants as feed
additives lack exclusive consideration for the in vivo and
postmortem effects of antioxidants in livestock. Indeed,
regulatory recognition of the in vivo and postmortem
efficacies of antioxidant products may be a major stumbling
block for the global feed additive industry and market.
In recent years, extensive scientific reviews have eluci-

dated the in vivo and/or postmortem benefits of antioxidant
nutrition in production animals (Fellenberg and Speisky,
2006; Celi and Chauhan, 2013; Castillo et al., 2013; Salami
et al., 2015). This review is exclusively aimed at describing
the roles of antioxidants as feed additives with respect to
animal well-being and product quality. This review further
exploits how these efficacy claims could stimulate the
appraisal of legislations guiding the authorization of
antioxidants as feed additives in the EU.

Figure 1 Schematic concept of in vivo and postmortem benefits of antioxidants in livestock. PUFA = polyunsaturated fatty acid.
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Feed antioxidants

Halliwell and Gutteridge (1999) defined antioxidants as
substances that when present in feeds and foods at a
concentration lower than that of an oxidizable substrate will
significantly interrupt or avert the oxidation of the substrate.
Hilton (1989) and Decker (1998) noted that substances that
could exhibit antioxidative capacity include deactivators of
peroxides and other reactive oxygen species; quenchers of
secondary lipid oxidation products that produce rancid
odors; oxygen scavengers; free radical scavengers and metal
chelates. Antioxidants used in animal feeds are functionally
considered to be similar to those used in food and they can
be broadly categorized into natural and synthetic ones.
Several authors (Shahidi, 2000; Shahidi and Zhong, 2005;
Augustyniak et al., 2010) have provided detailed overview as
well as the regulatory status of natural and synthetic
antioxidants in foods and feeds; thus, a concise discussion
will be provided in this review.

Natural antioxidants
These are antioxidants that exist naturally in plant-based
materials and predominantly include vitamins and poly-
phenolic compounds. Albeit there are quite a number of
antioxidants in nature, only few are commercially used as
additives for combating feed peroxidation. Vitamin E
(tocopherols and structurally related tocotrienols) and
vitamin C (ascorbic acid) are the most significant natural
antioxidants used in feeds (Shahidi and Zhong, 2005). Others
include vitamin A (retinol) and carotenoids. Substantial
quantities of these natural antioxidants can be present in
feed ingredients including vegetable oil, legumes and
cereals. Animals fed forages could also have access to
substantial quantities of these vitamins as well as poly-
phenolic compounds (Castillo et al., 2013). Factors such as
the type of forage species, conservation methods and the
forage maturity status could, however, affect the con-
centration of vitamins in forages; thereby demanding for
exogenous supply of dietary antioxidants (Lindqvist, 2012).
Commercial forms of vitamins can be produced either by

fermentation, chemical synthesis or extraction from natural
sources. Synthetic derivatives of vitamins can be largely
similar in chemical structures to their corresponding naturally
occurring forms in plants (Topliss et al., 2002). The
antioxidant stability and activity of tocopherols depend on
temperature and vary with their chemical structure. The
antioxidant activity of tocopherols in foods decreases in the
order of δ-> γ-> β-> α-tocopherol (Shahidi, 2000). How-
ever, the biological efficacy of the synthetic derivatives could
differ from their natural forms. For instance, the biological
activity of the synthetic derivative of vitamin E, all-
rac-α-tocopherol (a mixture of eight stereoisomers) is lower
than that of its natural form RRR-α-tocopherol in a given
ratio of 1 : 1.36 (Weiser and Vecchi, 1982). This could be
explained by the better bioavailability of RRR-α-tocopherol
compared with all-rac-α-tocopherol (Traber et al., 1998). The
eight stereoisomers could also vary in their biopotencies with

the RRR form being the most active (Weiser and Vecchi,
1982). The bioavailability of these stereoisomers has been
further demonstrated to vary in fluids and tissues of different
animal species (Jensen and Lauridsen, 2003). In addition,
there are indications that vitamin E is more effective in vivo
while vitamin C acts effectively postmortem (Morrissey et al.,
1998; Bou et al., 2001).
Furthermore, botanicals rich in polyphenols such as rosemary

extract, grape pomace (GP), grape seed extract, green tea and
olive oil, have been tested and still undergoing extensive
evaluation as natural antioxidants in feeds. The in vitro and
in vivo antioxidant protection of phytochemicals could be
mediated by direct scavenging of free radicals, which could be
partly influenced by their low values of standard one-electron
reduction potential (Augustyniak et al., 2010). In addition, it
could indirectly involve the complex mechanism of activating
the nuclear factor erythroid-2, nuclear-related factor 2 (Nrf2)
and Kelch-like ECH associated protein 1 (Keap1) complex.
Activation of the Nrf2-Keap1 complex could then induce a
cytoprotective mechanism against free radicals (Lee et al.,
2013). Several factors could influence the physiological func-
tions of phytochemicals. These include the composition of the
raw material, processing methods, location of bioactive com-
pounds within the tissue as well as factors influencing solubi-
lization, micelle formation, transporter for uptake and factors
influencing in vivo metabolism (Bohn et al., 2015). The major
drawbacks associated with the development of botanicals as
natural antioxidants include the assessment of their antioxidant
potency as well as the separation of their individual phyto-
chemicals (Augustyniak et al., 2010). Moreover, many of the
phytochemicals have low bioavailability and there is extensive
need to identify phytochemicals with high bioavailability to
enhance their biological activities (Manach et al., 2004).
Indeed, natural antioxidants have green image and are

becoming more acceptable to consumers than their synthetic
counterparts. Similarly, the safety assessment of natural
antioxidants is less-stringent compared with synthetic anti-
oxidants and most of them are enlisted with GRAS (generally
recognized as safe) status for authorization.

Synthetic antioxidants
These are chemically synthesized and are required at low
concentrations to stabilize oil, fat and lipid-containing feeds.
They are mostly phenolic and nitrogen compounds and the
phenolic derivatives contain more than one methoxy or
hydroxyl groups. The most commonly used synthetic
phenolic compounds include butylated hydroxytoluene (BHT),
butylated hydroxyanisole (BHA), tert-butylhydroquinone
(TBHQ) and propyl gallate (Shahidi and Zhong, 2005).
Phenolic compounds execute their antioxidant function by
capturing free radicals and halting oxidation chain reaction.
Examples of nitrogen compounds include ethoxyquin (EQ),
capsaicin and vanillylamide, of which EQ remains the most
efficacious. Synthetic antioxidants are generally perceived to be
more effective than equal quantities of natural antioxidants
and can better resist processing losses (Crane et al., 2000).
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The use of EQ and other synthetic antioxidants for in vivo
benefits must be extensively tested for the absence of
carcinogenicity and other toxic effects in their pure and oxi-
dized forms as well as their reaction products with feed
components (Augustyniak et al., 2010; Błaszczyk et al.,
2013). In addition, the residues of synthetic antioxidants and
their metabolites in animal foods may hamper the use of
synthetic antioxidants for postmortem benefits. Consump-
tion of 300 g fillet was shown to contribute significantly to
the acceptable daily intake of BHT as well as EQ and its
oxidation products, when included in the diets of farmed
Atlantic salmon (Lundebye et al., 2010). Moreover, the feed
dosage of these synthetic antioxidants and their duration of
exposure in animals could be directly related to the amount
of their residues in animal foods as shown for EQ in the fillet
of Atlantic salmon (Bohne et al., 2008). In contrast, the
amount of EQ in foods of animal origin was less than the EU
maximum residue level (Aoki et al., 2010). Indeed, there is
crucial need for regulatory monitoring of both EQ and its
oxidation products as well as that of other synthetic
antioxidants in animal foods considering their potential
toxicity in humans (Błaszczyk et al., 2013). Nonetheless, the
US Food and Drug Administration regulated for maximum
inclusion level of 150 ppm for EQ, 200 ppm for both BHT and
BHA in animal feeds and similar regulatory levels have been
adopted by many other countries including the EU.

Effects of supplemental antioxidants in livestock

Mechanisms of antioxidant protection
The mechanisms of antioxidant protection in the biological
system of animals have been extensively reviewed by several
authors (Fellenberg and Speisky, 2006; Lykkesfeldt and
Svendsen, 2007; Surai, 2007). Thus, a succinct detail will be
provided in this review. In reality, the animal is naturally
endowed with an overwhelming biological antioxidant system
to combat the free radicals that are continuously produced as
a result of several metabolic activities in the body. Free radi-
cals include reactive oxygen species and reactive nitrogen
species such as superoxide anion, hydroxyl radical and
hydrogen peroxide (Kalam et al., 2012). However, there is a
certain limit to the protection that could be offered by the
endogenous antioxidant barrier. This limit is further compro-
mised by the presence of factors that could trigger excessive
production of free radicals and/or weaken the efficiency of the
biological antioxidant system, thereby causing oxidative
stress. Such factors include: consumption of high-PUFA or
rancid diet; intake of mycotoxins, heavy metals, fungicides
and pesticides; nutritional deficiency such as selenium;
pathogenic infections; stress-related practices such as wean-
ing, vaccination and transportation; exposure to ionizing
radiation; animal’s production status such as early lactation;
and heat stress. Furthermore, once animals are slaughtered,
there is concomitant loss of efficiency in the biological anti-
oxidant system, which together with other post-slaughter
conditions (Morrissey et al., 1998) result in the onset of lipid

deterioration in muscle tissues and consequent oxidative
rancidity in meat products (Iglesias et al., 2008).
Free radicals are unstable and highly reactive chemical

species with an unpaired electron which induces them to trap
electron from biological macromolecules such as DNA, lipids
and proteins, in order to neutralize themselves. The reaction of
free radicals with biological molecules results in oxidative
damage of such macromolecules and potential cellular
damage (Fellenberg and Speisky, 2006). In a counter protec-
tive response, antioxidants act by either directly scavenging
the free radicals or stabilizing the free radicals by donating the
electron needed (Figure 2). As presented in Table 1, the
biological antioxidant system consists of both the enzymatic
(superoxide dismutase (SOD), glutathione peroxidase
(GSH-Px), catalase (CAT), etc.) and non-enzymatic (selenium,
vitamins E, C and A, etc.) components. In essence, oxidative
stress is the deteriorative condition, which results from the
imbalance between the endogenous generation of free radi-
cals and the biological antioxidant defense systems in the
body (Halliwell and Gutteridge, 1999). In situations of excess
free radical production, there is a keen need for exogenous
intake of antioxidants to prevent potential cellular damage.
Based on the nature of antioxidants, they can be grouped

into water-soluble (e.g. ascorbic acid) and lipid-soluble (e.g.
vitamin E and carotenoids) antioxidants. The former and the
latter are located in the hydrophilic and lipophilic compart-
ments of the cell, respectively (Yeum et al., 2004). There are
emerging indications that redox cooperation exist between
these two groups of cellular antioxidants, which accumulate
to antioxidant synergism. Example of such redox cooperation
is the ability of terminal hydrophilic ascorbic acid to repair
oxidized tocopheroxyl radical of vitamin E in order to allow
vitamin E perform its antioxidant function again (Buettner,
1993). Similarly, Iglesias et al. (2008) demonstrated that
exogenous phenolic compound, grape procyanidins, had the
ability to repair oxidized α-tocopherol and delay the
depletion of ascorbic acid in the muscle tissues of fish. Thus,
this highlights the importance of supplementing livestock
with both groups of antioxidants to enhance duality of action
which has proven to have synergistic effects.

In vivo efficacy in livestock
A multitude of published studies have highlighted the
benefits of antioxidants on the health and production of
livestock. Thus, the information provided in this review
should be considered as an overview. Several comprehensive
review papers have elucidated the deteriorative role of
oxidative stress and the in vivo benefits of antioxidant
nutrition in farm animals (Lykkesfeldt and Svendsen, 2007),
ruminants (Miller et al., 1993a; Hansen, 2010; Celi, 2011)
and poultry (Surai, 2002; Fellenberg and Speisky, 2006;
Surai, 2007).

Poultry
Several factors which could be of nutritional, pathological,
physiological or environmental origins could induce
oxidative stress and impair the performance of chickens
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(Salami et al., 2015). Consequently, dietary antioxidants
have been shown to counteract the negative effects of
oxidative stress in poultry and extensive reviews have been
provided for broiler chickens (Fellenberg and Speisky, 2006;
Salami et al., 2015). Table 2 depicts the recommended
dietary antioxidant nutrients in poultry.

Mint leaves, amla electrolyte and vitamin E supplemented
as dietary antioxidants, enhanced the antioxidant status
of broilers reared under heat stress (Maini et al., 2007).
Glutathione (GSH) concentration was higher with mint
leaves and electrolyte supplements while SOD activity was
found highest in brain, liver and heart with amla electrolyte
and vitamin E. Taulescu et al. (2011) reported that
supplementation of vitamin E and selenium (Se) positively
influenced the BW gain in broilers fed oxidized lipids but no
effect was observed on the carcass characteristics of
the birds. Increased SOD and CAT activity, higher ferric
reducing antioxidant power (FRAP) and significantly lower
malondialdehydes (MDA) were reported in heat stress layer
and breeder hens supplemented with vitamins E and C
(Yardibi and Turkay, 2008; Jena et al., 2013). Conversely,
feeding singly or a combination of natural antioxidant sup-
plements of grape seed extracts, tomato extracts, rosemary
extracts, green tea extracts and natural tocopherols did not
affect the oxidative status and lipid oxidation of plasma in
broilers (Vossen et al., 2011). Though low inclusion dose was
suggested as a possible cause for the observed tenuous
antioxidant effect. In a study evaluating synthetic anti-
oxidants, EQ and propyl gallate decreased liver thiobarbituric
acid reactive substances (TBARS) levels when broilers were
fed diet containing oxidized oil (Tavarez et al., 2010).
There may be potential to complement the antioxidant

activity of dietary vitamin E with that of phenolic extracts
even though there are limited data in this regard. It was
recently highlighted that polyphenol-rich grape by-products
could partially replace costly vitamin E in monogastric
diets by finding the right proportion to combine them
(Brenes et al., 2015). There was significant positive effect on
the growth performance of broilers when grape extracts
were supplemented in combination with 100 ppm of

Table 1 Antioxidants in the biological system of animals (adapted
from Weiss, 2010)

Component
(location in cell)

Nutrients
involved Function

Superoxide dismutase
(cytosol)

Cu and Zn An enzyme that converts
superoxide to hydrogen
peroxide

Superoxide dismutase
(mitochondria)

Mn and Zn An enzyme that converts
superoxide to hydrogen
peroxide

Ceruloplasmin Cu An antioxidant protein, may
prevent copper from
participating in oxidation
reactions

Glutathione peroxidase
(cytosol)

Se An enzyme that converts
hydrogen peroxide to
water

Catalase (cytosol) Fe An enzyme (primarily in
liver) that converts
hydrogen peroxide to
water

α-Tocopherol
(membranes)

Vitamin E Breaks fatty acid
peroxidation chain
reactions

β-Carotene (membranes) β-Carotene Prevents initiation of fatty
acid peroxidation chain
reactions

Figure 2 Mechanism of action of antioxidants (adapted from Kalam et al., 2012).
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vitamin E (Juin et al., 2007). Brenes et al. (2008) concluded
that the antioxidant potency of GP was as effective as
that of vitamin E and supplementing up to 60 g/kg dosage of
GP did not impair broiler performance. Moreover, dietary
replacement of vitamin E by sage leaves did not affect the
performance and meat yield of spent hens (Loetscher et al.,
2014). The negative feeding value of grape by-products
has also been demonstrated. Supplementation of high
concentrations of grape seed extract (Chamorro et al., 2013)
and GP (Goni et al., 2007) impaired the growth rate and/or
protein and amino acid digestibility of broilers. Current levels
of dietary vitamin E, particularly in pig and poultry produc-
tion, is a safety margin to ensure the protection of animals in
oxidative stress condition. It is imperative to acknowledge
that the partial replacement of dietary vitamin E level with
phenolic extracts require further research to avoid compro-
mising the protective margin of the feed. This is emphatically
important given that phenolic extracts exhibits their
antioxidant activity via different mechanism compared
with vitamin E as highlighted in previous sections in this
review.

Swine
Zhu et al. (2012) indicated that antioxidant blend of vitamins
C and E, tea polyphenols, lipoic acid and microbial
antioxidants has the potential to prevent free radical-induced
damage in pigs and suppress oxidative stress by modulating
the expression of tumor protein 53 and PGC-1α genes
post-weaning. The immuno-modulatory potential of tea
polyphenol in piglets subjected to oxidative stress was sup-
ported by Deng et al. (2010). In addition, there was an
increase in serum and liver α-tocopherol levels in pigs sup-
plemented with vitamin E (Ching et al., 2002). However, as
the dietary levels of vitamins A and E increased, there was
contrasting interaction that resulted in the decline of the
α-tocopherol levels in the tissues. Fernández-Dueñas et al.
(2008) observed no effect on the antioxidant status mea-
sured in terms of TBARS concentration and GSH-Px activity in
weaned pigs supplemented with vitamin C and β-carotene.
Furthermore, TBHQ and EQ improved performance,
decreased lipid oxidation and boosted the biological anti-
oxidant system such as GSH-Px, SOD and CAT activities when
pigs were fed oxidized corn oil (Fernández-Dueñas, 2009).

Ruminants
The transition or periparturient period is generally considered
as a crucial time during which dairy cows are highly
susceptible to oxidative stress (Sharma et al., 2011). The
period is characterized by high metabolic demand and phy-
siological adjustments to the onset of lactation. Abuelo et al.
(2014) recently provided a review of the in vivo benefits of
dietary antioxidants on udder health, uterine health and
reproductive performance, and incidence of production dis-
eases of periparturient cows. Insufficient dietary antioxidants
during this period were suggested to possibly increase
oxidative stress and occurrence of retained placenta in dairy
cows (Brzezinska-Slebodzinska et al., 1994). However, sup-
plementing transition cows and periparturient heifers with
vitamin E resulted in improved signs of oxidative status with
regards to higher serum α-tocopherol level, decreased lipid
peroxidation and reduced oxidative damage in liver
(Brzezinska-Slebodzinska et al., 1994; Bouwstra et al., 2008
and 2009). A meta-analysis of 19 experiments suggested
that dietary addition of vitamin E and Se could decrease the
average relative risk of mastitis by 34% (Zeiler et al., 2010).
However, individual supplementation of Se was more potent
in reducing the risk of mastitis compared with the individual
supplementation of vitamin E (40% v. 30%). Moreover,
dietary addition of vitamin E and Se apparently increased
milk yield with mean of 1 kg milk/animal per day and this
effect was greater for vitamin E than Se (Zeiler et al., 2010).
Furthermore, left displaced abomasum (LDA) is a

significant health problem in dairy herd, especially during
early lactation. Veterinary surgery aimed at repositioning the
abomasum usually results in stress reaction that was found
to be positively correlated to high level of plasma TBARS
(Mudron et al., 2007). Qu et al. (2013) further found that the
depletion of serum vitamin E preceded the occurrence of LDA
and persisted after LDA correction. These observations
provided better insights to the role of oxidative stress in LDA
cows both before and after surgical correction. However,
Chawla and Kaur (2004) observed that plasma α-tocopherol,
retinol and β-carotene levels at parturition can be increased
by supplementing cows with these vitamins during dry
period in order to augment their immunity status.
Supplementing heat-stressed lactating dairy cows with diet-
ary selenium boosted the preventive antioxidant system of

Table 2 Recommended dietary antioxidant nutrients for various classes of poultry per ton of complete feed (adapted from Waldroup, 2001)

Vitamins/
minerals

Starting (0 to
8 weeks)

Growing (8 to
18 weeks)

Hens (egg
type) Breeders

Turkey (0 to
8 weeks)

Turkey (8
markets)

Turkey
(Breeders)

Vitamin A (MIU) 7.0 7.0 6.0 8.0 9.0 7.0 9.0
Vitamin E (TIU) 6.0 6.0 5.0 10.0 11.0 8.0 30.0
Mn (mg) 25.0 25.0 50.0 75.0 50.0 50.0 50.0
Zn (mg) 25.0 25.0 50.0 75.0 50.0 50.0 50.0
Se (mg) 0.05 0.05 0.05 0.05 0.1 0.1 0.1
Cu (mg) 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Fe (mg) 50.0 50.0 50.0 50.0 50.0 50.0 50.0

MIU = million international unit; TIU = thousand international unit; mg = milligram.
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the animals (Calamari et al., 2011). In addition, dietary
supplementation of vitamin E improved the semen quality of
Aohan fine-wool sheep (Yue et al., 2010) while contrasting
failure of fertility improvement was observed when vitamin E
and selenium were administered to lactating cows by
injection (Paula-Lopes et al., 2003). This difference in
observation may be partly attributed to the route of admin-
istration, which was suggested by Hansen (2010) as a factor
that contributes to the effective concentration of antioxidant
in tissues. It has been suggested that the present NRC
requirement of dairy cows for antioxidant mineral nutrients
should be considered as the minimum dietary requirement
(Weiss, 2010). Therefore, necessary adjustments should be
made when formulating diets to allow for expected
differences due to intake, environment and feed composition
(Table 3).
Environmental challenges such as heat stress, especially

during summer period, could constitute serious welfare
problems, which could impair the performance and health of
livestock. Induction of oxidative stress has been suggested as
major mechanism through which heat stress exert its
negative effect on animals. There are indications that
supplementation of vitamin E and selenium could attenuate
some of the negative effects mediated by heat stress by
improving the antioxidant status of sheep (Chauhan et al.,
2014; Alhidary et al., 2015). However, the source of selenium
(organic or inorganic) did not influence the performance
of non-stressed beef heifers during the fattening phase
(Rossi et al., 2015).
Ruminal acidosis is a metabolic disorder associated with

feeding high quantity of readily fermentable carbohydrates
to ruminants and it could impair animal productivity and
cause detrimental health problems such as laminitis
(Lettat et al., 2012). There are existing data that suggest the
potential of dietary antioxidants to enhance rumen protec-
tion. Dietary inclusion of quercetin (a flavonoid with
antioxidant capacity) in lamb diet decreased the level of
parakeratosis, which is an indicator of subacute ruminal
acidosis (Benavides et al., 2013). Moreover, dietary supple-
mentation of either vitamin E or carsonic acids in concentrate
diet corrected the metabolic acidosis in fattening lambs
(Morán et al., 2013).

In general, despite the intriguing in vivo benefits of
antioxidant supplementations in livestock species, there are
some inconsistent results particularly with the supple-
mentation of botanicals. The inconsistent effect of
polyphenols may be related to the fact that in vitro studies
were largely used to demonstrate their antioxidant proper-
ties. Most of these data may not be relevant to in vivo
situation because of the uncertainty that phenolic
compounds would be delivered to target tissues in
concentrations that could elicit direct free radical scavenging
effects. Moreover, the inconsistent effect of dietary
antioxidants may be partly attributed to insufficient
methodological approaches used for measuring biomarkers
of oxidative stress in animals. Such discrepancies could be
further attributed to experimental factors such as the loss of
dietary antioxidants during feed processing and storage,
dosage of antioxidants, antioxidant status of the animals
before the experiment, age of animals, route of antioxidant
administration, production traits, level of stress challenges
and the level of natural antioxidants already present in the
diets before supplementation. There is a need to seek
adequate and standardized analytical methodologies to
accurately measure biomarkers of oxidative stress in animals
and subsequent effect of antioxidant supplementation. In
addition, different elements of the experimental conditions
particularly the animal factors should be clearly and exten-
sively stated when reporting research results relating to
antioxidant supplementations.

Postmortem efficacy in livestock
Oxidative rancidity imparts negatively on the sensory,
nutritional and shelf-life qualities of food products
(Valenzuela and Nieto, 1996), especially those high in PUFA
such as meats (Morrissey et al., 1997). Consumption of lipid
oxidation products that result from oxidative rancidity of
animal products can be very toxic to human health (Ester-
bauer, 1993). Though, the addition of antioxidants in food
processing has an age-long history; targeting antioxidant
supplementation in animal diets may be a more potent
strategy for enhancing the oxidative stability, sensory
qualities and nutritional antioxidant content of animal
products. In support of this assertion, lipid oxidation process

Table 3 Suggested dietary concentration (dry matter basis) of antioxidant mineral nutrients1 (adapted from Weiss, 2010)

Non-lactating cows Lactating cows

Dry Pre-fresh Fresh 50 lb 100 lb

Est. intake (lb/day) 30 22 30 44 58
Vitamin A (IU/lb) 3300 4500 3300 1850 1500
Vitamin E (IU/lb) 35 50 25 12 10
Selenium (ppm) 0.3 0.3 0.3 0.3 0.3
Copper (ppm) 20 20 15 to 20 15 to 20 15 to 20
Manganese (ppm) 30 to 50 40 to 50 40 to 50 30 to 40 30 to 40
Zinc (ppm) 40 to 60 50 to 70 60 to 80 50 to 70 60 to 80

1Values are for a Holstein cow with an average BW for various stages of lactation and gestation. Pre-fresh is for cows in the last 2 weeks of gestation. Fresh is for cows in
the first 3 weeks of lactation.
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was thought to be initiated at the subcellular membrane
level of muscle foods (Gray and Pearson, 1987) and dietary
antioxidants can better incorporate into tissue membranes
due to inherent in vivo metabolism rather than the superficial
contact made by the postmortem addition of exogenous
antioxidants (Liu et al., 1995).

Meat
Improvement in meat color and lipid oxidative stability as
well as drip loss prevention by dietary antioxidant supple-
mentations were previously reviewed (Liu et al., 1995; Wood
and Enser, 1997). Supplementation of vitamin E and
rosemary powder for broiler chickens increased the oxidative
stability of fats in meat measured in terms of the MDA
content (Marcinčák et al., 2005). Similarly, dietary
α-tocopherol supplementation reduced the TBARS content,
lipid oxidation, rancid odor and flavor in raw, cooked and
stored meat (Maraschiello et al., 1999; Grau et al., 2001;
Ruiz et al., 2001; Tavarez et al., 2010; Taulescu et al., 2011).
Taulescu et al. (2011) further observed an increased con-
centration of α-tocopherol in meat due to supplementation
with vitamin E or vitamin E with Se, which implies an
enriched antioxidant status of the meat for benefits in human
nutrition. Mercier et al. (2000) suggested that dietary
α-tocopherol exhibits its antioxidant mechanism via increase
in the free sulfhydryl present in muscle cell which then helps
to trap free radicals from the cells, thereby protecting the cell
membrane from oxidative degeneration during storage. On
the contrary, dietary addition of marigold xanthophylls
reduced the oxidative stability of meat as indicated by the
increased TBARS content (Koreleski and Świątkiewicz,
2007). This suggests that there should be careful considera-
tion for the use of new antioxidant substances, particularly
plant extracts, with respect to their effect on meat quality.
Furthermore, the shelf life of pork from pigs fed oxidized

corn oil supplemented with TBHQ and EQ was positively
impacted by decreased discoloration and lipid oxidation
(TBARS) after 0, 7, 14 and 21 days in retail display
(Fernández-Dueñas, 2009). However, Haak et al. (2008)
observed no effect on color and protein oxidation of pork
when α-tocopherol and rosemary were supplemented in the
diets of pigs. In contrast to rosemary supplementation that
further depicts lack of effect on lipid oxidation in both raw
and cooked pork, there was decrease in lipid oxidation in
α-tocopherol supplemented raw pork with exception to the
cooked one.
Realini et al. (2004) observed that vitamin E supple-

mentation of concentrate-fed steers increased lipid stability
of ground beef and steaks but not color stability. On the
other hand, vitamin C addition to ground beef improved
color stability without altering lipid oxidation. Liu et al.
(1995) reviewed that dietary vitamin E supplementation
could have greater positive impacts in preventing discolora-
tion as well as lipid oxidation in ground and frozen beef than
cooked beef. However, the authors further noted that the
adoption of 500 IU/steer per day of vitamin E based on
results from accumulated studies, may pose a threat to the

cost effectiveness of the American beef industry unless
adequate quantitative strategy can be developed for
detecting at slaughter, beef fed such amount of vitamin E.
Moreover, changing beef heifers from inorganic to organic
selenium during the last 2 months of fattening could be an
effective way to enhance the qualities of meat from beef
heifers (Rossi et al., 2015).

Milk
Dietary supplementation of antioxidants in dairy cows could
be an effective way of fortifying milk and dairy products with
antioxidant nutrients such as vitamins and minerals, while
also promoting animal health (Baldi and Pinotti, 2008). The
quality of milk can be compromised due to high somatic cell
counts (SSC) resulting from incidence of mammary gland
infection predominantly mastitis (Castillo et al., 2013). More
importantly, SSC is one of the significant factors that deter-
mine milk price as it is considered as a gauge for the hygienic
quality of milk. A review by Politis (2012) suggested that
dietary vitamin E can improve milk quality either by directly
enhancing the oxidative stability of milk or by indirectly
reducing the level of SSC and plasmin activity in milk. Dietary
antioxidants including vitamin E, Se and other trace minerals
could reduce the occurrence of intramammary infection and
thus decrease the SSC in milk (Baldi et al., 2000; Politis et al.,
2004; Machado et al., 2013). However, antioxidant effect to
reduce the SSC in milk has been inconsistent across studies
(Sivertsen et al., 2005; Waller et al., 2007). Nonetheless, the
meta-analysis by Zeiler et al. (2010) showed that supple-
mentation of vitamin E and Se could decrease SSC by
24 000 cells/ml milk. Vitamin E supplementation has also
been shown to decrease plasmin by 30%, a proteolytic
enzyme that could compromise the processing quality of milk
(Politis et al., 2004).
Antioxidant supplementations could also have positive

influence on milk composition. Pre- and postpartum
intramuscular injections of Se, Zn and vitamin E improved the
lipid profile of ovine milk (Gabryszuk et al., 2007). Similarly,
antioxidant blend of pineapple rind, Zn and Cu had
positive effect on blood and milk cholesterol and lactose
content of goat milk (Warly et al., 2011). In contrast, there
was no effect of vitamin E supplementation on milk
composition of lactose, fat and protein (Baldi et al., 2000;
Politis et al., 2004).

Egg
Food enriched in n-3 fatty acids have been widely acknowl-
edged for their health, growth and development benefits in
humans (Simopoulos, 1991). It is clearly evident that
increasing the content of these fatty acids in animal diets will
simultaneously increase their availability in animal products
including eggs (Meluzzi et al., 2000). However, the role of
n-3 fatty acids was positively correlated to lipid peroxidation
of tissues (Husvéth et al., 2000), which implies that animal
products obtained from such feeding strategies will be more
susceptible to rancid spoilage. Meluzzi et al. (2000) observed
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that dietary vitamin E prevents alteration in the fatty acid
profile of the yolk after 28 days of storage while also
enriching the table eggs with α-tocopherol as the level of
dietary vitamin E increases. In a comparative study involving
supplementation of vitamin E and rosemary extract, similar
positive antioxidant effect of vitamin E was found but
rosemary extract had no effect on peroxidation of fresh eggs
and when subjected to iron-induced lipid oxidation (Galobart
et al., 2001). Though the tenuous effect observed for
rosemary extract may be attributed to the low dietary dosage
used in the study. In addition, dietary organic selenium was
suggested to improve egg fertility and hatching quality of
stored eggs obtained from broiler breeders fed PUFA-rich
diets (Pappas et al., 2005 and 2006).

Regulatory review for authorization of antioxidants as
feed additives

In most countries, a company intending to place a feed
additive product on the market is legally required to obtain
prior authorization via a process termed marketing author-
ization. To accomplish the authorization process for a
product, a technical dossier application must be submitted to
the relevant regulatory authorities according to the required
standards and regulations. Figure 3 depicts the authorization
process for feed additives in the EU. The regulatory jurisdic-
tions for the technical dossier application of feed additives
differs across countries. Commission Regulation (EC) No
1831/2003 authorized antioxidant substances as feed addi-
tives mainly for their efficacy in preventing oxidative damage
and preserving the quality of feedstuffs and feed materials
(Commission Regulation, 2003). Commission Regulations No
1831/2003 and 429/2008 (Commission Regulation, 2003 and
2008). detailed the established procedures for submitting the

dossier application for feed additives in the EU. To consider the
in vivo and postmortem effects of antioxidants, the review of
existing EU legislations will have significant implication on the
legislative classification of antioxidants and the efficacy
assessment in the dossier application.

Implication on the categorization of antioxidants

An unequivocal feature of the regulatory jurisdictions in the
EU, Canada, Brazil, China, Japan, South Africa and United
States is that the claim or function of an ingredient or addi-
tive can change the regulatory category of such ingredient
(Smedley, 2013). Hence, regulatory review for consideration
of in vivo and postmortem efficacy claims of antioxidants
may require the establishment of new functional category in
the EU legislation for feed additives.

Potential category based on in vivo efficacy claims
Increasing number of efficacy claims has been attributed to
feed additives such as enzymes, probiotics, prebiotics and
phytogenics. Consequently, different proposals have been
presented by the feed additive industry to urge for the
amendment of the existing EU legislations for feed additives.
It is very obvious that increasing consumers’ interests in
issues like animal welfare and environmental sustainability
are rapidly shaping the livestock sector in the EU. As such,
the dynamics of this tremendous influence should
encompass the entire livestock chain including the feed
additive sector. Thus, there is need to propose a new cate-
gory in the regulatory framework to explicitly accommodate
feed additives that could ‘favorably affect the welfare of
animals’. In this potential category, there are two functional
groups under which antioxidants can be proposed: (1) anti-
oxidants as substances that will positively influence the

Figure 3 Authorization scheme for feed additives in the European Union (adapted from Jans D., personal communication).
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immune function of animals (i.e. immuno-modulators),
(2) antioxidants as substances that will act within the animal
to correct undesired consequences of nutritional origin
(i.e. metabolic regulators).

Potential category based on postmortem efficacy claims
The quality of animal products encompasses the nutritional,
sensory, safety and shelf-life values of the product. The
existing category for ‘sensory additives’ can be reviewed to
generally include feed additives used to ‘improve animal
product qualities’. Thus, ‘sensory additives’ should be stipu-
lated as a functional group under a potential category for feed
additives used to ‘improve animal product qualities’. Three
potential functional groups can be proposed for antioxidants
in this new category: (1) antioxidants as substances intended
to improve the sensory characteristics and product acceptance
of animal products (i.e. sensory additives), (2) antioxidants as
substances intended to improve the nutritional characteristics
of animal products (i.e. nutrition enhancers), (3) antioxidants
as substances used for prolonging the shelf life of animal
products (i.e. shelf-life extenders).

Implication on efficacy assessment for in vivo effects

The demonstration of product efficacy is often considered as
one of the most demanding and expensive requirements in
the dossier application for authorization of feed additives.
Apparently, failure to adequately demonstrate the efficacy of
a product in the dossier application by any applicant (i.e. feed
additive manufacturer) will hamper the success of the
application and result into denial of market approval for such
product. As opposed to the routine in vitro trials that are
currently used for demonstrating the efficacy claims of anti-
oxidants in dossier applications, in vivo and postmortem
efficacy of antioxidants will keenly require documentation of
in vivo trials. The extrapolation of in vivo effects of dietary
antioxidants from in vitro trials could have some limitations
due to lack of consideration for antioxidant uptake from the
gastrointestinal tract and subsequent metabolism (Collins,
2005; Papić and Poljšak, 2012). However, measurements of
oxidative stress and in vivo efficacy of antioxidants is
presently one of the greatest challenges confronting oxida-
tion research. Palmieri and Sblendorio (2007) extensively
reviewed the assays involved in the measurements of
oxidative stress and antioxidant intervention in biological
organisms. As such, this review will only provide an overview
of the commonly used methodologies.

Indirect measurements of in vivo efficacy
These consist of methods that measure the effect of free
radicals on a biological system including direct damage to
cell membranes.

Membrane stability assay
The correlation between antioxidant status of the animal and
the stability of its cells’ membranes is evident and this has led
to the development of an analytical approach aimed at

measuring the ability of the cell membrane to resist hemolysis
(Sadique et al., 1989). This method provides simple and rapid
measurements of oxidative stress and the in vivo efficacy of
dietary antioxidant supplementation in animals.

Measurement of total antioxidant activity
Measuring the overall antioxidant status of the biological
system may be more important than the measurement of any
single antioxidant. Methods described by Miller et al.
(1993b) can be used, as well as the ferric reducing ability of
plasma (FRAP) value measurement methods described by
Benzie and Strain (1996). The FRAP method is principally
based on the reduction of the ferric-tripyridyltriazine
(Fe3+ -TPTZ) complex to the ferrous (Fe2+ ) form at low pH.

Measurement of antioxidant enzymes
Changes in antioxidant enzyme activity in erythrocytes have
also been used to measure oxidative stress. The enzymes
commonly measured include SOD, CAT and GSH-Px. CAT
activities in the erythrocyte and tissue can be measured
according to the method of Aebi (1984), GSH-Px activities by
the method of Beutler (1975) and SOD activities by the
method of Arthur and Boyne (1985). It is crucial to understand
that the fate of free radicals on antioxidant enzymes could
confound the interpretation of results. Free radicals could
either depress the concentration/activity of these antioxidant
enzymes by activating their damage or increase their con-
centration by stimulating their induction via endogenous
protective mechanism (Palmieri and Sblendorio, 2007).

Measurement of non-enzymatic antioxidants
Vitamins A, C and E, selenium, uric acid and to a lesser extent
β-carotene, are principal non-enzymatic components of the
biological antioxidant system. Vitamins A and E in serum and
liver can be analyzed by HPLC following the procedures
described by Catignani (1986). Selenium concentrations in
blood and tissues can be measured using the fluorometric
method by Rodriguez et al. (1994). The serum uric acid can,
however, be determined using a chromogenic system
described by Fossati et al. (1980).

Measurement of GSH levels
GSH level in the biological system of an animal is an
important biomarker for oxidative stress and likewise for
indicating the antioxidant status of an animal. Specifically,
reduced GSH to oxidized GSH ratio decreases under oxidative
conditions. Quite a number of assays including that of
Guntherberg and Rost (1966), and Griffith (1980) are utilized
to measure the GSH levels in biological tissues.

Measurement of products of lipid peroxidation
Biomarkers of lipid peroxidation in biological systems include
MDA, lipid hydroperoxides (LOOH), isoprostanes and
conjugated dienes. MDA and TBARS are probably the most
commonly applied test system for lipid peroxidation in live-
stock (Botsoglou et al., 1994; Jo and Ahn, 1998; Young et al.,
2003). Tissue MDA level and plasma MDA based on coupling
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with TBARS can be assayed according to the methods of
Ohkawa et al. (1979) and Yagi (1984), respectively. TBARS is a
well-recognized and established method for quantifying lipid
peroxides. However, it has been largely criticized for its reac-
tivity towards compounds other than MDA which conse-
quently contribute to the unreliability of the results obtained
from these assays. LOOH are formed earlier in the pathway
leading to MDA. HPLC (chemiluminescence) and enzymatic
methods can be utilized to detect LOOH in blood and tissues
(Han et al., 2000). MDA determination could therefore be
coupled with the HPLCmethod to improve the selectivity of the
MDA assays. In addition, F2-isoprostanes and prostaglandin-
like compounds in biological tissues can be measured as
biomarkers of oxidative stress using gas chromatography-mass
spectroscopy (Roberts and Morrow, 1994).

Measurement of protein and DNA oxidation
Changes in conjugated protein carbonyls can also serve as
useful biomarkers for oxidative stress. When reactive oxygen
species attack amino acids, carbonyl groups are produced
and variety of assays has been developed to measure protein
oxidation. These include HPLC and ELISA procedures
(Griffiths, 2000; Han et al., 2000). However, many of these
methods have been criticized for being unreliable and
non-specific, coupled with the controversial debate of
whether or not carbonyls represent good markers of protein
oxidation in vivo (Balasubramanian et al., 1990; Stadtman
and Oliver, 1991; Stadtman and Berlett, 1997).

Measurement of stress or heat shock proteins (HSP)
Expressions of HSP are regarded as manifestation of the
endogenous protective mechanism against free radical
damage. Stress protein synthesis has been explored as
biomarker to assess the effect of oxidative stress on cellular
defense system, and the counter-effect of antioxidant inter-
ventions (Wang and Edens, 1994; Polla, 1998; Goldbaum and
Richter-Landsberg, 2001). Immunoblot technique can be used
for analyzing stress proteins such as HSP70, HSP60, HSP32,
HSP25 and αB-crystallin at cytological level as described by
Goldbaum and Richter-Landsberg (2001). However, the
interpretation of results can be very complicated as the
expression of HSP could be induced by several stressor stimuli
including hyperoxia, heat shock and oxidative stress.

Direct measurements of in vivo efficacy
Few techniques have also been developed to directly
measure the level of specific reactive oxygen species present
in a biological system. While these assays are robust enough
to provide more precise quantification of the antioxidant
status of a biological organism, their technical complexity
and exorbitant analytical costs have undermined their
frequency of use in oxidation research.

Electron spin resonance spectroscopy method
Collaborative utilization of this method with the spin trapping
techniques can be used to directly measure free radical species

in the blood and tissue samples. It is currently considered as
the most sensitive direct measure of free radicals. Yoshiki
et al. (1998) provided a description of how electron spin
resonance could be used to measure superoxide free radicals.

Lucigenin-derived chemiluminescence (LDCL) method
This method is considered as one of the most sensitive
techniques for superoxide free radical anion (O2�� ) detection.
The LDCL has been used to reliably measure the O2�� pro-
duced in isolated mitochondria and cultured endothelial cells
(Li et al., 1999; Barbacanne et al., 2000). The exclusive
advantage of this method is its high specificity to interact
with the superoxide anion (Allen, 1986).
Indeed, several biochemical reactions are involved in the

prooxidant-antioxidant balance of the biological organism.
Critical evaluation of the above methodologies has sug-
gested that many of the different assays and biomarker
measurements should be applied simultaneously and the
related information should be combined in order to obtain
more precise results (Del Rio et al., 2002; Collins, 2005;
Palmieri and Sblendorio, 2007). For accurate interpretation
of the results, the relevance of the biomarkers needs to be
understood in relation to their pathological and physiological
significance (Del Rio et al., 2002). To reduce the cost of trials
required for the efficacy assessment in the dossier applica-
tion, in vivo results obtained from what are defined as major
species can be extrapolated to other physiologically similar
species. For instance, results obtained in laying hens may be
extrapolated to other poultry species. Thus, it would be
worthwhile to focus on research efforts aimed at developing
accurate extrapolation models from in vivo studies between
physiologically similar species.

Implication on efficacy assessment for postmortem
effects

Postmortem effects of antioxidants can be measured using
routine methods currently utilized for testing product quality
efficacy of feed additives. Oxidative stability of animal pro-
ducts measured in terms of TBARS, water binding capacity of
meat, product color measurement and antioxidant nutrient
content in meat, egg and milk, are all important parameters
to be measured to demonstrate the postmortem efficacy of
antioxidant.

Major challenge: antioxidants as feed additives or
veterinary drugs?

The in vivo efficacy claims may entangle antioxidants in the
legislative controversy of either to be considered as
veterinary drugs or feed additives. If antioxidants are to be
considered as veterinary drugs, they will be subjected to
stricter authorization procedures relevant to veterinary pro-
ducts and not those for feed additives. This may require
extensive resources to document the safety and efficacy
assessment for dossier application. Subsequently, this may
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significantly increase the duration and cost of securing
authorization for such antioxidant products. However, there
seems to be a twisted distinction between the description of
feed additives and those of veterinary products in Commis-
sion Regulation (EC) 1831/2003. This distinction is essentially
based on the requirement for zootechnical additives to
‘affect favorably the performance in good health’ contrary to
veterinary products used to treat specific disorders (Smedley,
2013). Although this distinction is not as fundamental as it
may first appear, such intrinsic opportunities can be debated
since antioxidants are not intended to diagnose or cure
diseases as ascribed to veterinary products.

Implication on application of antioxidant feed additives

Though antioxidants are currently not market-authorized for
their in vivo and postmortem efficacy claims, they have been
traditionally used in livestock practices to reduce stress
conditions in animals and for improving animal product
quality. Most of these antioxidant products are currently
marketed and used under the labels of ‘vitamin and mineral
additives’ as well as ‘zootechnical additives’ in the case of
plant extracts and herbs. However, some dietary antioxidants
could act as prooxidants particularly when supplemented in
excess dosage. Prooxidants can induce oxidative stress in
biologic system by increasing the production of reactive free
radicals or depleting the antioxidant defense system to cause
cellular damage (Palozza, 1998). Thus, prooxidants could
exert detrimental effects on animal health and product
quality in contrast to antioxidants. There are available data
that showed the potential prooxidant effect of vitamin E
(Pearson et al., 2006; Ouchi et al., 2009), vitamin C (Podmore
et al., 1998), carotenoids (Palozza, 1998), synthetic
antioxidants (Kahl et al., 1990) and phenolic compounds
(Fukumoto and Mazza, 2000; Simić et al., 2007). It is note-
worthy that the in vivo prooxidant effect of carotenoids and
vitamins C and E has triggered much criticisms (Bland, 1998;
Young and Lowe, 2001; Hathcock et al., 2005) and their
prooxidant activity is yet to be convincingly proven due to
sparse and conflicting data. Moreover, antioxidant sub-
stances such as vitamins are currently market-authorized
without maximum inclusion limit in the feed. Nonetheless,
there is need for in-depth research to ascertain the in vivo
relevance of high dosage of antioxidant substances with
regard to their potential to exhibit prooxidant effect.
Future use of antioxidants in livestock production will be

driven tremendously by the increasing trend for intensive
livestock production which simultaneously will elevate the
exposure of animals to oxidative stress conditions. Similarly,
increasing consumers’ demand for high quality and
functional animal foods would continue to escalate the
demand for antioxidants in animal nutrition. The exclusive
authorization of antioxidants based on their in vivo and
postmortem benefits in livestock will stimulate the innova-
tion of more potent antioxidant products and help to avoid
indiscriminate use of antioxidants due to specification of

claims and dosage on the product labels. In addition, it will
better guide animal nutritionists in making dietary recom-
mendations and enable livestock farmers to make better
purchasing decisions that will improve their profitability.
Appraisal of antioxidant registration system may also open
potential new markets for feed antioxidants. However, leg-
islative questions on antioxidant dosage and dose restriction
need to be answered and may have to be demonstrated in
the safety assessment of the dossier application.

Conclusion

With respect to the opinions presented in this review paper, it
is anticipated that future feed additive legislations in the EU
and possibly including other countries, would recognize the
in vivo and postmortem efficacy of antioxidants. Appraisal of
EU legislations on antioxidant registration require adequate
data to address many of the knowledge gaps identified in
this review. Thus, there is esteem need for additional
investment in antioxidant-related research in production
animals. Moreover, extensive future research should aim at
developing more potent dietary antioxidant products as well
as feeding strategies for effective delivery of antioxidant
solutions to livestock. For these optimisms to be achieved,
relevant stakeholders in the feed additive industry should
dedicate concerted efforts to antioxidant research and lobby
for the review of existing EU legislations guiding the
authorization of antioxidants. Organizations such as the EU
Feed Additives and Premixtures Association and the
European Manufacturers of Feed Minerals Association
(EMFEMA) could play major roles in this regard.
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