
J. Functional Programming 11 (4): 425–432, July 2001. Printed in the United Kingdom

c© 2001 Cambridge University Press

425

Red-black trees with types

STEFAN KAHRS

University of Kent at Canterbury, Canterbury, Kent, UK

Abstract

Chris Okasaki showed how to implement red-black trees in a functional programming

language. Ralf Hinze incorporated even the invariants of such data structures into their

types, using higher-order nested datatypes. We show how one can achieve something very

similar without the usual performance penalty of such types, by combining the features of

nested datatypes, phantom types and existential type variables.

1 Introduction

Red-black trees are a well-known way of implementing balanced 2-3-4 trees as binary

trees. They were originally introduced (under a different name) in Bayer (1972) and

are nowadays extensively discussed in the standard literature on algorithms (Cormen

et al., 1990; Sedgewick, 1988).

Red-black trees are binary search trees with an additional ‘colour’ field which is

either red or black. In a proper red-black tree each red-coloured node is required

to have black subtrees and is also regarded as an intermediate auxiliary node.

Therefore, every black node has (possibly indirectly) either 2, 3 or 4 black-coloured

subtrees, depending on whether it has 0, 1 or 2 red-coloured direct subtrees. This is

the reason why red-black trees can be seen as implementation of 2-3-4 trees.

Red-black trees realise 3- and 4-nodes by connecting binary nodes. While this (at

worst) doubles the height of the tree, compared to the associated 2-3-4 tree, it does

not affect the number of comparisons a search has to make, and it simplifies the

balancing process considerably.

Okasaki (1998, 1999) showed how this data structure can be implemented in a

functional setting. An earlier attempt at implementing the rather similar 2-3 trees was

made by Chris Reade (1992). Okasaki’s implementation is much more concise than

the known imperative implementations and consequently much easier to understand.

Figure 1 shows the definition of the type and Okasaki’s insertion1 function.

It is worth iterating the basic invariants of red-black trees:

• every red node has two black children, with E being regarded black as well;

1 This is the insertion operation when red-black trees are used to implement sets. For simplicity, we stick
with this particular application.

https://doi.org/10.1017/S0956796801004026 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004026


426 S. Kahrs

data Color = R | B

data Tree a = E | T Color (Tree a) a (Tree a)

insert :: Ord a⇒ a→ Tree a→ Tree a

insert x s = T B a y b

where

ins E = T R E x E

ins s@ (T color a y b) =

if x < y then balance color (ins a) y b

else if x > y then balance color a y (ins b)

else s

T a y b = ins s

balance :: Color→ Tree a→ a→ Tree a→ Tree a

balance B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)

balance B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)

balance B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)

balance B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)

balance c a x b = T c a x b

Fig. 1. Okasaki’s insertion algorithm.

• every path from the root to an empty tree passes through the same number of

black nodes. (I will call this number the ‘height’ of the tree, as it is the height

of the associated 2-3-4 tree.)

However, the algorithm maintains only the second invariant slavishly. The first is

slightly weakened: red nodes at the root of a tree may have red children – we will

call such trees ‘infrared’ (the other trees are ‘proper’). The balance function assumes

and promises the following:

• both tree arguments have the same height n;

• at least one tree argument is proper;

• if we balance with R then additionally neither argument is infrared;

• the result has height n if we balance with R and n + 1 otherwise;

• if we balance with B the result is proper.

Notice that Okasaki’s type for red-black trees does not incorporate the invariants

we demand. While the colour changes are easily enforceable, the balancing is a bit

more delicate. Hinze (1999a, 1999b) showed how one can achieve even that. For

red-black trees the resulting type definitions would be as in figure 2.

The type RB is a nested higher-order type: it is nested, because its first argument

changes in its recursive occurrence (ruling out ML-like type systems (Kahrs, 1996));

it is higher-order, because that same argument has kind ∗ → ∗.
It is not particularly easy to write recursive functions that operate on such types.

The change in the second type argument regularly requires a similarly changing

argument for recursive functions operating on that type – and this argument is

typically a function, or even a collection of functions. The function member has a

functional argument that needs to be updated in the recursive call. In Haskell, we

https://doi.org/10.1017/S0956796801004026 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004026


Red-black trees with types 427

Fig. 2. Proper red-black trees.

can hide this argument from view by using the class system (Hinze, 1999a), but that

is merely a matter of presentation.

The penalty for implementations using this data structure will necessarily contain:

• the cost for the indirections C t;

• the cost for passing through (or maintaining) the Next constructors;

• the cost of the dictionary updates (the mentioned functional argument).

A black coloured tree can either have red or black coloured subtrees — this is the

reason for the two constructors at type Red, and in particular for the extra overhead

caused by the constructor C as mentioned in the first point. The purpose of C is to

embed black coloured trees into the type of potentially red coloured trees which are

exactly the kind of trees permitted as subtrees of black nodes. In other words, any

application of C is overhead, we pay for the typing. In the following I shall put this

point aside as it is completely independent from the other issues — it should just

be mentioned though that this particular subproblem can be solved through the use

of so-called refinement types (Davies, 1997).

The other two points incur costs proportional to the height of the tree. Also,

search, insertion and deletion for this data structure operate in time proportional to

the tree height – implementations are provided on the JFP home page

http://www.cs.ukc.ac.uk/people/staff/smk/redblack/rb.html

https://doi.org/10.1017/S0956796801004026 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004026


428 S. Kahrs

type Tr t a b = (t a b, a, t a b)

data Red t a b = C (t a b) | R (Tr t a b)

data Black a b = E | B(Tr (Red Black) a [b])

balanceL :: Red (Red Black) a [b]→ a→ Red Black a [b]→ Red Black a b

balanceL (R(R(a, x, b), y, c)) z d = R(B(C a, x, C b), y, B(c, z, d))

balanceL (R(a, x, R(b, y, c))) z d = R(B(a, x, C b), y, B(C c, z, d))

balanceL (R(C a, x, C b)) z d = C(B(R(a, x, b), z, d))

balanceL (C a) x b = C(B(a, x, b))

Fig. 3. Top-down typing.

In other words, the penalty slows the algorithms down by a constant factor. Can we

avoid these costs?

2 Employing existential types

We can indeed reduce the performance penalty, by exploiting a language extension

supported by most (if not all) Haskell compilers.

Figure 3 shows another type definition for red-black trees that again uses nested

datatypes, i.e. one argument of a type constructor changes during recursion – the

last argument for type constructors Red and Black. However, this argument is a

phantom type, it is not used anywhere, no data component has that type.

I have not invented phantom types. Erik Meijer and Daan Leijen seem to be

using them regularly in their work, e.g. in Finne et al. (1999) to express inheritance.

However, in our application the phantom type is even more elusive – it does not

interfere with the code, its only purpose is to make the type checker check the tree

balancing. We simply record in this argument the depth of the node in the tree, i.e.

how many black levels we have passed from the root of the tree.

As no data component uses this changing type, the code for the program is

identical to a much more relaxedly typed version which ensured the colouring

but not the balancing – only the type annotations change. One such example (of

unaffected code) is the balanceL operation in figure 3. Its type tells us that its first

tree argument is (potentially) infrared, the second (potentially) red and that the

result is (potentially) red. Moreover, the depth of the result is one less than the

depths of the two others: this is recorded in the last type argument.

The depth of the trees (relative to some other tree) is not quite what we want,

we need to reason about their heights. However, subtrees at the same depth k in

a balanced tree of height n have necessarily the same height (n − k). The function

balanceL creates a tree we are allowed to place at depth k− 1. We really need that

this tree has height n − k + 1 – it does, but this is not enforced through the types

alone. We also need to restrict the use of the polymorphic E constructor.

Figure 4 shows the main part of the insertion algorithm (I omitted balanceR

which is completely dual to balanceL). Insertion into black and red coloured nodes

has been split as they now have different types. Again, the types tell us about both

the colouring and the depth, e.g. inserting into a (potentially) red tree gives us a

(potentially) infrared tree of the same depth.

https://doi.org/10.1017/S0956796801004026 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004026


Red-black trees with types 429

insB :: Ord a⇒ a→ Black a b→ Red a b

insB x E = R(E, x, E)

insB x t@(B(a, y, b))

| x < y = balanceL (insR x a) y b

| x > y = balanceR a y (insR x b)

| otherwise = C t

insR :: Ord a⇒ a→ Red a b→ Red (Red Black) a b

insR x (C t) = C(insB x t)

insR x t@(R(a, y, b))

| x < y = R(insB x a , y , C b)

| x > y = R(C a , y , insB x b)

| otherwise = C t

Fig. 4. Insert.

newtype Tree a = forall b . ENC (Black a b)

empty = ENC E

insert :: Ord a⇒ a→ Tree a→ Tree a

insert x (ENC t) = ENC(blacken(insB x t))

blacken :: Red Black a b→ Black a b

blacken (C u) = u

blacken (R(a, x, b)) = B(C(inc a) , x , C(inc b))

Fig. 5. Existential type.

The algorithm is wrapped up in figure 5. In order to keep operating with tree

depths in a safe manner (i.e. using depths as a reliable source of information for

their heights) we have to keep the depths of differently constructed trees separate.

This is achieved by using a fresh existential type variable2 for every freshly-built

tree.

The figure also hints at the only computational overhead required for this version,

the calls of the function inc inside the definition of blacken. We need to call this

operation whenever the height of the overall tree increases. In that case, the top

node changes its colour from red to black and thus the depth of every single node

in the tree goes up by one. Although the tree itself does not change (inc really is

the identity function, see figure 6), the type system forces us to traverse the entire

tree. This linear cost arises only when the height increases which happens with a

probability of (log n)/n inserting a random element into a random tree of size n.

Thus, the expected costs are still O(log n); this approximation still applies under strict

evaluation, provided we are prepared to live with the worst-case cost of O(n). Only

a few pathological usage patterns can make the amortised costs (Okasaki, 1998)

exceed that bound, e.g. when we repeatedly delete/insert while the tree is at the

borderline of a certain height. The situation does not change under strict evaluation,

unless we make the tree constructors non-strict — in which case single-threadedness

becomes an additional worry.

2 Syntax for this feature varies between compilers as it is non-standard.

https://doi.org/10.1017/S0956796801004026 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004026


430 S. Kahrs

inc :: Black a b→ Black a [b]

inc = tickB

tickB :: Black a b→ Black a c

tickB E = E

tickB (B(a, x, b)) = B(tickR a , x , tickR b)

tickR :: Red a b→ Red a c

tickR (C t) = C(tickB t)

tickR (R(a, x, b)) = R(tickB a , x , tickB b)

Fig. 6. Depth adjustment.

3 Deletion

Deletion of elements is a more intricate operation. Notice that the auxiliary insB

function of the insertion algorithm maintains the property that both its argument

and result have the same height. Deletion cannot maintain the same invariant, for

a very simple reason: if we have a singleton black tree and delete its sole element

then the only possible outcome is the empty tree – and this already reduces the

height. More generally, if we (successfully) delete an element from any tree without

red-coloured nodes then the height of the tree has to be reduced; singleton black

trees are just a special case.

We can maintain a different invariant though. Whenever we attempt to delete

something from a black tree of height n + 1 we return a tree of height n, while

deletion from red trees (and the empty tree) preserves the height. This is even

possible if the deletion attempt fails as we can always redden the root node, again

permitting infrared trees. Overall, this is a slight improvement over the deletion

algorithms in Hinze (1998) and Reade (1992), which represent deletion underflow in

the data rather than putting it into the structure of the algorithm.

The full algorithm can be found on the JFP web site. While Hinze’s algorithm

essentially tries to mimic the traditional imperative algorithm, my version is closer to

Reade’s as it is also based on a recursive append operation. The more complicated

structure of the deletion algorithm is bad news for the higher-order nested version of

red-black trees (from figure 2), because it needs to update that structure whenever

tree heights change. In both Hinze’s and my algorithm (when adapted to that type)

this means updating a class dictionary with at least two functions, significantly

increasing the computational overhead.

Of more interest for this paper though is how the algorithm interfaces with the

existential type variables, see figure 7. The function delB is the dual to insB, it

removes an element from a black tree. The result is a potentially infrared tree of

depth 1. If that tree is either red or infrared (first two cases) we simply blacken the

top red node and thus obtain the required black tree of depth 0. In the third case

the returned tree is already black and it is here where we have a deletion underflow

– the height of the tree decreases. However, in contrast to insertion, we do not

need to adjust the types in this case as we can abstract any type we like when we

https://doi.org/10.1017/S0956796801004026 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004026


Red-black trees with types 431

Fig. 7. Deletion wrap-up.

introduce an existential type variable. Although q has type Black a [b] in that last

case, ENC q still type-checks.

Therefore, this deletion operation has no computational overhead whatsoever for

the type discipline that enforces balancing, unless we count the part responsible for

the colour discipline.

4 Conclusion

We know how we can maintain the invariants of red-black trees through Haskell’s

type system, using nested datatypes. This causes a small but noticeable overhead.

Most of this overhead can be removed by the clever use of existential types.

One can also easily eliminate all the checks once correctness is established: just

eliminate the phantom type parameter we used to pass on the existential type.

This removes both polymorphic recursion and existentials, but leaves the algorithm

virtually unchanged – boosting the performance slightly as inc can be replaced by

the identity.

While the implementation has practical advantages over higher-order nested types,

it is less clear how it would compare to a dependently typed version, in particular

Hongwei Xi’s implementation of red-black trees in de Caml (Xi, 1999). Xi’s version

also avoids the costly higher-order parameters required by the higher-order nested

types, but it is not quite clear to me how much (if anything) from the type system

invades the run-time system.

References

Bayer, R. (1972) Symmetric binary b-trees: Data structure and maintenance algorithms. Acta

informatica, 1, 290–306.

Cormen, T. H., Leiserson, C. E. and Rivett, R. L. (1990) Introduction to Algorithms. MIT

Press.

Davies, R. (1997) A refinement-type checker for Standard ML. AMAST’97 presentation.

Finne, S., Daan, L., Meijer, E. and Peyton Jones, S. (1999) Calling heaven from hell and

hell from heaven. Proceedings ACM SIGPLAN International Conference on Functional

Programming, pp. 114–125. ACM Press.

Hinze, R. (1998) Numerical representations as higher-order nested datatypes. Technical report

IAI-TR-98-12, Universität Bonn.

https://doi.org/10.1017/S0956796801004026 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004026


432 S. Kahrs

Hinze, R. (1999a) Constructing red-black trees. Workshop on algorithmic aspects of advanced

programming languages, pp. 89–99.

Hinze, R. (1999b) Manufacturing datatypes. Workshop on Algorithmic Aspects of Advanced

Programming Languages, pp. 1–16.

Kahrs, S. (1996) Limits of ML-definability. Proceedings of PLILP’96: Lecture Notes in

Computer Science 1140, pp. 17–31. Springer-Verlag.

Okasaki, C. (1998) Purely Functional Data Structures. Cambridge University Press.

Okasaki, C. (1999) Functional pearl: Red-black trees in a functional setting. J. Functional

Programming, 9(4), 471–477.

Reade, C. (1992) Balanced trees with removals, an exercise in rewriting and proof. Science of

Computer Programming, 18(2), 181–204.

Sedgewick, R. (1988) Algorithms. Addison-Wesley.

Xi, H. (1999) Dependently typed data structures. Workshop on Algorithmic Aspects of

Advanced Programming Languages, pp. 17–32.

https://doi.org/10.1017/S0956796801004026 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004026

