Introduction

First, we will explain the overall plan of this book. Proofs and accurate
definitions will not be given here, but will appear in subsequent chapters with
more precise details.

Let X be a smooth projective complex algebraic variety, or in other words,
a closed subvariety in a complex projective space. Denote dim X = n and take
a positive integer m. A regular m-canonical differential form on X is defined
locally by A(x)(dxi A - -+ A dx,)®™ where x1, .. ., x,, are local coordinates of
X and £ is a regular function on X. The set of regular m-canonical differential
forms on X is a finite-dimensional C-linear space denoted by H(X,mKx).
Here K is the canonical divisor. For example, when m = 0, this space is just
C, and when m = 1, this space consists of all regular canonical differential
forms.

For two positive integers m, m’, we can define a multiplication map

H(X,mKx)® H*(X,m'Kx) — H*(X,(m + m)Kx),

inducing a graded ring

R(X,Kx) =P H(X,mKx)

m=0

over the complex number field, which is called the canonical ring of X.

Two algebraic varieties X, Y are said to be birationally equivalent if there
are non-empty Zariski open subsets U C X, V C Y such that there is an
isomorphism U = V. In this case Y is called a birational model of X, and
the canonical ring is a birational invariant, that is, R(X,Kx) = R(Y, Ky).
Birational invariants reflect intrinsic properties of algebraic varieties.

The main theorem of this book is the following proved by Birkar—Cascini—
Hacon—-MC“Kernan ([16]):
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Theorem 1 (Finite generation of canonical rings) For any smooth projective
complex algebraic variety X, the canonical ring R(X,Kyx) is a finitely
generated graded C-algebra.

The proof uses the minimal model program (MMP). The main part of this
book is devoted to the foundation of the MMP.

If the transcendental degree of the canonical ring is n + 1, then X is said
to be of general type. In this case one can show that there exists a “minimal
model” X’ birationally equivalent to X with good properties. An MMP is a
sequence of operations constructing X’ starting from X. In general X’ has
singularities, but the singularities are mild so that the birational invariance
R(X,Kx) = R(X’', Kx) still holds as the smooth case. The finite generation
of canonical rings of minimal models is a consequence of the “basepoint-free
theorem.”

When X is not of general type, by applying the “semipositivity theorem” of
algebraic fiber spaces, one can reduce the problem to the case of “log general
type,” and then derive the finite generation by the “log version” of the MMP.

The MMP is a process of changing birational models one after another.
During this process, algebraic varieties with singularities naturally appear.
However, those singularities are special kinds of normal singularities. The
singularities in the MMP are very interesting research objects for their own
sake. With the development of higher dimensional algebraic geometry, it
is gradually becoming more common to consider algebraic varieties with
singularities.

Proofs in the minimal model theory often use induction on integral invariants
such as dimensions and Picard numbers. In order for this to work well, it is
necessary to enhance the category of objects we consider. Here we extend to
the log version and the relative version.

In the log version, instead of a single algebraic variety X, we consider
a couple (X, B) consisting of X and an R-divisor B on X. For historical
reasons, this is called a log pair and B is called a boundary divisor. Here
an R-divisor B = )_b;B;j is a formal R-linear combination of subvarieties
B; of codimension 1 with real coefficients b;. It is called a Q-divisor if b;
are rational numbers. Instead of the canonical divisor Ky, the log canonical
divisor Kx + B plays the main role.

Conditions on singularities are imposed onto the log pair (X, B). In this
book, we mainly consider the “KLT condition” (Kawamata log terminal
condition) and the “DLT condition” (divisorially log terminal condition). For
example, when X is smooth and the support ) B; of B is a “normal crossing
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divisor,” these conditions correspond to inequalities 0 <bj; <1and 0 <b; <1,
respectively.

In the relative version, all objects are considered over a base variety. Instead
of a single algebraic variety X, we consider a morphism f: X — S to a base
variety.

In summary, we are going to consider a log pair (X, B) with the KLT or DLT
condition and a projective morphism f: X — S to another algebraic variety.
Sometimes we use f: (X, B) — S for short to keep in mind the log version
and the relative version at the same time.

The log canonical ring is defined as

R(X/S.Kx + B) = @ f(Ox(um(Kx + B).)).

m=0

Here the symbol L. means round down, that is, to replace each coefficient
by the nearest integer from below and f, is the direct image of sheaves.
R(X/S,Kx + B) is a graded Og-algebra.

The log and relative version of the finite generation of canonical rings is as
follows:

Theorem 2 Let f: (X,B) — S be a projective morphism from a KLT pair
defined over the complex number field, where B is a Q-divisor. Then the log
canonical ring R(X/S, Kx + B) is a finitely generated graded Ogs-algebra.

In Chapter 1, we will give basic definitions used in this book. The main idea
is to associate a variety with a divisor called boundary and to consider them
as a pair. Such “logarithmization” makes it possible to introduce many new
methods. Log pairs are allowed to have mild singularities. Usually in algebraic
geometry, nonsingular varieties are the central objects, but singularities of
pairs are indispensable and play important roles in the minimal model theory.
We will also explain two big theorems in characteristic 0 (the Hironaka
desingularization theorem and the Kodaira vanishing theorem), both of which
are main tools of this book. In particular, it is known that the vanishing
theorem fails when the characteristic is not 0, so most results of this book
are in characteristic 0. Then we will describe the classification theory of low-
dimensional algebraic varieties. The goal of this part is to provide examples,
and it is logically independent.

In Chapter 2, we will explain the outline of the minimal model theory. There
are two main theorems: the basepoint-free theorem and the cone theorem.
Using these theorems we formulate the MMP. The minimality of a log pair
(X, B) is tested by the “numerical property” of the log canonical divisor. If the
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pair is not minimal, then there exists an “extremal ray” by the “cone theorem,”
and it induces a “contraction morphism” by the “basepoint-free theorem.”
There are three types of contraction morphisms: “divisorial contractions,”
“small contractions,” and “Mori fiber spaces.” For small contractions we need
to consider another birational map called “flip” on the “opposite side.” We
will also explain new contents such as an effective version of the basepoint-
free theorem and the MMP with scaling. In addition, we describe an important
extension theorem developed from the theory of multiplier ideal sheaves.

In Chapter 3, we will give the proof of the finite generation of canonical
rings, which is the main topic of this book. To this end, we show the
existence of minimal models for varieties of general type. The “existence of
flips” is proved as a special case of the finite generation of canonical rings.
Furthermore, the “termination of flips” is proved under the assumption of
“general type,” which finishes the proof of the finite generation theorem in the
general type case. In the end, we apply the semipositivity theorem of Hodge
bundles, which is also a result to be held only in characteristic O.

The content of Chapter 2 is basically the same as [76]. This book is a sequel
of [76] and [67]. [76] summarized the results of the minimal model theory in
its early stages, and has been cited in much literature. In there, the minimal
model theory was already described in the log version and the relative version,
which is consistent with the direction of the development afterward. We are
proud to have played a certain role in producing a standard literature on the
minimal model theory. At that stage, the basepoint-free theorem and the cone
theorem were proved and the existence of minimal models was reduced to two
conjectures on flips. In subsequent developments, the existence of flips was
proved, along with the termination of flips in some special but important cases.
The purpose of Chapter 3 is to explain those developments.

Remark 3 (1) In the proof, it is necessary to consider not only Q-divisors, but
also R-divisors. However, the finite generation theorem only holds when B
is a Q-divisor.

(2) Although in our discussion we assumed that the base field is the complex
number field C, all proofs work for algebraically closed fields in charac-
teristic 0. Moreover, the results can be extended to algebraically nonclosed
fields after necessary modifications. On the other hand, it is expected that
the same conclusions (theorems in the minimal model theory and the finite
generation of canonical rings) still hold true in positive characteristics, but
the arguments in this book fail for two reasons. First, the desingularization
theorem will be used in many places, which is still an open problem in
positive characteristics; second, the vanishing theorem is a key tool in the
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proofs, which has counterexamples in positive characteristics. Therefore,
there is almost no progress in positive characteristics. (Added in 2023: This
claim held only at the time of the publication of the Japanese version.)

(3) In this book, all results are stated in the log and relative version. If this
seems annoying to you, just take the boundary B to be 0, take S to be
a point Spec k, and replace the direct image sheaf f,F by the space of
global sections H°(X, F), but the point of the proof will not change at
all. However, as the proofs in the MMP are inductive, it is indispensable
to state the log and relative version. Also, when dealing with algebraic
varieties of nongeneral type, even if we start from an ordinary algebraic
variety without boundary, log pairs naturally appear from the structure of
algebraic fiber spaces.

(4) The finite generation of canonical rings is one of the main goals of the
MMP in the beginning. Even though it is proved now, the existence of
minimal models still remains open in the general case.

As prerequisites, we hope the reader has some familiarity with algebraic
varieties. For this, it is sufficient to have standard knowledge from the textbook
of Hartshorne ([44]). In particular, the theory of cohomologies of coherent
sheaves is a basic tool; the concept of linear systems of divisors and the
correspondence of Cartier divisors and invertible sheaves on a normal algebraic
variety are important, which will be explained in Chapter 1; also it is better
to have knowledge of algebraic surface theory as in [44, Chapter V]; but
it is not necessary to understand every detail in [44] because, other than
Section 2.7, this book does not deal with general schemes but only deals
with irreducible reduced separated schemes of finite type over an algebraically
closed field (i.e. algebraic varieties). The Kodaira vanishing theorem and the
Hironaka desingularization theorem are important theorems cited in this book
(the statements of the theorems will be given). These are indispensable tools
for the discussions in this book, but it is not necessary to understand the proofs.
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