Fourth and ffith places.-For every farthing above sixpences, 4, with a unit of carriage for every 6 farthings.

All subsequent places.-For every farthing above three-halfpences, 1, with 6 for a denominator, and reduction to a decimal. Thas at $8 \frac{3}{4} d$. the sixth and following figures are as in $\frac{5}{6}$, namely, 8333.

The third rule may be advantageously abandoned in favour of the following: - When the fourth and fifth figures are $00,25,50,75$, the decimal has terminated; in every other case the complement to 5 of the fifth figure is the numerator; or, when the fifth figure is 5 or apwards, the complement to 10 . That is, when the decimal is interminable, or when the fourth and fifth figures are not $00,25,50,75$,

And this sub-rule is convenient; a fifth figare three is followed by nothing but threes, a six by nothing bat sixes.

Yours truly,
A. DE MORGAN.

ON THE FACILITY WITH WHICH THE ORDINARY ANNUITY AND ASSURANCE VALUES ARE DERIVED FROM THE VALUE OF THE ENDOWMENT.

To the Editor of the Assurance Magazine.

Sir, -The ordinary tables of life annuities and assurances which have hitherto been published, as well as the tables on the commatation method, are unquestionably of great value; but, nevertheless, are not, I submit, so extensively useful as they might be made by the introduction of certain supplemental columns of quantities required in practice, the want of which arises with snfficient frequency to call for their being tabulated. This view is, to some extent, recognised by Mr. Thomson, in his valuable work, entitled Actuarial Tables; and the object of the present communication is to draw attention to the fact, that the values of assurances, as well as of annuities, fixed and increasing, temporary and deferred, may be easily obtained aud tabulated directly from the values of endowments.

On a previous occasion, I had the honour of addressing you on the desirableness of an extension of the $\mathrm{D}_{\text {a }}$ and N method, by the introduction of columns of differences (Assurance Magazine, vol. viii., p. 168), and endeavoured to point out the importance of tables in that form. I beg now to submit a specimen table of another kind, exhibiting various columns of values not usuallygiven, the adoption of which would tend much to abridge or simplify certain computations, in which such values occur as functions. The table is similar in principle, as regards a portion of the annuity values, to the tables given in Mr. Thomson's valuable work before mentioned, but differing from those tables in this respect, that the whole of the assurance values, as well as the values of the annuities, are derived, as above remarked, directly from the endowments at the corresponding ages.

The relation subsisting between these various values, and their resultance from the values of the endowments, are so obvious that demonstration is unnecessary; but I am not aware that any writer has poimted out such relation, in the manner presently shown (p .57), as a means for the direct deduction of the assurance values. For this reason, I assume that my drawing attention to the subject may not be altogether without interest to some, at least, of the members of the Institute.

The values in the table here given coincide with those which would be shown by Mr. Thomson's method, as regards columns Nos. 1, 5, and 7 of the annuity values, and as regards Nos. 9, 11, and 12 of the assurance values. The remaining columns are prodnced by a very obvious and easy process, as will appear from the following equations and explanations.

Col. 1.

$$
\begin{gathered}
e_{x+1}=v . p_{x} ; e_{x+2}=v^{2} \cdot p_{x_{2}}, \& \mathrm{c} . \\
\text { Col. } 2 .
\end{gathered}
$$

Assigning to n all values from unity to the oldest age in the table-

$$
n . e_{x+1}=e_{x+1} ; n . e_{x+2}=2 e_{x+2} ; n . e_{x+3}=3 e_{x+3}, \& c .
$$

The formation of this column is obvious, and contains the prodact of the value, against each age, in col. 1, by $1,2,3, \& c$., according to the number of years deferred, which is represented by n, and at which the benefit may commence or cease.

This column may be described as the sammation of col. 1 , commencing from the youngest age.

Col. 4.

$$
\begin{aligned}
& i_{x_{1]}}=e_{x+1}=n \cdot e_{x+1} \\
& i_{x_{2}}=e_{x+1}+2 e_{x+2}=i_{x_{1}}+n . e_{x+2} \\
& i_{x_{3}}=e_{x+1}+2 e_{x+2}+3_{x+3}=i_{x_{3}}+n . e_{x+2} \\
& i_{x \eta}=e_{x+1}+2 e_{x+2}+3 e_{x+3}+\ldots+n . e_{x+n}= \\
& \left.=i_{x_{n-1}}+n . e_{x+n}=i_{x}-i_{x}\right\rceil^{n}-n . a_{n} \eta^{n} .
\end{aligned}
$$

This column is formed from col. 2, as col. 3 is from col. 1.

* The final value in this column, which is obviously that of an annuity for the whole of life.
\dagger The final palue of this column, which is manifestly that of an anmity increasing £1 per annum for the whole of life.

Col. 5.
Put $x+z=$ the oldest age in the table.
$x+n=$ any age intermediate between x and $x+z$.

$$
\begin{aligned}
& a_{x-z}=0 \\
& a_{x} \chi^{x-1}=e_{x+z} \\
& \left.a_{x}\right]^{x-2}=e_{x+z}+e_{x+y-1} \\
& \left.a_{x}\right\rceil^{z-n}=e_{x+y}+e_{x+z-1}+\cdots \quad . \quad+e_{x+z-(n-1)} \\
& \left.a_{x}\right\rceil^{1}=e_{x+z}+e_{x+z-1}+\cdots+e_{x+2} \quad * \\
& a_{x} \eta_{0}=e_{x+z}+e_{x+z-1}+\cdots \cdot+e_{x+1}=a_{x}
\end{aligned}
$$

By subtraction,

$$
\begin{aligned}
& \left.a_{x}\right\rceil^{0}=a_{x} \\
& \left.a_{x}\right\rceil^{1}=a_{x} \eta^{0}-e_{x+1}=a_{x}-a_{x_{1}} \\
& \left.a_{x} \chi^{2}=a_{x}\right\rceil_{1}-e_{x+2}=a_{x}-a_{x_{2}} \\
& \left.a_{x}\right\rceil^{n}=a_{x\rceil^{n-1}}-e_{x+n}=a_{x}-a_{x \eta}
\end{aligned}
$$

This column is formed by summing column 1, commencing at the oldest age, and placing the results at each age opposite to the age one year younger; or, it may be formed by placing the value of the whole-life annuity opposite to " 0 years deferred," and subtracting successively the quantities in column 1 downwards.

Col. 6.

Putting, as before, $n=1,2,3, \& c$.,

This column is formed from col. 5 as col. 2 is from col. 1.

Col. 7.

Putting $x+z$, as before, \&c.,

$$
\begin{aligned}
& \left.i_{x}\right\rceil^{x}=0 \\
& \left.i_{x}\right\rceil^{x-1}=a_{x} \prod^{x-1}=e_{x+x} \\
& \left.i_{x]_{0-2}^{x}}=i_{x}^{7^{x-1}}+a_{x+x-2}=a_{x 7^{x-1}}+a_{x}\right]^{x-2}=2 e_{x+x}+e_{x+x-1} \\
& \left.\left.\left.i_{x}\right\rceil^{n-n}=i_{x}\right\rceil^{z-n-1}+a_{x}\right\rceil^{-n}=(z-n) e_{x+z}+(\overline{z-1}-n) e_{x+z-1} \\
& +(\overline{z-2}-n) e_{x+x-2}+\cdots \cdots+(z-n-1) e_{x+z-n-1}
\end{aligned}
$$

$$
\begin{aligned}
& =(z-1) e_{x+s}+(z-2) e_{x+x-1}+\ldots+e_{x+2} \\
& \left.\left.\left.\left.\left.\left.i_{x}\right\rceil^{0}=i_{x}\right\rceil^{1}+a_{x}\right\rceil^{0}=a_{x}\right\rceil^{x}+a_{x}\right\rceil^{x-1}+\ldots . . . a_{x}\right\rceil^{0}
\end{aligned}
$$

And generally,

$$
\left.\left.i_{x\rceil^{n}}=i_{x}\right\rceil^{n+1}+a_{x}\right\rceil^{n}=e_{x+n+1}+2 e_{x+n+2}+3 e_{x+n+3}+\ldots . . \& e
$$

Or, by subtraction, commencing at the earliest age,

$$
\begin{aligned}
& i_{x} \eta=i_{x}-a_{x} \\
& \left.\left.i_{x}\right\rceil^{2}=i_{x} \eta_{1}-a_{x}\right\rceil_{1}^{1} \\
& \left.\left.\left.i_{x}\right\rceil^{3}=i_{x}\right\rceil^{2}-a_{x}\right\rceil^{2} \\
& \cdot \\
& \cdot \cdot \\
& \left.i_{x}\right\rceil^{n}=i \cdot \\
& \left.\left.\left.i_{x}\right\rceil^{n-1}-a_{x}\right\rceil^{n-1}=i_{x}-i_{x \cdot}-n \cdot a_{x}\right\rceil^{n} .
\end{aligned}
$$

This column is the summation of col. 5 , beginning with the oldest age; or it may be found by placing the value of a whole term increasing annuity opposite " 0 years deferred," subtracting first the whole term annoity and then the successive values of the deferred annuities from the value last found.

$$
\text { Col. } 8 .
$$

v. $e_{x+n}=$ the several valnes in column 1, each multiplied into the present value of $£ 1$ to be received at the end of 1 year.

$$
\begin{gathered}
\text { Col. } 9 . \\
\mathrm{E}_{x+1}=v-e_{x+1} \\
\mathrm{E}_{x+2}=v \cdot e_{x+1}-e_{x+2} \\
\cdot \\
\mathrm{E}_{x+n}=v \cdot e_{x+(n-1)}-e_{x+n}
\end{gathered}
$$

These values are obtained by subtracting those in col. 1 from those in col. 8 respectively opposite to an age 1 year younger.

$$
\text { Cols. } 10,11,12,18,14 \text { and } 15 .
$$

The equations given for the annaity values in cols. 2, 3, 4, 5, 6, and 7, will also express the equations subsisting between the assurance columns by substituting $\mathrm{E}, \mathrm{A}, \mathrm{l}$, for e, a, i; and the mode of construction is in all respects similar to that of the corresponding annuity columns before described.

$$
\text { Col. } 12 .
$$

$$
e \mathrm{~A}_{x_{1}}=e_{x+1}+\mathrm{A}_{x_{1}}, e \mathrm{~A}_{x_{2}}=e_{x+2}+\mathrm{A}_{x_{2}}, \& \mathrm{c} .
$$

and is formed by adding at each age the value in col. 1 to that in col. 11 at the corresponding age.

With regard to col. 8, which is introduced for the purpose of showing the manner in which we pass from the values of the endowment to the assurance values, it may be remarked that it consists of the several values of col. 1 each discounted one year. For it will be obvious that the present value of $£ 1$ to be received if death occur within the first year, is the difference between the discounted value of $£ 1$ for one year and the value of $£ 1$ to be received if the life survive that term; the value of $£ 1$ to be received if death take place within the second year will be the difference between the discounted value of $£ 1$ to be payable on surviving one year and the present value of $£ 1$ to be received on surviving two years; and so
forth. Owing to this relation between the endowment and the endowmentassurance (the latter term being ased in the sense applied to it by Professor de Morgan in his paper in the Companion to the Almanack, and by Mr. Peter Gray in his Tables and Formule), the values in col. 9 are deduced, $\mathrm{viz}, \mathrm{E}_{x+n}=v . e_{x}-e_{x+1} ; \mathrm{E}_{\alpha+2}=v . e_{x+1}-e_{x+2}, \& \mathrm{c}$.

The benefits, the present values of which are contained in the several columns of the table, will, I think, be sufficiently obvious without verbal explanation. It may be interesting, however, to compare these columar results with the equivalent formula of the commutation method, both as ordinarily exhibited, and in the form they would assume, did we possess the supplementary columns of differences to which attention was directed in the commanication above referred to, viz.:-

Numerous combinations of these terms are of frequent occurrence, many of which are interesting as regards the comparative merits of the different methods; but having already trespassed upon your valuable space, I will refrain from introducing them in the present letter. I may, at a future opportanity, request the favour of being allowed again to refer to the subject.

> I am, Sir,
> Your obedient servant,

March 1863.
S. L. LAUNDY.

Age 60.

		䓪 最 总 品									
$x+n$.	n.	$\boldsymbol{e}_{\boldsymbol{x + n}}{ }^{\text {a }}$	$n . e_{x+n}$	$a_{x=1}$	x_{n}	$a_{x} 7^{n}$	$n . a_{x} 7^{n}$	$\left.i_{x}\right\rangle^{n}{ }^{\text {b }}$	v．$e_{x+n^{*}}$	n.	$x+n$.
60	0					10－18782		85－03695	$\cdot 97087$	0	60
1	1	$\cdot 94142$	$\cdot 94142$	$\cdot 94142$	－94142	$9 \cdot 24640$	$9 \cdot 246407$	74.84913	－91400	1	1
2	2	－8841911	176838	1－82561	270980	$8 \cdot 362211$	$16 \cdot 72442$	65．60273	－85844	2	2
3	3	－82829 2	$2 \cdot 48487$	$2 \cdot 65390$	$5 \cdot 19467$	7－53392	2260176	$57 \cdot 24052$	－80417	3	3
4	4	$\cdot 77374$	3－09496	3－42764	8－28963	6.76018	27.04072	4970660	－75120	4	4
65	5	－72053	$3 \cdot 60265$	$4 \cdot 148171$	11－89228	6.03965	30－19825	4294642	－69954	5	65
6	6	－66871	4－01226	481688	15．90454	5－37094	$32 \cdot 22564$	36.90677	－64923	6	6
7	7	－61832	4－32824	$5 \cdot 43520$	20.23278	$4 \cdot 75262$	33－26834	$31 \cdot 53583$	－60031	7	7
8	8	56941	4－55528	$6 \cdot 004612$	24．78806	$4 \cdot 18321$	33－46568	26.78321	－55283	8	8
9	9	$\cdot 52207$	$4 \cdot 69863$	6.52668	29－48669	$3 \cdot 66114$	$32 \cdot 95026$	22－60000	－50686	9	9
70	10	$\cdot 47641$	4－76410	$7 \cdot 00309$	34－25079	$3 \cdot 18473$	$31 \cdot 84730$	1893886	－46253	10	70
1	1	－43250	475750	$7 \cdot 435593$	39－00829	275223	30－27453	15．75413	－41990	1	1
2	2	－ 39044	4－68528	782603	43.69357	2－36179	$28 \cdot 34148$	13.00190	－37907	2	2
3	3	－35034	4－55442	8－17637	4824799	$2 \cdot 01145$	26．14885	10.64011	$\cdot 34014$	3	3
4	4	－31228	4－37192	$8 \cdot 48865$	$52 \cdot 61991$	$1 \cdot 69917$	$23 \cdot 78838$	$8 \cdot 62866$	－30318	4	4
75	15	－27636	$4 \cdot 14540$	876501	56.76531	1－42281	21－34215	6.92949	－26831	15	75
6	6	－24267	$3-88272$	900768	60．64808	$1 \cdot 18014$	18.88224	$5 \cdot 50668$	－23560	6	6
7	7	－21130	$3 \cdot 59410$	$9-21898$	64－24013	－96884	1647028	432654	$\cdot 20515$	7	7
8	8	－18227	328086	$9-40125$	67－52099	78657	$14 \cdot 15827$	335770	－17696	8	8
9	9	$\cdot 15565$	2－95735	9.55690	$70 \cdot 47834$	－63092	$11-98748$	$2 \cdot 57113$	－15112	9	9
80	20	－13146	$2 \cdot 62920$	$9 \cdot 68836$	$73 \cdot 10754$	$\cdot 49946$	9.98920	1.94021	－12763	20	80
1	1	－10971	230391	979807	75.41145	－38975	8－18475	1.44075	$\cdot 10652$	1	1
2	2	－09039	1.98858	988846	77－40003	－29936	6.58592	1.05100	－ 08776	2	2
3	3	－07343	168889	9.96189	79.08892	－22593	5－19639	$\cdot 75164$	－07129	3	3
4	4	－05875	1－41000	10.02064	80－49892	－16718	$4-01232$	－52571	－05704	4	4
85	25	－04622	1－15550	10－06686	81－65442	－12096	3 －02490	－35853	－04487	25	85
6	6	－03567	－92742	10－10253	8258184	－08529	2－21794	－23757	－03463	6	6
7	7	－02693	－72711	10－12946	85－30895	－05836	1.57572	－15228	－02614	7	7
8	8	．01981	－55468	10－14927	83－86363	－03855	107940	－09392	－01923	8	8
9	9	－01413	－40977	$10 \cdot 16340$	84＊27340	－02442	$\cdot 70818$	－05537	－01372	9	9
90	30	－00971	－29130	10－17311	84－56470	－01471	－44130	－03095	－00943	30	90
1	1	－00637	－19747	10－17948	84－76217	$\cdot 00834$	－25854	－01624	－00618	1	1
2	2	－00395	－12640	$10 \cdot 18343$	84－88857	－00439	$\cdot 14048$	－00790	－00384	2	2
3	3	－00228	－07524	10－18571	84.96381	．00211	－06963	－00351	－00221	3	3
4	4	． 00120	－04080	1018691	85.00461	$\cdot 00091$	－03094	－00140	－00117	4	4
95	35	－00057	－01995	$10 \cdot 18748$	85．02456	－00034	－01190	－00049	－00055	35	95
6	6	－00023	－00828	$10 \cdot 18771$	85.03284	－0001］	－00396	－00015	－00022	6	6
7	7	－00008	－00296	$10 \cdot 18779$	85.03580	－00003	． 00111	－00004	－00008	7	7
8	8	－00002	－ 00076	$10 \cdot 18781$	85.03656	$\cdot 00001$	－00038	－00001	－00002	－	8
9	9	． 00001	－00039	$10 \cdot 18782$	85.03695					9	9
		1.	2.	3.	4.	5.	6.	7.	8.		

Value of Assurances (Experience 3 per Cent.).
Age 60.

$x+n$.	n.	E_{x+n}.	$n . \mathrm{E}_{x+n}$	$\mathrm{A}_{x \rightarrow{ }_{\square}}$	$\mathrm{I}_{x_{n}}$.	A	$n . \mathrm{A}_{x} \chi^{n} \cdot$	$7^{\text {n. }}$	$\mathrm{A}_{x_{n}}$.	n.	+ n.
60	0					-67412		$8 \cdot 38461$		0	60
1	1	-0294s	-02945	-02945	02945	.64467	$\cdot 64467$	7-71049	-97087	1	1
2	2	-02981	-05962	-05926	-08907	-61486	1-22972	$7 \cdot 06582$	94345	2	2
3	3	-03015	-09045	-08941	$\cdot 17952$	-58471	175413	6.45096	91770	3	3
4	4	-03043	-12172	$\cdot 11984$	-30124	-55428	2.21712	5•86625	-89358	4	4
65	5	-03067	-1533a	-15051	-45459	52361	$2 \cdot 61805$	5•31197	-87104	5	65
		-03083	-18498	$\cdot 18134$	$\cdot 63957$	-49278	$2 \cdot 95668$	4.78836	- 85005	6	6
7	7	. 03091	-21637	-21225	$\cdot 85594$	-46187	3-23309	$4 \cdot 29558$	-83057	7	7
8	8	-03090	24720	24315	1-10314	43097	$3 \cdot 44776$	$3 \cdot 83371$	81256	8	8
9	-	-03076	. 27684	$\cdot 27391$	137998	-40021	360189	3-40274	79598	9	9
70	10	-03045	-30450	-30436	$1 \cdot 68448$	-36976	3.69760	3•00253	78077	10	70
1	1	-03003	-33033	- 33439	2.01481	-33973	373703	2•63277	76689	1	1
2		-02946	-35352	-36385	2.36833	-31027	$3 \cdot 72324$	2-29304	-75429	2	2
3	3	-02873	-37349	-39258	$2 \cdot 74182$	-28154	3.66002	$1 \cdot 98277$	74292	3	3
4	4	-02786	'39004	-42044	313186	-25368	$3 \cdot 55152$	$1 \cdot 70123$	73272	4	4
75	15	-02682	-40230	$\cdot 44726$	3:53416	-22686	3-40290	$1 \cdot 44755$	72362	15	75
6	G	-02564	-41024	$\cdot 47290$	3-94440	-20122	3-21952	122069	71557	6	6
7	7	-02430	-41310	$\cdot 49720$	$4 \cdot 35750$	-17692	3.00764	1.01947	-70850	7	7
8	8	-02288	-41184	. 52008	4.76934	-15404	$2 \cdot 77272$	-84255	70235	8	8
9	9	-02131	-40489	-54139	5-17423	-13273	2-52187	-68851	-69704	9	9
80	20	-01966	-39320	. 56105	5•56743	11307	226140	-55578	$\cdot 69251$	20	80
1	1	-01792	-37632	-57897	5.94375	-09515	1.99815	-44271	-68868	1	1
2	2	$\cdot 01613$	-35486	- 59510	6-29861	. 07102	$1 \cdot 73844$	-34756	-68549	2	2
3	3	-01433	-32959	-60943	6.62820	-06469	1-48787	-26854	-68286	3	
4	4	-01254	-30096	-62197	6.92916	-05215	1-25160	-20385	-68072	5	5
85	25	-01082	-27050	-63279	719966	. 04133	1.03325	-15170	. 67901	25	85
6	6	-00920	-23920	-64199	$7 \cdot 43886$	$\cdot 03213$	0-83538	-11037	$\cdot 67766$	6	6
7	7	$\cdot 00770$	-20790	-64969	7-64676	-02443	-65961	-07824	-67662	7	7
8	8	-00633	-17724	-65602	7.82400	-01810	-50680	-05381	-67583	8	
9	9	-00510	$\cdot 14790$	-66112	7-97190	01300	-37700	-03571	$\cdot 67525$	9	9
90	30	-00401	-12030	-66513	8.09220	00899	-26970	-02271	$\cdot 67484$	30	9
1	1	-00306	-09486	-66819	8-18706	-00593	$\cdot 18743$	-01372	-67456	1	1
2	2	-00223	-07136	-67042	$8 \cdot 25842$	00370	$\cdot 11840$	$\cdot 00779$	'67437	2	
3	3	$\cdot 00156$	-05148	-67198	8.30990	$\cdot 00214$	-07062	$\cdot 00409$	-67426	3	3
4	4	-00101	.03434	-67299	8-34424	-00113	-03842	-00195	-67419	4	4
95	35	-00060	-02100	-67359	$8 \cdot 36524$	-00053	-01855	-00182	-67416	35	95
6	6	-00032	-01152	-67391	8.37676	-00021	-00756	-00029	$\cdot 67414$	6	6
7	7	-00014	-00518	-67405	$8 \cdot 38194$	-00007	-00259	-00008	-67413	7	7
8	8	-00006	-00228	-07411	$8 \cdot 38422$	-00001	-00058	$\cdot 00001$	-69413	8	8
9	9	-00001	.00039	$\cdot 67412$	838461			..	67412	9	9
		9.	10.	11.	12.	13.	14.	15.	16.		

