BULL. AUSTRAL. MATH. SOC. Vol. 49 (1994) [483-488]

ORDERED COMPACTIFICATIONS WITH COUNTABLE REMAINDERS

D.C. KENT AND T.A. RICHMOND

It is shown that if a partially-ordered topological space X admits a finite-point T_2 -ordered compactification, then it admits a countable T_2 -ordered compactification if and only if it admits *n*-point T_2 -ordered compactifications for all *n* beyond some integer m.

1. INTRODUCTION

Countable compactifications of topological spaces have been studied in [1, 5, 7, 9]. In [7], Magill showed that a locally compact, T_2 topological space X has a countable T_2 compactification if and only if it has n-point T_2 compactifications for every integer $n \ge 1$. We generalise this theorem to T_2 -ordered compactifications of ordered topological spaces.

Before starting our generalisation of Magill's theorem, we recall two unpleasant facts about ordered compactifications. For the class of ordered topological spaces which allow T_2 -ordered compactifications (that is, the $T_{3.5}$ -ordered spaces), local compactness does not guarantee the existence of finite-point T_2 -ordered compactifications (think of the reals with the usual order and discrete topology); furthermore the existence of an *n*-point T_2 -ordered compactification for some n > 1 does not guarantee the existence of a one-point T_2 -ordered compactification (think of the reals with the usual order and topology). Here is our main theorem: If a $T_{3.5}$ -ordered space X allows a finite-point T_2 -ordered compactification, then X allows a countable T_2 -ordered compactification if and only if there is a positive integer m such that X allows an n-point T_2 -ordered compactification for every $n \ge m$. In case the order on X is equality, the result is equivalent to Magill's theorem.

An ordered topological space, or simply an ordered space is a triple (X, τ, θ) where τ is a topology on the set X and θ is the graph of a partial order on X. An ordered space (X, τ, θ) is T_2 -ordered if θ is closed in the product space $X \times X$, and is $T_{3.5}$ -ordered (completely regular ordered in [10]) if the following conditions are satisfied: (1) If $A \subseteq X$ is closed and $x \in X \setminus A$, then there exist continuous functions $f, g: X \to [0,1]$ with f increasing, g decreasing, f(x) = g(x) = 1, and $f(a) \wedge g(a) = 0$ for all $a \in A$;

Received 5th August, 1993.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

(2) If x and y are distinct points in X, then there exists a continuous monotone function $f: X \to [0,1]$ with f(x) = 0 and f(y) = 1. Compact T_2 -ordered implies $T_{3.5}$ -ordered, and $T_{3.5}$ -ordered is hereditary.

An ordered compactification of (X, τ, θ) is a compact T_2 -ordered space (X', τ', θ') such that (X', τ') contains (X, τ) as a dense subset, and $\theta \subseteq \theta'$. We shall usually write (X', τ', θ') simply as X'. An ordered space has an ordered compactification if and only if it is $T_{3.5}$ -ordered (see [4] or [10]). An ordered compactification (X', τ', θ') of (X, τ, θ) is *strict* if θ' is the smallest order that makes (X', τ') an ordered compactification, that is, if θ' is the intersection of all closed partial orders on (X', τ') that extend θ .

If X' is an (ordered) compactification of X, the associated remainder is the subspace X'\X of X'. An (ordered) compactification whose remainder is finite or countably infinite is called a finite-point (ordered) compactification or a countable (ordered) compactification, respectively. A relation \leq is defined on the set K(X) of all compactifications of a topological space X by $X^* \geq X'$ if and only if there exists a continuous function $f: X^* \to X'$ which leaves X pointwise invariant. If $X^* \geq X'$ and $X' \geq X^*$ then X^* and X' are equivalent compactifications. If we do not distinguish between equivalent compactifications, then \leq is a partial order on K(X). The set $K_o(X)$ of all ordered compactifications of ordered space X can be partially ordered in the same manner with the only additional requirement that the projection function $f: X^* \to X'$ be increasing.

If θ' is a partial order on X', we shall write $x \leq y$ for $(x, y) \in \theta'$. A set $B \subseteq X'$ is *increasing* if $B = \{x \in X' : b \leq x \text{ for some } b \in B\}$. Decreasing sets are defined dually. The discrete order on a set X is $\Delta_X = \{(x, x) : x \in X\}$.

2. COUNTABLE REMAINDERS

A locally compact topological space X has a two-point compactification if and only if X has some compactification with disconnected remainder (for example, 6.16 in [2]). We say an ordered space X is order disconnected if there exists a continuous increasing surjection $f: X \to \{0,1\}$ where $\{0,1\}$ has the discrete topology and the usual order 0 < 1. While the existence of an order disconnected remainder does not imply the existence of a two-point ordered compactification (consider $\mathbb{R} \setminus \{0\}$, which has only three-point and four-point ordered compactifications), we do have the following result.

LEMMA 2.1. Suppose X' is an m-point strict ordered compactification of (X, τ, θ) and X^{*} is a larger ordered compactification of X. Suppose $h: X^* \to X'$ is the projection function and there exists $\alpha \in X' \setminus X$ such that $h^{-1}(\alpha)$ is order disconnected. Then there exists a (m + 1)-point ordered compactification X" with $X'' \ge X'$, obtained by replacing α in X' by two compactification points.

PROOF: Let X'' be the disjoint union of $X' \setminus \{\alpha\}$ and $\{0,1\}$. Suppose

 $g: h^{-1}(\alpha) \to \{0,1\}$ is continuous, increasing, and onto. Define $f: X^* \to X''$ by f(x) = h(x) for $x \in X^* \setminus h^{-1}(\alpha)$ and f(x) = g(x) for $x \in h^{-1}(\alpha)$. If X'' is given the quotient topology τ'' derived from f and X^* , then (X'', τ'') is a topological compact-ification of X.

Define a relation θ'' on X'' by $a \leq '' b$ if and only if there exist points $a = c_0, c_1, \ldots, c_n = b$ in X'' such that for each $i = 1, \ldots, n$, there exists a net (x_λ, y_λ) in θ converging in $X'' \times X''$ to (c_{i-1}, c_i) . The points $a = c_0, c_1, \ldots, c_n = b$ are called a *trail* from a to b with length n. In [12, Theorem 1.1] it is shown that the analogous relation \leq' defined on X' is the strict order on X'. Observe that the nets (x_λ, y_λ) defining a trail are nets in $\theta \subseteq X^2$ and thus (x_λ) and (y_λ) are embedded in X', X'', and X^* . Since X' is a quotient of $X'', x_\lambda \to c_i$ in X'' implies $x_\lambda \to c'_i$ in X', where $c'_i = c_i$ if $c_i \in X'' \setminus \{0,1\} = X' \setminus \{\alpha\}$, and $c'_i = \alpha$ if $c_i \in \{0,1\}$. If c_0, \ldots, c_n is a trail in X'' from c_0 to c_n where $c_0, c_n \in X'' \setminus \{0,1\}$, then $c_0 = c'_0, c'_1, \ldots, c'_n = c_n$ is a trail in X' from c_0 to c_n , and thus $c_0 \leq c_n$. This shows that θ'' extends $\theta' \cap (X' \setminus \{0,1\})^2$, and therefore extends θ .

We now show that \leq'' is antisymmetric. Suppose $a \leq'' b$ and $b \leq'' a$. If $a, b \in X'' \setminus \{0,1\} = X' \setminus \{\alpha\}$, then $a \leq' b$ and $b \leq' a$, and thus a = b. If $a \in X'' \setminus \{0,1\}$ and $b \in \{0,1\}$, then the trails from a to b and from b to a imply $a \leq' a$ and $\alpha \leq' a$, contrary to the fact that $a \in X'' \setminus \{0,1\} = X' \setminus \{\alpha\}$. Finally, suppose $a, b \in \{0,1\}$, that is, suppose $0 \leq'' 1$ and $1 \leq'' 0$. Since $0 \leq'' 1$, there exists a trail $0 = c_0, \ldots, c_i, \ldots, c_n = 1$ in X'' from 0 to 1. Viewing the nets involved as nets in X' we have $\alpha = 0' \leq' c'_i \leq' 1' = \alpha$, and thus $c_i \in \{0,1\}$. Thus, the only trail with minimal length from 0 to 1 is 0,1. Similarly, $1 \leq'' 0$ implies 1,0 is the unique minimal trail from 1 to 0. Suppose (x_λ, y_λ) is a net in θ converging to (0,1) and (z_γ, w_γ) is a net in θ converging to (1,0). Now in $X^* \times X^*$, there are convergent subnets $(x_{\sigma(\lambda)}, y_{\sigma(\lambda)}) \to (a^*, b^*)$ and $(z_{\rho(\gamma)}, w_{\rho(\gamma)}) \to (b^\#, a^\#)$ where $a^*, a^\# \in g^{-1}(0)$ and $b^*, b^\# \in g^{-1}(1)$. Since these subnets are in θ and θ^* is closed, it follows that $a^* \leq^* b^*$ and $b^\# \leq^* a^\#$. But $1 = g(b^\#) \leq g(a^\#) = 0$, contrary to g being increasing. Thus $0 \leq'' 1$ and $1 \leq'' 0$ is not possible, and \leq'' is antisymmetric. The relation \leq'' is easily seen to be reflexive and transitive, and is thus a partial order on X''.

To show that \leq'' is closed in $X'' \times X''$, it suffices to show that if (A_{γ}, B_{γ}) is any net in \leq'' converging to (A, B), then $A \leq'' B$. This can be shown by an induction argument on $\max_{\gamma} \{ \text{length of a minimal trail from } A_{\gamma} \text{ to } B_{\gamma} \}$ (which is bounded), as in the proof of Theorem 1.1 of [12].

Thus, (X'', τ'', \leq'') is a strict ordered compactification of X with $X'' \ge X'$.

The lemma below gives us a supply of order disconnected spaces.

LEMMA 2.2. Every countable $T_{3.5}$ -ordered space is order disconnected.

[4]

486

PROOF: We shall show the stronger result that for any distinct points x and yin a countable $T_{3.5}$ -ordered space X, there exists a continuous increasing surjection $g: X \to \{0,1\}$ with $g(x) \neq g(y)$. Let $CI^*(X)$ denote the set of continuous increasing functions from X to [0,1]. Since X is $T_{3.5}$ -ordered, the evaluation map $e: X \to$ $[0,1]^{CI^*(X)}$ defined by $e(x) = \prod_{f \in CI^*(X)} f(x)$ is a topological and order embedding (see [4]). Choose $f_o \in CI^*(X)$ such that $f_o(x) \neq f_o(y)$. Since X is countable, there exists an irrational number α strictly between $f_o(x)$ and $f_o(y)$ with $\alpha \notin \pi_{f_o}(e(X))$. Now since the projection π_{f_o} is continuous and increasing, $\pi_{f_o}^{-1}([0,\alpha]) = \pi_{f_o}^{-1}([0,\alpha]) = U$ is a closed, open, decreasing set in $e(X) \approx X$. The function $g: X \to \{0,1\}$ defined by g(U) = 0 and $g(X \setminus U) = 1$ has the desired properties.

In [3] Engelking and Sklyarenko show that the supremum of a set $\{X_i\}_{i\in I}$ of compactifications of a topological space X can be constructed by forming the product $P = \prod_{i\in I}X_i$, identifying X with the subspace $\{z \in P : z = \prod_{i\in I}x \text{ for some } x \in X\}$, then taking cl_PX . This construction also yields the supremum of any set of ordered compactifications. By 1.8 of [8], the remainder of the supremum of a set of (ordered) compactifications is contained in the product of the remainders of these (ordered) compactifications. Thus, we have the following result.

LEMMA 2.3. If $\{X_i\}_{i \in I}$ is a set of (ordered) compactifications of X with $|X_i \setminus X| < \rho$ for each $i \in I$, then $\sup\{X_i\}_{i \in I}$ is an (ordered) compactification whose remainder has cardinality at most $\rho \times |I|$.

THEOREM 2.4. Suppose (X, τ, θ) admits finite-point ordered compactifications. Then X has a countable ordered compactification if and only if X admits n-point ordered compactifications for all integers n greater than some m.

PROOF: Suppose X has m-point ordered compactification X' and countable ordered compactification X^* . Without loss of generality, we may assume X' is a strict ordered compactification, and $X^* \ge X'$ (otherwise, replace θ' by the strict order on (X', τ') and replace X^* by $\sup\{X', X^*\}$). If $h: X^* \to X'$ is the projection function, there must exist $\alpha \in X' \setminus X$ such that $h^{-1}(\alpha)$ is countable. By Lemmas 2.2 and 2.1, X has an (m+1)-point ordered compactification X". Repeating this process shows that X has n-point ordered compactifications for all $n \ge m$.

Conversely, if X admits n-point ordered compactifications X_n for all n > m, Lemma 2.3 implies that $\sup \{X_n : n > m\}$ is a countable ordered compactification of X.

THEOREM 2.5. If (X, τ, θ) admits a countable ordered compactification X^* and a finite-point ordered compactification X' with $X' \leq X^*$, then X^* is the supremum of all finite-point ordered compactifications below it.

PROOF: The proof is analogous to that of Theorem 2.3 of [9]. Let $X'' = \sup\{X^{\#} \leq X^{\#}\}$

487

Π

 $X^*: X^{\#}$ is a finite-point ordered compactification of X}. Clearly $X^* \ge X''$. Equality holds if the projection $f: X^* \to X''$ is one-to-one. Suppose $x \ne y$ in X^* . If the projection $h: X^* \to X'$ maps x and y to distinct points, then $f(x) \ne f(y)$. If h(x) = h(y), use the strong statement proved in Lemma 2.2 to find a finite-point ordered compactification $X^{\#} \le X^*$ such that the projection $k: X^* \to X^{\#}$ does separate x and y.

THEOREM 2.6. Suppose X admits a finite-point ordered compactification. Then X has a largest finite-point ordered compactification if and only if it has no countable ordered compactification.

PROOF: If X has no countable ordered compactification, then there is an integer n such that X has an n-point ordered compactification but no m-point ordered compactifications for m > n. Now any two n-point ordered compactifications must be topologically equivalent, for otherwise by considering the associated n-stars (see [6]) we find that the supremum of the topological compactifications underlying the two n-point ordered compactifications has more than n compactification points. Now by the remarks preceeding Lemma 2.3, the supremum of a set of ordered compactifications is topologically equivalent to the supremum of the set of underlying topological compactifications, which leads to the contradition that X admits an m-point ordered compactification with m > n. Thus, all n-point ordered compactifications of X are topologically equivalent; intersecting their orders gives a largest finite-point ordered compactification.

The converse is immediate from Theorem 2.4.

Although Theorem 2.6 gives necessary and sufficient conditions for the existence of a largest finite-point ordered compactification, no such result is known which guarantees the existence of a smallest ordered compactification, finite-point or otherwise. Indeed, if X is the half-open interval [0,1) with the usual topology and discrete order, there is a unique largest finite-point ordered compactification whose order is also discrete, however there is no smallest ordered compactification of X.

If a $T_{3.5}$ -ordered space X admits a finite-point ordered compactification, it obviously admits ordered compactifications whose remainders have minimal finite cardinality; we call any such compactification a minimal-point ordered compactification. If X has a smallest finite-point ordered compactification, then all minimal-point ordered compactifications of X have equivalent topologies, but the converse is false as is shown by the example of the preceding paragraph. On the other hand, if all minimalpoint ordered compactifications of X have equivalent order, there exists a smallest ordered compactification; again, the converse is false. In general, minimal point ordered compactifications of the same space may have non-equivalent topologies and/or non-equivalent order.

[5]

Finally, for the sake of comparing finite-point ordered compactifications with finitepoint (non-ordered) compactifications, we mention a few additional facts. A $T_{3.5}$ ordered space may have a largest finite-point (non-ordered) compactification but no largest finite-point ordered compactification (for example, the Euclidean plane); on the other hand, it may have a largest finite-point ordered compactification but no largest finite-point (non-ordered) compactification (for example, the natural numbers). There are also examples of $T_{3.5}$ -ordered spaces which have a largest finite-point ordered compactification and a largest finite-point (non-ordered) compactification whose remainders are of different cardinality.

References

- G.L. Cain, 'Countable compactifications', in General topology and its relations to modern analysis and algebra VI, (Z. Frolik, Editor), Proc. Sixth Prague Topological Symposium 1986 (Heldermann Verlag, Berlin, 1988), pp. 69-75.
- R.E. Chandler, Hausdorff compactifications, Lecture Notes in Pure and Appl. Math. 23 (Marcel Dekker, Inc., New York, 1976).
- [3] R. Engelking and E.G. Sklyarenko, 'On compactifications allowing extensions of mappings', Fund. Math. 53 (1963), 65-79.
- [4] P. Fletcher and W. Lindgren, Quasi-uniform spaces, Lecture Notes in Pure and Appl. Math. 77 (Marcel Dekker, Inc., New York, 1982).
- [5] T. Kimura, 'N_o-point compactifications of locally compact spaces and product spaces', Proc. Amer. Math. Soc. 93 (1985), 164-168.
- [6] K.D. Magill, Jr., 'N-point compactifications', Amer. Math. Monthly 72 (1965), 1075-1081.
- [7] K.D. Magill, 'Countable compactifications', Canad. J. Math. 18 (1966), 616-620.
- [8] J.R. McCartney, 'Maximum zero-dimensional compactifications', Math. Proc. Cambridge Philos. Soc. 68 (1970), 653-661.
- J.R. McCartney, 'Maximum countable compactifications of locally compact spaces', Proc. . London Math. Soc. (3) 22 (1971), 369-384.
- [10] L. Nachbin, Topology and order, New York Math. Studies 4 (Van Nostrand, Princeton, N.J., 1965).
- [11] T.A. Richmond, 'Finite-point order compactifications', Math. Proc. Cambridge Philos. Soc. 102 (1987), 467-473.
- [12] T.A. Richmond, 'Posets of ordered compactifications', Bull. Austral. Math. Soc. 47 (1993), 59-72.

Department of Pure and Applied Mathematics Washington State University Pullman, WA 99164-3113 United States of America Department of Mathematics Western Kentucky University Bowling Green, KY 42101 United States of America