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CONTINUOUS HAHN POLYNOMIALS 
OF DIFFERENTIAL OPERATOR ARGUMENT AND 

ANALYSIS ON RIEMANNIAN SYMMETRIC SPACES 
OF CONSTANT CURVATURE 

ERICH BADERTSCHER AND TOM H. KOORNWINDER 

ABSTRACT. For the three types of simply connected Riemannian spaces of con
stant curvature it is shown that the associated spherical functions can be obtained from 
the corresponding (zonal) spherical functions by application of a differential operator of 
the form p(i d/dt), where/? belongs to a system of orthogonal polynomials: Gegenbauer 
polynomials, Hahn polynomials or continuous symmetric Hahn polynomials. We give 
a group theoretic explanation of this phenomenon and relate the properties of the poly
nomials/7 to the properties of the corresponding representation. The method is extended 
to the case of intertwining functions. 

1. Introduction. This paper deals with the remarkable phenomenon that associ
ated spherical functions on Euclidean space and on the spaces of constant positive and 
negative curvature can be obtained from the corresponding spherical functions by appli
cation of a differential operator which can be written as pk(id/dt), where the pk form 
some explicit system of orthogonal polynomials. 

The most simple situation of this phenomenon can be found on IR2, where the Bessel 
function 7o is a spherical function and the Bessel functions Jk (k G Z+) are associated 
spherical functions. The Jk fulfill the following differential recurrence relation: 

2fk(t) = Jk-X(f)-JM(t). 

On the other hand the three term recurrence relation for the Chebyshev polynomials Tk 

(k G Z+) of the first kind is given by 

2xTk(x) = Tk-X(x) + Tk+i(x). 

By comparing the two formulas we obtain by induction on k 

(1.1) Tk(-ij^J0(t) = ikJk(t) 

(for k — 0,1 the formula is directly verified). 
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POLYNOMIALS OF DIFFERENTIABLE OPERATORS 751 

A much more sophisticated but non-explicit theorem of Helgason [13] points into the 
same direction. Let G be a connected semisimple Lie group with finite center. Let K 
be a maximal compact subgroup of G. Helgason [13, Theorem 4.1] proves that, in the 
generic case, any joint eigenfunction of the G-invariant differential operators on G/K 
which belongs to an irreducible ̂ T-type can be obtained from the corresponding spherical 
function by application of some (on G) right-invariant differential operator. 

In our relatively simple setting of Euclidean spaces, spheres and hyperboloids we 
will obtain explicit analogues of (1.1) by group theoretic methods. The polynomials/^ 
in terms of which the differential operator is expressed will be Gegenbauer polynonials, 
Hahn polynomials and continuous symmetric Hahn polynomials, respectively. Closely 
associated with this result are formulas giving the explicit classical Fourier transform of 
the spherical function 11—• <f>\(t) (already derived in Section 2). For the noncompact case 
this formula looks quite remarkable. 

Here are the contents of the paper. In Section 2 of the paper we introduce the various 
special functions we shall need in the paper and we derive the just mentioned Fourier 
transforms. 

In Section 3 we give an analytic derivation of the generalization of formula (1.1) to 
Bessel functions of arbitrary index a G C. This formula is obtained by specializing an 
even more general formula for Bessel functions and Gegenbauer polynomials of a certain 
partial differential operator. 

In Section 4 we give the group theoretic interpretation of the curious formulas includ
ing special functions and orthogonal polynomials of differential operators. The orthog
onal polynomials pu associated by us to a spherical representation IT are also strongly 
connected with the intrinsic structure of the representation. In particular TT is degenerate 
if and only if the family pk is degenerate and TT is unitarizable if and only if the family pk 

is positive definite. 

In Section 5 we show that the moment functional describing the polynomials/^ come 
from weight functions on R that are nothing but the ordinary Fourier transforms of the 
spherical functions corresponding to TT. Since we know these transforms explicitly, we 
can now also identify the polynomials/^ explicitly as Gegenbauer polynomials, as Hahn 
polynomials, as continous Hahn polynomials respectively. 

In Section 6 we show how the polynomials p^ can be used to obtain the associated 
spherical functions associated to TT from the spherical function of TT. Since we know all 
involved functions explicitly, this leads to our various generalizations of formula (1.3). 

In Section 7 we use the fact, that our method is not restricted to spherical functions 
associated to TT. It applies to arbitrary ^-left-invariant generalized matrix elements of TT. 
We illustrate the method by choosing two particular families of intertwining functions 
on homogeneous spaces of G. 

Many formulas of this paper have been announced in [18, Sections 2-4]. 
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2. Preliminaries on special functions. Here we introduce the various special func
tions that will be encountered in the paper. We use the familiar pFq notation in the defi
nitions. 
Jacobi functions: 

(2.1) < ^ ( 0 : = 2 / r i ( 5 ( « + /3+^ 

cf. for instance [17]. For Re a > —\ the Jacobi function 0A
a' 2 has the integral repre

sentation 

(2.2) ^ \ t ) = r ( ^ ^ ( l ) jT(coshf + s i n h r c o s ^ A - a - H s i n ^ ) 2 a ^ . 

Formula (2.2) is a degenerate case of the integral representation [17, (5.28)] for Jacobi 
functions, but can also be derived from an integral representation [6, 3.7(8)] for associ
ated Legendre functions by substitution of 

cf>f~^(t) = 2<T(a + l)(sinhO"aP:î+/A(coshO, 

(cf. [6, 3.2(20)]). From formula (2.2) we can obtain explicitly the Fourier transform of 
(a —-) 

4>x ' 2 ; substitute cos ifr = — tanh y in the integral on the right hand side in order to 
transform it into a convolution: 
(Z 3) ^ \ 0 = f ~ ^ £ ( « * ( , - y))»-* (cosh,)"-- dy. 

For Im A < Re a + 1 , the function y i—> (coshy)~lA~a~2 belongs to the class S of rapidly 
decreasing C°°-functions on R with explicit Fourier transform given by 
(2.4) 

/ (coshyyiX-a-2e^dy= — r(i(/M + iA + a + i ) ) r ( i ( - i > + iA + a + i ) ) 

(cf. [6,1.5(26)]). We can apply (2.4) to the convolution (2.3) in order to obtain the Fourier 

transform of t \-> <t>f~*\f) for |Im A| < Re a + \: 

22"-1r(q+l)wa ,A(/i) 

T(a + ^)r(\)T(iX + a + {)T(-i\ + a + | ) ' 

where wa^(/i) is given by 

W«,A(A0 =r(5(//i + /A + a + ^))r(^(- / / i + /A + a + ^)) 

(2.5) x T(\(ifi - i \ + a+ 5 ) ) r ( i ( - /> - /A + a + ±)). 

By Fourier inversion we have for |Im A| < Re a + \ : 

(2-6) # ' " ^ = 3/2rr , ^ 2 r r ( a ^ r r > ^F »**W<*-
A 7T3/2r(a + i)r(*A + a + OH—*A + a + i) J-oo 

This formula will play an essential role in Section 5. 

£^W^= — 
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Jacobi polynomials: 

(2.7) R^\x)-—^pl^\x) = 2Fl(-k,k + a + f3+Ua+Uli(l-x)), K (a+\)k
 K v i t 

where P^'® is the usual Jacobi polynomial. For a, (3 > — 1 these are orthogonal poly
nomials on the interval (—1,1) with respect to the weight function (1 — x)a(l + x)@. See 
Szegô [22, Chapter 4]. For a = (3, Szegô [22, (4.9.19),(4.9.21),(4.7.6)] gives the explicit 
Fourier series 

(2.8) R(
k
a-a\cos 9) = £ wfre

i(2j-k) 

j=o J 

with 

(2.9) 

Bessel functions: 

wa,k . (or+*)*-/«+0./*! 
k~2r {k-j)\j\(2a+\\ 

(2.10) ja(z) := r(a+l)(±zraJa(z) = 0F{(a+ l ; - z 2 /4 ) , 

where 7a is the usual Bessel function. There is an integral representation 

(2.1D ja(t) = / ' " ' ' I , / ' , e- to(l - x 2 ) " - ' dx, R e a > - I , 

cf. [25, 3.3(4)]. 

Continuous symmetric Hahn polynomials: 

,~ *^ . ,x .* ^ f~k,k + 2a + 2b — 1, a — ix , 
(2.12) />*(*;a,&):=i*3F2 , . ;1 

V a + b, 2a 
These are orthogonal polynomials on R with respect to the weight function x i—> 
|r(a + ix)T(b + ix)\2 (a,b >0 or b = â,Rea> 0). See Askey and Wilson [1], [2, p.48]. 
By (2.5) the monic orthogonal polynomials/?* on R with respect to the weight function 
watx (|Im A| < a + ^) are given in terms of continuous symmetric Hahn polynomials as 

(2.13) pk(ii) . - - ^ - pk[%, 4 + 2 + T M + 2 ~ Tj-

Note that/?*(jLi) is an even function of À. 

Hahn polynomials: 

(2.14) Q^^^--=^2[~k,k+^+
+^N

l,~X-A), * = 0,1,...,JV. 

These are orthogonal polynomials on {0 ,1 , . . . , N} with respect to the weights 

( ' : 

x} (N — x + 1 
N-x 
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cf. Karlin and McGregor [15], Askey and Wilson [2, p.47]. By (2.8), (2.9) the monic 
orthogonal polynomials pk on {—n, —n + 2,...,n~2,n} with respect to the weights 
/i t—> w^'n are given in terms of Hahn polynomials as 

(2.15) p*(/x) = ^ ~ T 0 ^ 2 ^ - M ) ; « - 2 ' a ~ 2'^J-

3. The Euclidean case. Let d = 2 ,3 , . . . . Let Sd~~{ be the unit sphere in the Eu
clidean space Rd with normalized surface measure da. For i ^ G ̂  let x.y denote their 
inner product and |JC| the length of x. Then, for each homogeneous harmonic polynomial 
Y of degree k on Rd we have 

(3-1) jf,_, e**Y(Odcr(0 = j^kJid-lJ\x\)Y(x), x € Rd, 

where j a is the Bessel function in modified notation defined by (2.10). See for instance 
Faraut [10, Corollary II.8]. In particular, for k — 0 this becomes 

(3.2) Jsi_ie*J'da(0=Jid-M)> ^ R J . 

PROPOSITION 3.1. Let Y be a homogeneous harmonic polynomial of degree k on Rd. 
Then 

(3. 3) Y(-id/dxu . . . , -id/dxd)jld^(\x\) = ^-jïd_l+k(\x\)Y(x\ x G Rd. 

PROOF. Apply the differential operator Y(—id/dx\,..., —id/dxd) to both sides of 
(3.2) and compare with (3.1). • 

The special case d = 3 of (3.3) goes back to Van der Pol [20] and Erdélyi [5], see also 
[7, 11.5(32)1. We thank A. Strasburger for these references. 

In particular, if we take 

[-k] 

Y(xu ...,xd):=J2 CjXk~2j\x\2\ x G Rd, 

where the q are given by 

7=0 

(i.e., y is a zonal spherical harmonic), and if we use that 

â+""+â+ 1J j"*'-'<w>=0 ' M ^ d 
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then we obtain from (3.3) that, for x G Rd, 

( 3 ' 4 ) 

^ (-w/9^i)/id-i(W) = ^T^l^-i^(W)W ^ Ui/W). 

In (3.4) put x = (tcosd, t sin 0,0, . . . ,0) . Then we obtain the case a = \d— 1 of the next 
proposition. 

PROPOSITION 3.2. For arbitrary complex a ̂  —1/2, —1, —3/2,... we have 
(3.5) 

«r_i,a" i )(- ,'(cos0i - r i s i n e i )>««=2vVi)/*a~'a~ l ) ( c o s^ / g +* ( 0" 
/« particular, for 0 = 0, 

•A: 

(3.6) R[a^a^\-id/dt)ja(t) = l tja^Ot). 
2k(a+l)k 

PROOF. By rewriting [7, 7.8(12)], which is an integrated version of [25,11.5(9)], we 
obtain that, for Re a > — ^, 

r ( a + l ) 
> C O S # C O S T / > 0.7) ._ l(a+l> r MC 

xja_i(tsm9simp)Rl"~~2'"~~2'(cosip)(smi)fadii 

and, in particular for k = 0, 

(3.8) ja(t)=
 r ( a + 1 ) r u00,9co^j ,(,sin0sinV)(sin</O2a<#-

J r(a+i)r( |)io •/«-2v VA ^' r 

.1 
Now application of R[a ~2,a ~2\-i(cos 9d/dt-rl sin 03/90)) to (3.8) sends its left hand 
side to the left hand side of (3.5) and its right hand side to the right hand side of (3.7). 
Thus we get (3.5) first for Re a > — ^ and next, in general, by analytic continuation with 
respect to a. • 

4. Orthogonal polynomials and the ^-decomposition of a spherical representa
tion. Let, for d > 2, G be one of the groups O0(l,d), 0(d + 1), I(Rd), and let K be 
the subgroup 0(d). (For d > 3 we may also take G := SO0(l,d), SO(<i + 1), /0(R

rf), 
and K := SO(d).) Let M be the subgroup 0(d - 1) of K. Both (G,/Q and (KM) are 
Gelfand pairs and K/M can be identified with the unit sphere in Rd. We will refer to 
the three cases for G as the noncompact case, the compact case and the Euclidean case, 
respectively. See for instance Faraut [9, §11] for generalities about these pairs (G, K). 
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Let q and f be the Lie algebras of G and K, respectively. There is an involution of q 
for which f is the 1-eigenspace. Let p be the (—l)-eigenspace. (In the Euclidean case, 
p is just the Lie algebra of the translation group.) The group K acts on p via the adjoint 
representation. If g = f + p is the Lie algebra of G in the compact case then the Lie 
algebras of G in the noncompact and Euclidean case can be identified with f + /p (as real 
form of complexified q) and i + p (as semidirect product), respectively. In the compact 
case, take an Ad(G)-invariant inner product on q such that G/K has sectional curvature 
1 (this is uniquely determined). By the just-mentioned correspondences between the Lie 
algebras, this inner product can be transferred to Ad(^)-invariant inner products on f 
and p in the noncompact and Euclidean cases. In the noncompact case, the sectional 
curvature of G/K resulting from the inner product on p will be equal to —1. Choose an 
orthonormal basis Xi, . . . ,Xd of p such that X\ is M-fixed. Put a := MX\, A := exp a. 

Let re be an irreducible ^-finite AT-unitary representation of G on a Hilbert space 9f 
which is spherical, i.e., for which 9f has a normalized X-fixed vector eo (necessarily 
unique up to a phase factor, since (G,K) is a Gelfand pair). Write (. , . ) for the inner 
product on Of. Let \i be the moment functional which associates with any polynomial p 
in one variable the number 

(4.1) pip) := (n(p(iXxj)eo,e0), 

write 

(4.2) Mik:=<7r((ÎXi)*)6o,eo), k G Z+, 

for the corresponding moments and write 

(4.3) (p,q), := {^{p(iXx)q(iXù)e^eo) 

for the associated bilinear form. Let s be the biggest number in N U {oo} such that (. , . ) 
is non-degenerate on any space of polynomials of degree k < s (or, equivalently, such 
that for k < s det(/x/+/)iv=o,...,ik^ 0)- F° r 0 < k < s let pk be the monic orthogonal 
polynomial with respect to the moment functional p. (See Chihara [3, Chapter 1] for the 
general theory of orthogonal polynomials with respect to a moment functional.) Let 

*k : = 7r(/?fc(/Xi))e0, 0 < k < s. 

We now state the two main theorems of this section. 

THEOREM 4.1. For 0 < k < s the vector e^ is M-invariant, nonzero and a cyclic 
vector for an irreducible K-module 9{k which is K-equivariant to the space of spherical 
harmonics of degree k on K/M. Furthermore, 

0<k<s 

Finally, for any k with s < k < oo the bilinear form (. , .} is degenerate on the space of 
polynomials of degree < k. 

https://doi.org/10.4153/CJM-1992-044-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-044-4


POLYNOMIALS OF DIFFERENTIABLE OPERATORS 757 

THEOREM 4.2. The representation n is unitarizable iff the bilinear form (. , . )/i is 
positive definite on the space of polynomials of degree < s, i.e., iff 

Y^ CpC'qVp+q > Ofor k < s and 0 ^ (c\,..., Q ) G C*. 
p,q<k 

We will prove these results in a sequence of lemmas and propositions. Here the poly
nomials pk, the vectors ek, the spaces 0fk and the numbers s will be defined first in a 
way different from above, but later it will turn out that for each object the two definitions 
agree. 

We first study the action of the (complex) universal enveloping algebra 'Zi(g) on eo. 
The natural filtration { £4(g)}*=o,i,2,... °f ^(9) induces a natural grading of Of as follows. 
Put 

^ : = 7 r ( t 4 ( G ) ) * o 

and let 9fk be the orthogonal complement of ^ { in %. Note that 9f = ©jg^ 9fk by 
irreducibility of TT. 

Let 5(g) denote the symmetric algebra over the vector space q and let Sk($) denote the 
space of elements in S(q) which are homogeneous of degree k. Let Hk(p) be the subspace 
of Sk(p) for which the elements are harmonic polynomials on the linear dual p* of p. Let 
a: S(q) —» tliq) denote the symmetrization mapping (cf. Helgason [14, Theorem II.4.3], 
where the mapping is denoted by A). 

LEMMA 4.3. Either the space 0fk is K-irreducible or 0fk — {0}. The mapping 
Y i—> 7r(<7(F)Vo: S(P) —> Of intertwines the representations Ad and TT\K ofK. We have 

ttk = K(v(Hk(p)))e0. 

PROOF. Since 

Î4(fl)=î4-i(fi)ï+^tes,"(*>)) 

(see Helgason [14, Lemma II.4.7]), we have 

(4.4) ^ C i ( ^ ( p ) ) ) e 0 + C i . 

Next we know 
S\p) = Hk(p) + Sk-\p)(X\ + • • • + X2

d) 

(see e.g. Vilenkin [23, Chapter 9]) whence 

(4.5) cr(Sk(p)) C <r(//*(p)) + a(^-2(p))(X? + • • • +X2
d) + t l ^ f o ) . 

But 

7r(£)7r(<7(y))é>0 = T ^ T T ^ F ) ) ^ ^ 1 ) ^ = 7r(a(Ad(ifc)y)^o, Y G 5(p), A: G K. 
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Hence the mapping Y i—> 7T(<J(F))^O: S(P) ~> ^ intertwines the representations Ad and 
7T\K of K. So, since C ô is the space of Affixed elements in H, eo is an eigenvector of 
TT(X\ + • • • +X2

d). Hence we obtain from (4.4) and (4.5) that 

^C7r(a( i f*(p) ) )« 0 + ^ - i 

and, by iteration, 

Clearly the inverse inclusion is also valid, so 

(4.6) 9i = J2ir(a(Hi(p)))e0. 
i=Q V 7 

But the spaces Hk(p) are #-irreducible and pairwise ^-inequivalent (see for instance [23, 
Chapter 9]), so the statements of the lemma follow now from (4.6) and the Schur lemma. 

• 

Let k G Z+ and let Pk be the polynomial in n variables such that Pk(X\,..., Xn) is the 
monic zonal (i.e. M-invariant) polynomial in Hk(p). Its coefficients can be obtained from 
a Gegenbauer polynomial power series expansion: Let 

^ i W - 3 ) . i t f - 3 ) ) ( x ) = c ( j (*+^aJ (*-2 + . . . ) t 

then 
Pk(xu ... ,xd) = x\ +ak-2J{-\x\ + • • • + £) + • • • . 

Define 

(4.7) ek-ix[a{Pk{iXu...àXd)))e^ k G Z+. 

Then ek is an M-invariant vector in Hk, unique up to a constant factor, and ek = 0 iff 
ttk = {0}. 

LEMMA 4.4. For each k G Z+ f/iere is a monic polynomial pk in one variable of 
degree k such that 

(4.8) ek = n(pk(iXiJ)e0. 

PROOF. By elementary properties of the symmetrization mapping we have 

ek = 7r((j((îXi)* + fl*_2i*~2XÎ~2(*i + • • • +X2
d) + • • .))e0 

G 7T((ÎXI)*)^0 + î4-2(ô)(^i + • • • + xS)e0 + *4-i(G)*o 

C7r((îXi) fc)^0+î4-i(â>o 

= 7r((îXi)*)e0+ £ # ' ' • 

As ̂  — 7r((/Xi)*)eo is M-invariant, the result follows by complete induction with respect 
tok. m 
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PROPOSITION 4.5. There is a unique s £ N U {00} such that dim Hk > 0 iffk < s. 
For this s the vectors ek (k < s) are obtained by orthogonalization of the sequence eo, 
7r(iX\)eo, 7r((iX\)2)eo,... and, ifk < s or k — s < 00, then the polynomialspk are the 
unique monic polynomials of degree k satisfying (4.8). If k = s < 00 then 7r(ps(iX\j)eo — 
0. 

PROOF. Choose s G N U {00} maximal such that the vectors ir((iX\ )k)eo (k < s) are 
linearly independent. Then, by (4.8), the vectors ek (k < s) are linearly independent as 
well and the statements about orthogonalization and uniqueness of the pk are evident. 
Our choice of s clearly has the property required in the Proposition if s = 00. Next, if 
s < 00 then, by induction, 

ir((iXi)k)e0 G span{é>0,..., n((iXi)s-l)e0} C H-\ for all k. 

Hence, for g = k\aki £ G (k\,k2 E K,a E A): 

ir(g)e0 = 7T(kl)7r(a)e0 G TT(*I)^_I C H-U 

whence, by irreducibility, 

00 5—1 

k=0 k=0 

This shows that 9fk = {0} if A: > s, while we already know that Hk ^ {0} if £ < s. m 
Let 7f be the conjugate contragredient representation to 7r, i.e. the representation of G 

on H such that 
(n(g)ej) = {e, ^(g~l)f), e,f £^,geG. 

Then ft is also an irreducible ^-finite A -̂unitary representation of G on !H and n and ft 
have the same restriction to K, so the spaces 0fk and the number s are the same for 7r and 
7T. 

Let the moment functional /i, the moments nk and the associated bilinear form be 
defined by (4.1), (4.2) and (4.3), respectively. 

PROPOSITION 4.6. The polynomials pk (k < s), defined by (4.8), are the monic 
orthogonal polynomials with respect to the moment functional /x, i.e. (i(pkpi) = 0 if 
kj<s and k ^ I. 

PROOF. If y < s then 

span{eo, • • •, £/} = {M-in variant vectors in 9fj} — spanjeo* • • • > 7f ( ( ^ y ^ o } . 

If j < k < s then 0 = (ek, ef) — (^{pk(iX\))e§, e^. Hence 

0 = (^pkdX^eo^^iX^eo) = {ir{(iXxyPk(iXx))e^eQ) if; <k<s. m 

REMARK 4.7. (a) Note that the moment functional and the polynomials pk are in
dependent of the particular A'-unitary structure chosen on 9f. 
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(b) For the moment functional p,—and thus for the polynomial s pk associated with 7?— 

we have pk = fa,pk= pi. (Indeed, p,k = (eo,ir((iX\)k)eo) = (7r((/Xi)*)é?0,eo) = W-) 

(c) The moment functional \i is symmetric, that is, /X2/+1 = 0 f° r ally G Z+. (Indeed, 
take k G £ with Ad(ifc)Xi = -Xi and use (7r((/Xiy)é?0,eo) = (7r(Ad(fc)(/Xiy)é?0,eo).) 

The proof of Theorem 4.1 is completed with 

PROPOSITION 4.8. Let k G Z+. TTiew f/ie bilinear form (. , . )ji /s non-degenerate on 
the space of polynomials of degree < k iffk < s. 

PROOF. If s < 00 then, by Proposition 4.5, 

{Ps*q)n = (7r((7(/Xi))7r(/?,(/Xi))eo^o) = 0 

for all polynomials q. On the other hand, if k < s < 00 and p is a polynomial of degree 
< k such that (/?, g)M = 0 for all polynomials q of degree < k, then, by Proposition 4.5 
and Remark 4.7(b), 

Tr(p(iX\j)eo = 7f(tf(/Xi))eo 

for a certain polynomial g of degree < k, whence 

0 = (n(q(iXi)p(iXi))eo,eo) = (7r(/Xi)é?o,7r(/Xi)e0). 

Hence 7r(p(/Xi))eo = 0 and, again by Proposition 4.5, p = 0. • 

REMARK 4.9. It follows from Proposition 4.8 that (pk,Pk)n 7̂  0 if k < s. Thus, if 
s — 00, then the polynomials pk are orthogonal with respect to the moment functional \i 
in the sense of Chihara [3, Chapter I, Definition 2.2]. 

Proof of Theorem 4.2. Assume 7r unitary. Then for 0 ^ (c\,..., ck) G C\ k < s, we 
have by Proposition 4.5 that 

0<U(^cp(iXly)eo97r(Ydcq(iXi)Aeo) 
X Xp<k J Xq<k J ' 

= Yl cpc^(ir((iXiY+q)eo,eo) = J ] cp~c~q\xp+q. 
p,q<k p,q<k 

Conversely assume that Y.p,q<k CpCqLip+q > 0 whenever k <s and 0 ^ (c\,..., c*) G C*. 
Use that 

(^,7f(/?;(/Xi))^o) = (7r(pfe(/Xi))g0,7f(p;0'Xi))eo) = (7r(#(/Xi)p*(iXi))e0,eo). 

Hence 

^ , 7f(/?/(/Xi))eo} = «jfê /,jk for ally,/: < 5, where a*. > 0 (0 < k < s). 

Also, by Proposition 4.5, 

(e^ 7r(p7-(/Xi))^o) = A fy,* for ally, fc < s, where ft > 0 (0 < k < s). 
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Let 7* := ak//3k > 0. Then 

(ek,it(p(iXiJ)eo) = lk(ek^(p(iXi))e0) 

for all k < s and all polynomials p of degree < s, in particular for p(x) := d,j < s. 
Hence 

(ek,ir(a)eo) = lk{ek,n(a)eo) 

for a £A,k < s. Since ft(à)eo and Tr(a)eo are M-invariant, it follows that 

(v,7f(a)é?o) = 7*(v,7r(a)é?0) 

for a G A, /: < s, v G #"*. Finally, by Cartan decomposition of G, 

(v,7f(g)é>o) =7jfc(v,7T(g>o) 

for ^ G G, ^ < 5, v G #"*. Now it follows quickly that the spherical function g i—» 
(TT(̂ )̂ O» £O) is positive definite on G, so 7r is unitarizable. (See also [16, Theorem 6.5 and 
Remark 6.6].) • 

5. Relationship between moment functional and spherical function. We pre
serve the notation of the beginning of §4. Let <j> be the spherical function associated with 
the representation 7r, i.e. 

<j>(x) := (7T(x)e0,e0), x G G. 

Then <j> is a real analytic function on G. Each spherical function for the Gelfand pair 
(G, K) can be obtained from a unique irreducible representation TT of G, see [14, Theo
rem IV.4.5]. 

PROPOSITION 5.1. In terms of the spherical function </> the moments can be expressed 
by 

(5.1) fik = (id/dt)k\t=0<t>{exp(tX\)). 

PROOF. 

(Tr((iXi)k)e0,e0) = (id/dt)k\l=0{^p(^i))eo,e0) = (id/dt)k\l=0<l>(exp(tX0). • 

In order to associate a weight function with the moment functional \i in (5.1) we can 
apply Fourier techniques to this formula. 
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PROPOSITION 5.2. Suppose that the function t H—• </>(exp(rXi )) is of the form 

(5.2) ^(exp(rXO) = £"*'*'+ T "(Oe'^dt, 

where £i , . . . ,£• E C and distinct, uj\,... ,ujr G C and nonzero, and £ i—> £,kw(0 is in 

L\R) for alike Z+. Then 

M = E C ,̂- + y_oo C*w(0 di, k e Z+, 

ara/ the polynomials pk are monic orthogonal polynomials with respect to the orthogo
nality measure 

PROOF. Substitute (5.2) into (5.1). • 

Later in this section we will see when the conditions of the above proposition are 
satisfied. 

REMARK 5.3. If r = 0 in (5.2) then the function t h-> (/>(exp(fXi)) is the classical 
Fourier transform of UJ. In general, (5.2) writes the function t i—-> cj)(exp(tX\)\ when 
identified with a distribution in 2)'(IR), as the Fourier transform of u + £J=1 CJ/6(. — Q) 
considered as the linear functional 

on the space of Fourier transforms of (D(R) (cf. Gelfand and Shilov [12, Chapter II, 
Sections 2.1,2.2]). If </>(exp(fXi)) can be expressed in the form of (5.2) then the function 
UJ and the pairs (o^,Ct) a r e uniquely determined by (/>. 

PROPOSITION 5.4. Suppose that <j> can be written in the form (5.2). Then UJ ^ 0 iff 
s = co. Ifu = 0 r/ierc 5 = r. 

PROOF. If 5 < CO then, by Proposition 4.5, 

0 = 7r(p5(iXi))<£(exp(fXi)) - ps(id/dt)<j>{zxp(tX\)) for all f G R. 

It follows from (5.2) that then u = 0 and r < s. 
On the other hand, if (f> can be written in the form (5.2) with u = 0 then 

p(id/dt)<l>(exp(tX\j) = 0 with/?(jc) = nCx-Ç) -

Hence (p, ̂ ) / i = 0 for all polynomials g of degree < r, so r > s by Proposition 4.8. • 
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Now we will determine explicitly the polynomials/?* in the various cases. Put 

a:=d/2-\. 

5.1 The Euclidean case G — I(Rd). The spherical functions are given by 

0(exp(fXi)) =ja(\t), 

essentially a Bessel function (cf. (2.10)), where À runs over C with À and —A identified, 
see Faraut [9, Section II.II]. The corresponding representations are unitarizable iff À G R. 
If A = 0 then TT is the identity representation and s = 1. If A G C\{0} then <^(exp(fXi)) 
has the form (5.2) with r — 0, explicitly given by (2.11). It follows from (2.11) that the 
corresponding monic polynomials /?* are given in terms of Gegenbauer polynomials as 

(5.3) pk(x) = , Rk
 2 2 (x X). 

5.2 The noncompact case G — OQ(\, d). We assume sectional curvature —1 in OQ(\, d)/ 
0(d). Then the spherical functions are given by 

<£(exp(fX,)) = ^ " ^ ( r ) , 

a Jacobi function (cf. (2.1)), where A runs over C with A and —A identified, see for in
stance Faraut [9, Sections II.IV and I V.I]. The corresponding representations are unita
rizable iff A G R or —a < iX < a. Because of (2.3), the function t K-> 0(exp(fXi)) 
belongs to the class S if |Im A| < a + | . Then (5.2) holds with r — 0 and we get (5.2) 
explicitly from (2.6). In combination with Proposition 5.2 the corresponding polynomi
als pk are seen to be expressible in terms of continuous symmetric Hahn polynomials by 
(2.13): 

(5.4) Pk(x) . - ^ - ^ Pk{^ 4 + 2 + 2M + 2 ~ TJ-

By analytic continuation with respect to A this formula remains correct for all A G C. 
For A fi /Z, f ^ 0, we have an expansion of the form 

<j>f~ht) = E(c,-(-Ay(-/A-(a+^2y))ki + c . ( A ) ^ - ^ î ^ ) ) k i ) 

(see [17, (2.17), (2.15)]). Hence, if Im A > 0, Im A - a - \^ 2Z+ and -iX £ Z+ then 

<l>(?'"2\t) = £ 2c,-(-A) cosh((/A + a + i + 2/>) + ̂  (0, 
0<2/<ImA-a-± 

where V̂A £ «5. Thus, for these A, the function <j> has the form (5.2). 
If —iX — a— j = n, n eZ+ then, by the quadratic transformation [17, (5.32)], by (2.1) 
and (2.7) we have that 
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a Jacobi polynomial of argument cosh t, cf. (2.7). Then <j> is of the form (5.2) with UJ — 0, 
so the corresponding representation of G extends by analytic continuation to a represen
tation of the complexification Oo(d + 1, C) and can next be restricted to a (still spherical 
and irreducible) representation of the compact form 0(d+ 1). The spherical function for 
(0(d +1), 0(d)) keeps the same expression as above, except that cosh t is replaced by 
cosf. 

5.3 The compact case G — 0(d +1). We assume curvature +1 on 0(d + I)/0(d). Then 
the spherical functions are given by 

(5.5) <£(exp(fXi)) = R{^a)(cos t), n G Z+, 

up to a constant factor a Jacobi polynomial (cf. (2.7)). See Vilenkin [23, Chapter 9]. Since 
G is compact, the corresponding representations are all unitarizable. From (2.8) we see 
that (/>(exp(fXi)) has the form (5.2) with UJ = 0 and {Ci > • • • >C-} = {— n> —n + 2 , . . . , n — 
2, n}. Hence s — n + 1 by Proposition 5.4. By Proposition 5.2 and (2.15) we get that the 
corresponding polynomials/^ are given in terms of Hahn polynomials by (2.15): 

(-\f(2a)k(-n)k^ (l/ x 1 v 
P = ^ 7 3 Qk{2(n-X)>a- 2>a~ 2 ' " ) ' 

6. Associated spherical functions. We still preserve the notation of Section 4. For 
the given spherical representation KonOf and k E Z+ define the vectors ek corresponding 
to if similarly to (4.7), (4.8): 

(6.1) ek := 7t(a(Pk(iXu..., iXd)))e0 = 7f(^(iXi))^0 

(c/. Remark 4.7). Then ëo = eo, ek = 0 iff k > s and ek is proportional to ek for all /: (ëk 

is equal to efc for all k iff 7r is unitary, cf. the end of the proof of Theorem 4.2). Note that 
we have normalized the vectors ek such that the constants 

(6.2) lk := (ek,ëk) = (7r(^(/Xi))^0,7f(M^i))^o) = (7Y(p2
k(iXl))e0,e0) = (pk,pk)^ 

depend only on the representation n, but not on the particular AT-unitary structure chosen 
on Of (cf. Remark 4.7(a)). For instance, it follows from Theorem 4.2 that n is unitarizable 
if and only if the 7* are positive real for all k < s. 

Define for k G Z+ the associated spherical function (j)k on G by 

<t>k(g):= (n(g)eo,ëk). 

(See [17, Section 3.3] for generalities on associated spherical functions.) Each function 
<j>k is real analytic on G, left M- and right ^-invariant. 
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PROPOSITION 6.1. The associated spherical function <j)k is obtained from the spher
ical function <j> by 

(6.3) 4>k(g) = (pk(iX1)$)(g). 

Here X\ is the right invariant differential operator associated with the Lie algebra ele
ment X\, i.e. (X\f)(g) := (d/dt)\t=of(exp(tXi^g). In particular, for g = expfXi, 

(6.4) / ( exp tXx ) = pk(i d/dt)<t>(exp tXx ). 

The function 11—> / ( e x p tX\) has a zero of order k at 0 and for k < s it is specified by 
this property among the complex linear combinations 

(idjdt)k<i)(QxptX\)+ck_\(id/dt)k~X(j)(exptX\) + • • • + co<j)(exptX\). 

PROOF, ( i ) / ( g ) = {^{g)e^ek) = (?r(g)é?o,ff(^(iXi))eo) = (^(pk(iXi))7r(g)e0, 

(ii)(d/dty\t=o(t>k(exptXi) = (ix({X\)i)eo,ëk) = 0 for all y < k by Proposition 4.5. 
The converse statement follows analogously from Proposition 4.6. • 

From Proposition 6.1 it follows that the associated spherical functions <f>k do not de
pend on the particular ^-unitary structure chosen on 9i. Furthermore, <j>k is determined 
by its restriction to the one-parameter subgroup A of G. To see this, write g = k\akj 
(k\, &2 £ K,a £A)by the Cartan decomposition. Then 

(6.5) <t>k(kiak2) = {7T(a)e0,7T(kïl)êk) = ( ^ o , ^ ) ^ ^ ^ = / W * ( * i ) 

since 7r(a)eo is M-invariant, 7f(fcf l)ëk is in 9fk and, up to a constant, ek is the unique 
M-invariant vector in 9fk. The function -0* is the spherical function for the pair (K,M) 
associated to the representation 7r|^ of K. It does not depend on the representation 7r, 
neither on the type of the group G (only on the dimension d). Recall the definition of 
Ad{K)-invariant inner product on f given in the beginning of Section 4. It induces an 
Ad(M)-invariant inner product on the orthoplement in f to the Lie algebra of M such that 
the corresponding sphere K/M has sectional curvature 1. Let Y\ be a unit vector in this 
orthoplement. Put kg = exp 6Y\. By formula (5.5) we have 

^fo) = *<""*'"-* W»). 
Up to a constant factor, the associated spherical functions t \—• / ( e x p tX\) are known 

as special functions on IR in all cases (for instance they can be found as solutions of 
singular second order differential equations on R). We shall determine the proper nor
malization in all cases. From the function / the constant 7* can be calculated as 

(6.6) 7* = pk(id/dt)\t=04>k(^PtXi) = (i d/dt)k\t^<j)k(exptXx). 
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6.1 The Euclidean case G = I(Rd). The functions <j>k associated to the spherical function 
(/>(exp tX\ ) = ja(Xt) are of the form 

0*(exp tX\ ) = const. fija+kiXt) 

(see [23, Section XI.3.3]). Hence, for a = — \, 0, ^,.. . , formula (6.4) provides us with 
a group theoretic interpretation of formula (3.6). Setting g = ko exp tX\ in formula (6.3) 
leads, in view of (6.5), to a group theoretic interpretation of formula (3.5). 

The correct normalization of the associated spherical function <j>k can be read off from 
formula (3.6): 

(—i)k(2a)i\2k 

^xVtXx)=pk(id/dt)ja(\t) = ] \ \ Jk f*/«+*(Ar) 
4*(of)*(a+l)* 

with/7^ given by (5.3). Hence, by formula (6.6), 

= (2a)kk\ 2k 
h 4k(a)k(a+l)k * 

6.2 The noncompact case G = Oo(l,d). The functions <j>k associated to the spherical 

function (j>(exptX\) = </>A ' 2 (t) are of the form 

/(exp/ZO = const. (sinhoVA
a+*' " ^ ( 0 

(see [23, §X.3.4] or [17, §4.2]). First we evaluate the constant. For Im À > 0, t —» oo we 
have 

(6.7) <j>f *>« ~ ca(-X)e-(iX+a+ï2)t with ca(X) 
22<T(a+l)r(/A) 

(see [17, (2.18)]). Thus on the one hand we obtain 

lim (s inhoVr* ' 5)C) _ ca+k(-X) _ 2*(a+D* 
,(«.-i)(0 2kca(-X) ( a + i - i ' A ) * ' 

and on the other hand we have 

(6.8) hm — —— = hm j - — = pk{X - i(a + \)). 
t->oo (/>(exprXi) t-^oo (/>(exprXi) v z y 

By use of formulas (5.4) and (2.12) we can calculate the right hand side of this last 
formula explicitly: 

(6.9) Pk(X - i(a + I)) = (~'i(2^)k(a + \ + /A),. 
v 2 y 2*(a)* 2 

Altogether, we obtain explicitly for <j>k 

(6.10) <j>\txVtXx) = J~l^2aJ" {a+\ + iA)*(<* + | - / A ) * ( s i n h o V r M V ) 
4*(a)*(a+1)^ 

and then for 7* 

(6.11) 7* = AJ2"?kk\. ( a + l + / A M a + l - /A),. 
4*(a)*(a+l)* 2 2 

By analytic continuation, formulas (6.9)—(6.11) hold for all A G C. 
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THEOREM 6.2. For all\eC,ke 1+ and a = 0,j,l,...we have 

/?*(|(cos0§ - coth/s in^ |) ; § + \ + f, § + \ - f )< />^V) 
(6.12) * 

= ^r^rv^ + i - / A W s i n h r M a + "' 'V)*ia "a 5)(cos0) 
2*(a+l)£ z A « 

and in particular, for 6 = 0, 

p.(L<L- « + I + ÏA « + I _ £U<«'-5>/rt 

(6.13) 
-(a + ± - /AMsinhoVr*' *V). 

" 2 V + 1 ) , 2 

PROOF. We use formulas (5.4) and (6.10) to write down formula (6.4) explicitly; this 
leads to formula (6.13) when (a + | + i\)k ^ 0; by continuity, formula (6.13) remains 
true when (a + ^ + /A)* = 0. To obtain formula (6.12) analogously from formula (6.3), 
we merely have to show that for any right ^-invariant function/ G C°°(G) we have 

(Xif)(ke exp tXi ) = (cos Od/dt- coth t sin 6d/d6)f(kd exp rXi ). 

Note that X\ and Y\ span a Lie algebra isomorphic to the Lie algebra sl(2, R) and that 
their images under this isomorphism can be taken, for instance, as 

* o j ' Xl-[o - i 
Hence 

1 a ,.;„ 1 

Now define the functions r,xl;:R —* IR by exp(sXi)kg exp(tX\) G fc^) e x p ^ ^ X j ) ^ . 
Then 

(Xif)(ke exp rXi ) = (r(0)d/dt + <ip(O)d/d0)f(k9 exp tX\ ). 

By an easy calculation we find 

cosh r = coshes + 0 cos2 ^0 + cosh(s — t) sin2 ^0 

sinhrsin^ = sinlUsin#. 

We differentiate these two formulas with respect to s at s = 0 and obtain r(0) = cos 6 
and T/;(0) = — coth t sin #. • 

See [18, §2] for apurely analytic proof of (6.13). 

6.3 The compact case G = 0(d+1 ). The functions <j>k associated to the spherical function 
</>(exp tX\ ) = /^a*a)(cos 0 are of the form 

<£*(expfXi) = const, (sin t)
kR{^a+k) (cos 0 

(see [23, §IX.4.1]). The appropriate normalizations as well as the explicit versions of 
formulas (6.3) and (6.4) can be obtained by analytic continuation from the noncompact 
case. Put a + ^ + iX = —n, n G Z+ in formulas (6.12), (6.13), replace t by it and use 

(j)^~J (t) = ^2A'a)(^0 m order to obtain the following corollary. 
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COROLLARY 6.3. Forallk,n e Z+, k < nanda ^ — ̂ ,— 1,— | , . . . we /zave 

ÔJk( i i - i i ( cos03 /3 r -co t r s in03 /30) ; a - ± , a - ^ / ^ ( c o s r ) 

(6.14) = - ^ _ ( „ + 2 a + l ) , ( s i n O ^ 
2K(a+ l)jt 

and in particular, for 9 = 0, 

Qk{\n-\idldt\a-\,a-\,n)R^aXcost) 

2K(a+ l)k 

PROOF. For a = 0, ̂ , 1,... equation (6.14) is obtained by analytic continuation from 
formula (6.12). Now fix n, k and t. Then both sides of (6.14) are rational functions of a 
(see formulas (2.14) and (2.7)). Hence the two sides must agree for all a. • 

7. Associated intertwining functions. Again we assume the notation of Section 4. 
Let / be a generalized left ^-invariant matrix element of the spherical representation TT 
of G, i.e. 

(7. 1) f(g) = (*(g)e,e0) = (e^(g-l)e0), 

where e G ^_00(7r), the anti-dual of the Fréchet space 9f°°(it) of C°°-vectors for TT. 
Denote the corresponding M-invariant matrix element of higher K-type by/*, 

fk = (n(g)e,ëk). 

Then all the functions/* are real analytic on G, and formula (6.3) and its proof generalize 
to the family of functions/*: 

(7.2) f(g) = PkOXiVig). 

In the case e is invariant with respect to the action of some closed subgroup G' of G, the 
function/ = f° is called an intertwining function on the homogeous space G JG' and 
the functions/* are called associated intertwining functions on G / G'. We shall derive in 
this section the explicit versions of formula (7.2) for two particular homogenous spaces 
of the group G = 0O(1, d). 

Let G = KAN be the Iwaswawa decomposition of G = 0o(l,d) associated to the 
positive Weyl chamber R+X\. Write H(g) = tif g = k exp(/Xi )n in this decomposition. 
Let 7T\ be the spherical principal series representation corresponding to A, i. e., 7rA is left 
action of G on the space 

Hx = {/: G-+ C \f(gmcxV(tX{)n) = e-iiX+a+^f(g),f\K G L2{K)}. 

The AT-unitary structure on 9f\ is given by the scalar product if,h) = $Kf(k)h(k) dk. 
It follows that 7fA = 7r̂  (use [14, Lemma 1.5.19]). If À is not degenerate, i.e. if A ^ 
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±i(a + \ + Z+), then 7rA is spherical. If À = i(a + | + n) with /i G Z+, then 7rA contains 
a finite-dimensional spherical subrepresentation with 5 = n + 1. The ^-fixed vector 
eo £ !H\is the function 

and the corresponding spherical function is (/> A (exprXi) = <£A ' 2.(f). In this realization of 
TTA on 9fx we can identify ^°°(7rA) with the subspace ^ ° ° := {f G ̂  | / | * G C°°(/0} 
of i ^ , c/ Wallach [24, Theorem 1.8.4] and Dixmier and Malliavin [4]. 

Fix A G C. Let *£A be the eigenspace of the Laplace-Beltrami operator À on G/K that 
contains the spherical function <j>\ and let *£A be the subspace of functions of at most 
exponential growth (see Flensted-Jensen [11, Section IV.2]). Suppose A ̂  i(a+ | + Z+); 
then each function/ G *£A

 c a n ^e represented as Poisson transform of a distribution T 
on G satisfying T(gmexptXm) = e

{iX~a~ll2)tf(g) (see [11, Corollary IV.6]): 

fig) = ^ A % ) = jj^e0(g-lk)T(k)dk = (7TA(g)e0,*>, 

where e G ̂ /~°°(7rA) is defined by 

(e,v) = jT K W ) d f c , v ë ^ ° ° = #°°(7rA). 

Thus we find: 

LEMMA 7.1. Létf A ^ i(a + ^ + Z+). 77œn eachf G *£A ca« &e written as 

(7. 3) /fe) = (TTA (*)*<>, *) - {7rx(g-l)e,e0). 

fora certain e G ̂ ~°°(7rA). 

In the degenerate case, a vector distribution of the finite dimensional spherical repre
sentation ix is just an ordinary element of the representation space. 

7.1 Associated intertwining functions on the space G/MN. The subspace of the MTV-
invariant functions in *EX- is spanned by the two functions f± given explicitly by 

f±(g) = e-(±â+<*+l/2)H(g-1)^ 

see e.g. [14, Chapter 2 ], [17, §4.1]. If A is nondegenerate, by formula (7.3) the func
tions f± can be represented as generalized matrix elements of 7rA with two MAMnvariant 
elements e± of ^/"~°°(7rA), 

f±(g)= (n\(g-l)e±,e0). 

Now define the functions <j>±(g) — f±{g~1)- Then <j>± are explicitly given by 

(7.4) (j)±(kexp(tXi)n) = e(±iX~a-l/2)t (k G K,t G R,w G N)9 

and are intertwining functions on G/MN, 

</>±(g) = (irx(g)e±,e0). 

https://doi.org/10.4153/CJM-1992-044-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-044-4


770 E. BADERTSCHER AND T. H. KOORNWINDER 

(See also Strasburger [21].) From formulas (7.2) and (7.4) we can calculate also the 
associated intertwining functions <j>k

± explicitly: 

(7.5) ^(expfXO =/>*(TA - /(<* + \))ei±iX^{'2)t. 

Next, similarly to (6.5), we derive 

^faexpfXin) = 4 ( e x p ( « i ) ) ^ ( ^ ) =Pt(TA - î(<* + \))e{±iX'a'xl2)t^k{kB). 

Incidentally, we see from formulas (7.5) and (6.9) that in the case of degenerate 7r, where 
À = i(a + \ + ri), s = n + 1 (n G Z+), £+ is not an element of ^~°°(7r), since then 
ps[—X —/(a + ^)) ^ 0. Butps^X — i(a+ ^)) = 0, so we don't have this obstruction for 
e_, and indeed e- G #"(7r) is then just the highest weight vector of the finite dimensional 
representation 7r. 

PROPOSITION 7.2. For all X e C, k e Z+ and a ^ —±, - 1 , - | , . . . w /zave 

/^ (cosf l f - sin0|); f + I + f, f + I - ^ya-«-i/2)r 

(7.6) = /* ( a + * " , ^ ) V f A - g - V ^ g - V ^ - V 2 ) ( c o s g ) > 

(a + \ + iA)* 

PROOF. The proof is analogous to the proof of Theorem 6.2. First we show the for
mula for 6 = 0, by using (2.13) and (6.9). Next we find for right MAMnvariant functions 
/ on G that 

(*,/)(**expfXO = (cosflf - smO&VikoexptXi). 

This proves the proposition for a = 0 ,^ ,1 , Now multiply both sides of (7.6) by 

e-0A-a-5)f ancj f|x ^ fc an(j t Then both sides are rational functions of a. Hence formula 
(7.6) remains valid for general a. m 

REMARK 7.3. Formula (7.6) is the explicit version of formula (7.2) for the intertwin
ing function 0+; for </>_ we obtain the same formula, because of the intrinsic symmetry 
of the continuous symmetric Hahn polynomials. Also the consideration of associated in
tertwining functions on the homogeneous space G/MN (where N — ON, 6 the Cartan 
involution on G) leads again to formula (7.6). 

7.2 Associated intertwining functions on the space G JH. Now we consider the as
sociated intertwining functions on the non-Riemannian symmetric space G JH, where 
H — Oo( 1, d — 1 ). Note that G admits the decomposition G — KAH. The subspace of left 
K- and right //-invariant functions of the Casimir eigenspace containing <j> has dimension 
two. It is spanned by an even function given explicitly by 

(7.7) (t>e(kexp(tXi)h) = <A(
A~''a)(0 (k£Kj£R,heH) 

and an odd function given explicitly by 

(7.8) ())0(kQxp(tX{)h) = sinhf <^'a)(0 (k G Kj G R,h G H). 
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If A is not degenerate, it follows as in the case of G/MN that <f>e and <j>0 are intertwining 
functions on G/H, namely generalized matrix elements of TT\ with distribution vectors 
ee and e0, 

<f>e(g) = (irx(g)ee,eo}, <t>o(g) = {KX(g)eo,e0) (g G G',ee,e0 G #-°°(7r)). 

On exp RX\, the associated intertwining functions can be expressed in terms of Jacobi 
functions too, namely as linear combinations of the functions 

(cosht)k<fc*'a+k\t) and (coshf)* sinhf ^ ' " "^ (O, 

cf. Limic, Niederle & Raczka [19] and Faraut [8, §V11]. The correct constants can be 
calculated in precisely the same way as in the case of the homogeneous space G/K (see 
formulas (6.7)-(6.10)); note that <j>k

e is an even or an odd function on R according to 
whether k is even or odd and (j>k

0 is an odd or an even function on R according to whether 
k is even or odd. As a result we obtain that </>*(exp tX\) equals 

(7-9) ^¥^{^ + ? + &/*T - t + kUtfcoshtfti^t) 

or 

(-i)k(2a)k/ ,A _ a _ . .. „ . , . . * . . : _ , . . .i<W>, 
(7.10) v

2;:,v
(^ (=r + ! + ïWnMïr - f + |)<i-*)/2(cosh')* sinhr^-™'(0 

if k is even or odd, respectively, and </>* (exp fXi ) equals 

(7.11) {~l?f")k{=£ + f + | ) * / 2 ( ^ - f + !)-t/2(coshr)* s i n h ^ ^ r ) 

or 

(7-12) ^ ^ W ( ^ + ? + ^ " / ^ " ? + !)-(^.)/2(coshf)^H^)
W 

if & is even or odd, respectively. The explicit expression for the differential operator X\ 
acting from the left on right //-invariant functions/ on G can be found in the same way 
as formula (6.17). The result is 

(X]f)(ke exptX\) = (cos Qjt - tanh tsin 0^)f(kd exp tX\). 

This leads to the explicit version of formula (7.2) for associated intertwining functions 
on G/H. 
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PROPOSITION 7.4. For all X e C, k e Z+, a = 0, i, 1,.. . and e e {e, o] we have 

/>*(ï(cos0| - tanhrsin0|) ; f + | + f, § + | - f )</>e(exprX1) 

(7.13) = ^(exp^Xi)/^a"1/2,a"1/2)(cosfl). 

Here <j>e is given by (7.7), (7.8), cj>k
t by (7.9)-(7.12). 
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