
Proceedings of the Edinburgh Mathematical Society (2022) 65, 958–989

doi:10.1017/S0013091522000426

POLYNOMIAL NULL SOLUTIONS TO BOSONIC LAPLACIANS,
BOSONIC BERGMAN AND HARDY SPACES

CHAO DING1,2, PHUOC-TAI NGUYEN2 AND JOHN RYAN3

1
Center for Pure Mathematics, School of Mathematical Sciences, Anhui University,

Hefei, P.R. China (cding@ahu.edu.cn)
2
Department of Mathematics and Statistics, Masaryk University, Brno, Czech Republic

(ptnguyen@math.muni.cz)
3
Department of Mathematical Science, University of Arkansas, Fayetteville, AR, USA

(jryan@uark.edu)

(Received 27 September 2021; first published online 13 October 2022)

Abstract A bosonic Laplacian, which is a generalization of Laplacian, is constructed as a second-order
conformally invariant differential operator acting on functions taking values in irreducible representations
of the special orthogonal group, hence of the spin group. In this paper, we firstly introduce some properties
for homogeneous polynomial null solutions to bosonic Laplacians, which give us some important results,
such as an orthogonal decomposition of the space of polynomials in terms of homogeneous polynomial
null solutions to bosonic Laplacians, etc. This work helps us to introduce Bergman spaces related to
bosonic Laplacians, named as bosonic Bergman spaces, in higher spin spaces. Reproducing kernels for
bosonic Bergman spaces in the unit ball and a description of bosonic Bergman projection are given
as well. At the end, we investigate bosonic Hardy spaces, which are considered as generalizations of
harmonic Hardy spaces. Analogs of some well-known results for harmonic Hardy spaces are provided
here. For instance, connections to certain complex Borel measure spaces, growth estimates for functions
in the bosonic Hardy spaces, etc.

Keywords: Bosonic Laplacians; real analyticity; L2 decomposition; bosonic Hardy spaces; bosonic
Bergman spaces
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1. Introduction

It is well known that the basic properties of the Laplacian are a road well travelled,
including spherical harmonics. See [1, 24, 25] etc. Here in sharp contrast, we show that

© The Author(s), 2022. Published by Cambridge University Press on Behalf of The
Edinburgh Mathematical Society.. This is an Open Access article, distributed under
the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited. 958

https://doi.org/10.1017/S0013091522000426 Published online by Cambridge University Press

mailto:cding@ahu.edu.cn
mailto:ptnguyen@math.muni.cz
mailto:jryan@uark.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0013091522000426&domain=pdf
https://doi.org/10.1017/S0013091522000426


Polynomial null solutions, bosonic Bergman and Hardy spaces 959

these properties have analogues for an infinite class of second-order homogeneous dif-
ferential operators that we call bosonic Laplacians. They are also known as the higher
spin Laplace operators [7]. The analogues of these properties play an important role to
generalize harmonic Bergman and Hardy spaces to the bosonic cases later in this paper.

In complex analysis, the Bergman and Hardy spaces are particular subspaces of
holomorphic functions on the unit disk or the upper-half plane, which play an important
role in modern harmonic analysis. The theory of Hardy and Bergman spaces combines
techniques from functional analysis, the theory of analytic functions and Lebesgue integra-
tion and it has many applications, such as signal processing, Fourier analysis, maximum
modulus principle, and so on. More details can be found in, for instance [13, 14, 16, 17,
20, 28].

All these motivate us to investigate a function theory related to bosonic Laplacians,
which are second-order differential operators act on functions taking values in irreducible
representations of SO(m), hence of the spin group Spin(m). Further, for convenience,
these representation spaces are usually realized as the spaces of scalar-valued homoge-
neous harmonic polynomials. Particularly, when the degree of the space of homogeneous
harmonic polynomials is zero, the bosonic Laplacian reduces to the classical Laplacian.
To introduce all these, we need Clifford analysis and Clifford algebras.

Clifford analysis is considered as not only a higher-dimensional function theory offering
a generalization of complex analysis but also a refinement of classical harmonic analy-
sis. It is centred around the study of the Dirac operator and monogenic functions (null
solutions of the Dirac operator). Hardy and Bergman spaces have also been investigated
by many researchers via Clifford analysis in the past decades. For instance, in [22], the
authors introduced an analog of Hardy type spaces over a special type of surfaces lying
in the conformal closure of C

m with an application of Vahlen matrices. A technique
with homogeneous series expansion was applied in [2] to study characterizations of cer-
tain Dirichlet and Hardy spaces of Clifford-valued monogenic function in the unit ball.
Boundary values of functions in Hardy spaces and applications in signal processing were
provided in [21]. A frame theory of Hardy spaces was developed by using Cauchy type
integral in [5]. Hardy spaces related to some perturbed Dirac operators in exterior uni-
formly rectifiable domains were developed in [18]. Reproducing kernel for the module of
Clifford-valued square-integrable eigenfunctions of the Dirac operator was investigated in
[3] and weighted Bergman projections in the monogenic Bergman spaces was studied in
[23]. More details can be found in, for instance, [1, 19, 27].

The study of conformally invariant differential operators in the higher spin spaces can
be traced back to 1968, when Stein and Weiss [26] introduced a technique to construct
first-order conformally invariant differential operators, named as Stein–Weiss gradients,
by applying a decomposition of tensor product of two representation spaces of the spin
group. It turns out that first-order conformally invariant differential operators in the
higher spin spaces in Clifford analysis can be constructed as Stein–Weiss gradients as well,
see [9]. In [4, 7, 12, 15], the first- and second-order conformally invariant differential oper-
ators, named as Rarita–Schwinger operators and the higher spin Laplace operators (also
called bosonic Laplacians), in the higher spin spaces via Clifford analysis with algebraic
and analytic techniques. Some properties and integral formulas, such as Green’s integral
formula and Borel–Pompeiu formula, for bosonic Laplacians have been introduced in [10].
Further, Clerc and Ørsted [6] introduced a representation-theoretic framework to show
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the connection between these conformally invariant differential operators in the higher
spin spaces and Knapp–Stein intertwining operators. Recently, in [11], the authors solved
Dirichlet problems for bosonic Laplacians in the unit ball and upper-half space. Further,
they discovered that null solutions to bosonic Laplacians also possess some important
properties as the classical Laplacian does, such as the mean-value property, Cauchy’s
estimates, Liouville’s Theorem, etc.

In this paper, we will continue our investigation on analogs of harmonic function theory
in higher spin spaces. More specifically, we study homogeneous polynomial null solutions
to bosonic Laplacians, which was firstly described in [7] by a decomposition into irre-
ducible representations of the spin group. In this paper, we provide more information
of these particular homogeneous polynomial null solutions, for instance, orthogonality
property and a decomposition of certain L2 space on the unit sphere. Analogs of some
properties of harmonic Hardy spaces and harmonic Bergman spaces in higher spin spaces
in the framework of Clifford analysis are also investigated here. In order to facilitate cal-
culations, Clifford algebras are needed here. The intricate form of the bosonic Laplacians,
together with the rotation action on the second variable and the interaction of the two
variables, leads to the invalidity of some classical techniques and highly complicates the
analysis.

Main results:

(1) Homogeneous polynomial null solutions to bosonic Laplacians are studied. An
orthogonal decomposition for certain L2 space in terms of these homogeneous poly-
nomial solutions is discovered. We also find that there is an orthogonal property
between two homogeneous polynomial null solutions with different degrees, which
can be considered as an analog of the orthogonality between spherical harmonics.

(2) We define bosonic Bergman spaces in the last section, where we also provide
a description for the Bergman reproducing kernel and the bosonic Bergman
projection.

(3) We introduce bosonic Hardy spaces as generalizations of harmonic Hardy spaces
in the higher spin cases. Close relationship between the bosonic Hardy spaces and
certain complex Borel measure spaces are provided.

The investigation on bosonic Hardy and Bergman spaces also suggests that many other
interesting problems on Hardy and Bergman spaces in classical harmonic analysis can be
studied in the higher spin cases as well. For instance, different characterizations of Hardy
spaces, the classical Riesz theory on boundary behaviour, Berezin transform in Bergman
spaces, etc.

2. Preliminaries

Let {e1, · · · ,em} be a standard orthonormal basis for the m-dimensional Euclidean space
R

m. Suppose x and a are two vectors on the unit sphere S
m−1, we now show that a

reflection of x across the hyperplane perpendicular to a can simply be expressed as axa.
This simplifies the calculation significantly later in this article. To explain this, one needs
Clifford analysis and Clifford algebras.
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The (real) Clifford algebra Clm is generated by R
m with the relationship eiej + ejei =

−2δij , 1 ≤ i, j ≤ m. Hence, an element of the basis of the Clifford algebra can be written
in the form eA = ej1 · · · ejr

, where A = {j1, · · · , jr} ⊂ {1, 2, · · · ,m} and 1 ≤ j1 < j2 <
· · · < jr ≤ m. Obviously, the m-dimensional Euclidean space R

m can be embedded into
Clm with the mapping x = (x1, · · · , xm) �→∑m

j=1 xjej . For x ∈ R
m, one can easily verify

that |x|2 =
∑m

j=1 x2
j = −x2. The complex Clifford algebra Clm(C) can be realized as

Clm(C) = Clm ⊗ C.
Suppose that a ∈ S

m−1 ⊆ R
m, if we consider axa, we may decompose

x = xa‖ + xa⊥,

where xa‖ stands for the projection of x onto a and xa⊥ is the rest, perpendicular to a.
Hence xa‖ is a scalar multiple of a and we have

axa = axa‖a + axa⊥a = −xa‖ + xa⊥.

So the action axa represents a reflection of x across the hyperplane perpendicular to a.
Let Hk(C) (1 ≤ k ∈ N) be the space of complex-valued homogeneous harmonic polyno-

mials of degree k in m-dimensional Euclidean space. If we consider a function f(x,u) ∈
C∞(Rm × R

m,Hk(C)), i.e., for a fixed x ∈ R
m, f(x,u) ∈ Hk(C) with respect to u ∈ R

m.
Recall that bosonic Laplacians [15] are defined as

Dk : C∞(Rm × R
m,Hk(C)) −→ C∞(Rm × R

m,Hk(C)),

Dk = Δx − 4〈u,∇x〉〈∇u,∇x〉
m + 2k − 2

+
4|u|2〈∇u,∇x〉2

(m + 2k − 2)(m + 2k − 4)
, (2.1)

where 〈 , 〉 is the standard inner product in R
m, ∇x is the gradient with respect to

x. In particular, D1 = Δx − 4
m 〈u,∇x〉〈∇u,∇x〉 is the generalized Maxwell operator.

Further, it reduces to the source-free classical Maxwell equations given in terms of the
Faraday-tensor when m = 4, k = 1 with signature (−,+,+,+). More details can be found
in [15].

3. Polynomials null solutions to bosonic laplacians

In [7], the authors provided a description for homogeneous polynomial null solutions to
bosonic Laplacians by applying a decomposition of a tensor product of two representations
of the spin group. In this section, we will investigate the space of homogeneous polyno-
mial null solutions to bosonic Laplacians with an analytic approach. More specifically,
we firstly study series expansions of solutions to bosonic Laplacians in terms of homoge-
neous polynomial null solutions in Euclidean spaces. This leads to decompositions of the
space of homogeneous polynomials and a certain L2 space in terms of these homogeneous
polynomial null solutions in Euclidean spaces. Then, we show that the restriction of these
homogeneous polynomial null solutions to the unit sphere gives us analogs of spherical
harmonics. A reproducing kernel and an orthogonality property for these homogeneous
polynomial null solutions are also introduced here. This section provides us needed tools
to investigate bosonic Bergman spaces in the next section.
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First, let us introduce some notation. Let P(Rm × B
m,Hk(C)) be the space of poly-

nomials f(x,u) such that f is a polynomial in x and u, and for each fixed x ∈
R

m, f(x, ·) ∈ Hk(C) with respect to u. Let Pl(Rm × B
m,Hk(C)) be the subspace of

P(Rm × B
m,Hk(C)) such that f is a homogeneous polynomial with respect to x with

degree l. We also denote Bl(Rm × B
m,Hk(C)) = Pl(Rm × B

m,Hk(C)) ∩ kerDk.

3.1. Real analyticity and homogeneous expansions

Recall that harmonic functions are real analytic, which means that any harmonic func-
tion can be locally expressed as a power series. In this section, we will prove that we also
have real analyticity for null solutions to bosonic Laplacians.

Theorem 3.1. Let Ω ⊂ R
m be a connected, open bounded domain and f ∈ C2(Ω ×

B
m,Hk(C)). If Dkf = 0 in Ω × B

m, then f is real analytic with respect to x in Ω.

Proof. It suffices to show that if Dkf = 0 in B
m × B

m, then f has a power series
expansion converging to f in a neighbourhood of 0. The main idea is to use the Poisson
integral formula and the series expansion of the Poisson kernel. Recall that if f(x,u) ∈
C2(Ω × B

m,Hk(C)) and Dkf = 0 in Ω × B
m, the Poisson integral formula [11, Section 5.2]

is given by

f(x,v) =
cm,k

2

∫
Sm−1

∫
Sm−1

1 − |x|2
|x − ζ|m Zk

(
(x − ζ)u(x − ζ)

|x − ζ|2 ,v

)
f(ζ,u)dS(u)dS(ζ),

where Zk(u,v) is the reproducing kernel of k-homogeneous harmonic polynomials in the
following sense

g(v) =
∫

Sm−1
Zk(u,v)g(u)dS(u), for all g ∈ Hk(C).

On the one hand, we already knew that there is a series expansion, which converges
absolutely, for the Poisson kernel of Laplacian 1−|x|2

|x−ζ|m =
∑∞

|α|=0 pα(ζ)xα, where |x| <√
2 − 1 and ζ ∈ S

m−1, see [1, Theorem 1.28]. On the other hand, let η = (x−ζ)u(x−ζ)
|(x−ζ)|2 ,

and {ϕj}dk
j=1 be an orthonormal basis for Hk(C), where dk = dimHk(C). Then we have

[1, (5.28)] Zk(η,v) =
∑dk

j=1 ϕj(η)ϕj(v). Since ϕj is a homogeneous harmonic polynomial
of degree k, and η has no singular point for x ∈ U , ζ ∈ S

m−1, we find that ϕj(η) is
analytic for x ∈ B

m. More specifically, the local series expansion of ϕj(η) can be obtained
by plugging the series expansion for η = (x−ζ)u(x−ζ)

|x−ζ|2 into ϕj . Notice that

η =
(x − ζ)u(x − ζ)

|x − ζ|2

= u − 2〈x − ζ,u〉|x − ζ|−2 = u − 2〈x − ζ,u〉
∞∑

s=0

cs(|x|2 − 2〈x, ζ〉)s,

where
∑∞

s=0 cs(t − 1)s is the Taylor series of t−2 on (0, 2) at point t = 1. This series
converges to η absolutely in |x| <

√
2 − 1,u ∈ Bm with a similar argument as in [1,
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Theorem 1.28]. Now, we plug the expansion of η into ϕj(η) and then rearrange it to obtain
ϕj(η) =

∑∞
|β|=0 qβ(ζ,u)xβ. Now, we have series expansions for 1−|x|2

|x−ζ|m and ϕj(η), and

both series converge absolutely for |x| <
√

2 − 1,u,v ∈ Bm. This allows us to calculate

1 − |x|2
|x − ζ|m Zk(η,v) =

dk∑
j=1

1 − |x|2
|x − ζ|m ϕj(η)ϕj(v)

=
dk∑

j=1

∞∑
|α|=0

pα(ζ)xα
∞∑

|β|=0

qβ(ζ,u)xβϕj(v) =
dk∑

j=1

∞∑
|γ|=0

hγ(ζ,u)xγϕj(v)

=:
∞∑

|γ|=0

gγ(ζ,u,v)xγ ,

where hγ(ζ,u) =
∑

|α|+|β|=|γ| pα(ζ)qβ(ζ,u) and gγ(ζ,u,v) is a k-homogeneous har-
monic polynomial with respect to v. Further, this series expansion for the Poisson
kernel also converges absolutely when |x| <

√
2 − 1,u,v ∈ Bm. Now, we plug this series

expansion back into the Poisson integral formula to obtain

f(x,v) =
cm,k

2

∫
Sm−1

∫
Sm−1

∞∑
|γ|=0

gγ(ζ,u,v)xγf(ζ,u)dS(u)dS(ζ)

=
[cm,k

2

∫
Sm−1

∫
Sm−1

∞∑
|γ|=0

gγ(ζ,u,v)f(ζ,u)dS(u)dS(ζ)
]
xγ

=
∞∑

|γ|=0

[
cm,k

2

∫
Sm−1

∫
Sm−1

gγ(ζ,u,v)f(ζ,u)dS(u)dS(ζ)
]

xγ =: Cγ(v)xγ ,

where Cγ(v) ∈ Hk(v, C). In the last second step, we interchange the integral and infinite
sum because of the facts that

∑∞
|γ|=0 gγ(ζ,u,v)xγ converges absolutely when |x| <√

2 − 1,u,v ∈ Bm and f is a polynomial, which allows us to apply Fubini’s Theorem. �

The real analyticity for null solutions to bosonic Laplacians allows us to rewrite these
solutions as an infinite sum of homogeneous polynomials. This result is crucial for obtain-
ing a decomposition for polynomial null solutions to bosonic Laplacians in the next
subsection.

Proposition 3.2. Let f ∈ C2(Ω × B
m,Hk(C)) and Dkf = 0 in Ω × B

m. Then, given
a ∈ Ω, we have f(x,u) =

∑∞
l=0 fl(x − a,u), where fl(x,u) ∈ Bl(Ω × B

m,Hk(C)).

Proof. Without loss of generality, we assume that a is the origin, because for
arbitrary a ∈ Ω, one can obtain the result by a translation. We denote fl(x,u) =∑

|α|=l
∂αf(0,u)

∂xα xα, and it is easy to see that fl ∈ Hk(u, C). From the previous theorem,
we know that there exists a neighbourhood U of the origin, such that f(x,u) =∑∞

l=0 fl(x,u) for x ∈ U .
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Further, we notice that

0 = Dkf = Dk

∞∑
l=0

fl =
∞∑

l=0

Dkfl. (3.1)

Since Dkfl ∈ Pl−2(Ω × B
m,Hk(C)), which implies that if {ϕj(u)}dk

j=1 is an orthonor-
mal basis for Hk(u), then we can rewrite Dkfl(x,u) =

∑dk

j=1 aj,l−2(x)ϕj(u), where
aj,l−2(x) is a homogeneous polynomial of x with degree l − 2. Then (3.1) gives∑∞

l=0

∑dk

j=1 aj,l−2(x)ϕj(u) = 0. However, since {ϕj(u)}dk
j=1 is an orthonormal basis, we

obtain
∑∞

l=0 aj,l−2(x) = 0, for all j, which implies that aj,l−2(x) = 0 for all j, l. This is
equivalent to Dkfl = 0 for all l, which completes the proof. �

3.2. A polynomial decomposition for an L2 space on S
m−1 × S

m−1

Recall that the Poisson integral regarding to bosonic Laplacians is given by

P [f ](x,v) =
cm,k

2

∫
Sm−1

∫
Sm−1

1 − |x|2
|x − ζ|m Zk

(
(x − ζ)u(x − ζ)

|(x − ζ)|2 ,v

)
f(ζ,u)dS(u)dS(ζ),

(3.2)

where f ∈ C(Sm−1 × S
m−1,Hk(C)), see [11, (3.13)]. Our result below shows that the

Poisson integral of a polynomial is a polynomial of a special form.

Proposition 3.3. Let f(x,u) ∈ Pl(Bm × B
m,Hk(C)), then P [f

∣∣
Sm−1 ] = (1 − |x|2)g +

f, for some polynomial g(x,u) satisfying degx g ≤ l − 2 and g ∈ Hk(u, C) for each
fixed x.

Proof. When l = 0, 1, the result is obviously true with g = 0. Now, we assume that
l ≥ 2. Firstly, it is easy to observe that (1 − |x|2)g + f = f when x ∈ S

m−1. Hence, with
the boundary data f

∣∣
Sm−1 , if we can find a polynomial g(x,u) satisfying degx g ≤ l − 2,

g(x, ·) ∈ Hk(u, C) for each fixed x and Dk((1 − |x|2)g + f) = 0, i.e., Dk(1 − |x|2)g =
−Dkf , then from the uniqueness of the Dirichlet problem for bosonic Laplacians on
the unit ball [11, Section 4], we immediately have P [f

∣∣
Sm−1 ] = (1 − |x|2)g + f .

Now, let W stand for the vector space of polynomials f(x,u) satisfying degx f ≤ l − 2
and f(x, ·) ∈ Hk(u, C) for each fixed x. We have the following linear map

T : W −→ W,

g �→ Dk(1 − |x|2)g.

Suppose that Tg = 0, which implies that Dk(1 − |x|2)g = 0. However, (1 − |x|2)g = 0
when x ∈ S

m−1, then according to the Poisson integral formula, (1 − |x|2)g = 0 for all
x ∈ R

m, i.e., g = 0 for all x ∈ B
m. This implies that the linear map T is injective. Since

W is finite-dimensional, then the linear map T is also surjective. Therefore, we just proved
that given an f ∈ Pl(Bm × B

m,Hk(C)), which implies Dkf ∈ W , there exists a function
g ∈ W , such that Dk(1 − |x|2)g = −Dkf as desired. �

The following result is crucial in our proof of a direct sum decomposition of certain
polynomial spaces below.
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Proposition 3.4. Let f(x,u) ∈ P(Bm × B
m,Hk(C)), then Dk|x|2f �≡ 0 in R

m × B
m.

Proof. Suppose that there exists a function f(x,u) ∈ P(Bm × B
m,Hk(C)) with

degx f = l such that Dk|x|2f = 0 in B
m × B

m. One can see that |x|2f = f when
x ∈ S

m−1. According to the uniqueness for the Dirichlet problem given in [11, Section
4], we must have P [f ] = |x|2f in B

m × B
m. However, from the previous proposition, we

notice that degx P [f ] = l but degx |x|2f = l + 2, which is a contradiction. This completes
our proof. �

Remark 3.5. Notice that the functions considered in the above two propositions are
homogeneous polynomials with respect to x and u. Therefore, the results above are also
true for (x,u) ∈ R

m × R
m.

Now, we introduce a direct sum decomposition for a particular polynomial space.

Proposition 3.6. Pl(Rm × B
m,Hk(C)) = Bl(Rm × B

m,Hk(C)) ⊕ |x|2Pl−2(Rm ×B
m,

Hk(C)).

Proof. Given an f ∈ Pl(Rm × B
m,Hk(C)), with Proposition 3.3, we know that there

exists g ∈ P(Rm × B
m,Hk(C)) with degx g ≤ l − 2, such that

f = P [f ] + (1 − |x|2)g, for all (x,u) ∈ R
m × B

m.

Now, we take the l-homogeneous terms with respect to x on the right-hand side above
to obtain f = fl − |x|2gl−2, where fl is the l-homogeneous term for P [f ] and gl−2 is the
(l − 2)-homogeneous term of g. Further, we know that Dkfl = 0 by Proposition 3.2. This
completes the proof for the existence of the decomposition. To prove the uniqueness for
this decomposition, we assume that there exist fl, f

′
l ∈ kerDk and gl−2, g

′
l−2 ∈ Pl−2(Rm ×

B
m,Hk(C)), such that fl − |x|2gl−2 = f ′

l − |x|2g′l−2, i.e., fl − f ′
l = |x|2gl−2 − |x|2g′l−2 ∈

kerDk. Then Proposition 3.4 tells that fl = f ′
l and gl−2 = g′l−2, which completes the

proof. �

The proposition above immediately provides us a decomposition for Pl(Rm ×
B

m,Hk(C)) as follows.

Theorem 3.7. Every f ∈ Pl(Rm × B
m,Hk(C)) can be uniquely written in the form

f = fl + |x|2fl−2 + · · · + |x|2sfl−2s,

where fl ∈ Bl(Rm × B
m,Hk(C)) and s = [ l

2 ].

From the theorem above, one can also find that

dimBl(Rm × B
m,Hk(C)) = dimPl(Rm × B

m,Hk(C)) − dimPl−2(Rm × B
m,Hk(C))

= (dimPl(x) − dimPl−2(x)) dimHk(C)

= dimHl(C) · dimHk(C).
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This result coincides the result obtained in [7, Section 4]. The theorem above is equivalent
to

Pl(Rm × B
m,Hk(C)) = Bl(Rm × B

m,Hk(C)) ⊕ |x|2Bl−2(Rm × B
m,Hk(C))

⊕ · · · ⊕ |x|l−2sBl−2s(Rm × B
m,Hk(C)).

Later in this paper, we will show that this decomposition is an orthogonal decomposition
with respect to the inner product (3.3).

3.3. Spherical homogeneous null solutions to bosonic Laplacians

In classical harmonic analysis, we know that L2(Sm−1) =
⊕∞

k=0 Hk(Sm−1). In this
subsection, we will introduce an analog for the bosonic Laplacians case.

First, let L2(Sm−1 × S
m−1,Hk(Sm−1)) be the space of functions f(x,u) with x,u ∈

S
m−1, for each fixed x ∈ S

m−1, f(x,u) ∈ Hk(Sm−1) with respect to u, and

‖f‖L2(Sm−1×Sm−1,Hk(Sm−1)) :=
(∫

Sm−1

∫
Sm−1

|f(x,u)|2dS(u)dS(x)
) 1

2

< +∞.

Let {ϕj(u)}dk
j=1 be an orthonormal basis of Hk(u), then for a function f ∈ L2(Sm−1 ×

S
m−1,Hk(Sm−1)), it can be written as f =

∑dk

j=1 fj(x)ϕj(u). Given the following inner
product for L2(Sm−1 × S

m−1,Hk(Sm−1))

〈f | g〉 :=
∫

Sm−1

∫
Sm−1

f(x,u)g(x,u)dS(u)dS(x), f, g ∈ L2(Sm−1 × S
m−1,Hk(Sm−1)),

(3.3)

L2(Sm−1 × S
m−1,Hk(Sm−1)) is indeed a Hilbert space. Now, we introduce a decompo-

sition for this L2 space as below. We remind the reader that we only show that it is a
direct sum decomposition at the moment and we will explain it is also an orthogonal
decomposition with respect to the inner product 〈 | 〉 later in this paper.

Proposition 3.8. A decomposition for L2(Sm−1 × S
m−1,Hk(Sm−1)) is given as

follows

L2(Sm−1 × S
m−1,Hk(Sm−1)) =

∞⊕
l=0

Bl(Sm−1 × S
m−1,Hk(Sm−1)).

Proof. Here, we only need to show that
⊕∞

l=0 Bl(Sm−1 × S
m−1,Hk(Sm−1)) is

dense in L2(Sm−1 × S
m−1,Hk(Sm−1)). Let f ∈ L2(Sm−1 × S

m−1,Hk(Sm−1)) and f =∑dk

j=1 fj(x)ϕj(u) as explained above. The key to prove this proposition is to observe that
f ∈ L2(Sm−1 × S

m−1,Hk(Sm−1)) is equivalent to fj ∈ L2(Sm−1) for all j = 1, · · · , dk.
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Indeed,

‖f‖2
L2(Sm−1×Sm−1,Hk(Sm−1)) : =

∫
Sm−1

∫
Sm−1

∣∣∣∣∣
dk∑

j=1

fj(x)ϕj(u)

∣∣∣∣∣
2

dS(u)dS(x)

=
dk∑

j=1

∫
Sm−1

|fj(x)|2dS(x),

due to {ϕj}dk
j=1 is an orthonormal basis for Hk(Sm−1). As in classical harmonic analysis,

there exists a sequence of polynomials {pl,j}∞l=1 such that ‖pl,j − fj‖L2(Sm−1) → 0 as
l → ∞ for all j. This is equivalent to

∫
Sm−1

∫
Sm−1

∣∣∣∣
dk∑

j=1

pl,j(x)ϕj(u) −
dk∑

j=1

fj(x)ϕj(u)
∣∣∣∣
2

dS(u)dS(x) → 0 (3.4)

as l → ∞. Further, Theorem 3.7 tells us that for each l,
∑dk

j=1 pl,j(x)ϕj(u) ∈ P(Sm−1 ×
S

m−1,Hk(Sm−1)) with degx ≤ l, so that there exists a sequence {ql
s}∞s=0, where ql

s ∈
Bs(Sm−1 × S

m−1,Hk(Sm−1)) such that
∑dk

j=1 pl,j(x)ϕj(u) =
∑[ l

2 ]
s=0 ql

s(x,u). Combining

this with (3.4), we have ‖∑[ l
2 ]

s=0 ql
s − f‖L2(Sm−1×Sm−1,Hk(Sm−1)) → 0 as l → ∞, which

completes the proof. �

Remark 3.9. From the proof above, one might notice that
⊕∞

l=0 Hl(Sm−1) ×
Hk(Sm−1) is also dense in L2(Sm−1 × S

m−1,Hk(Sm−1)), where Hl(Sm−1) is with respect
to x and Hk(Sm−1) is with respect to u. Here, we provide a different decomposition for
L2(Sm−1 × S

m−1,Hk(Sm−1)) related to Dk.

Recall that L2(Sm−1 × S
m−1,Hk(Sm−1)) is a Hilbert space with the given inner product

in (3.3), since Bl(Sm−1 × S
m−1,Hk(Sm−1)) is a finite-dimensional inner product subspace

of L2(Sm−1 × S
m−1,Hk(Sm−1)) there exists a unique function Jl,k(·,x, ·,v) ∈ Bl(Sm−1 ×

S
m−1,Hk(Sm−1)), such that

f(x,v) = 〈Jl,k(·,x, ·,v) | f〉 =
∫

Sm−1

∫
Sm−1

Jl,k(ζ,x,u,v)f(ζ,u)dS(u)dS(ζ), (3.5)

for all f ∈ Bl(Rm × B
m,Hk(C)). With a similar argument as in [1, Proposition 5.27],

one can easily obtain similar basic properties for the reproducing kernel Jl,k(·,x, ·,v) as
follows.

Proposition 3.10. Suppose ζ,x,u,v ∈ S
m−1 and l, k ≥ 0. Then, we have

(1) Jl,k is real valued.

(2) Jl,k(ζ,x,u,v) = Jl,k(x, ζ,v,u).

(3) Jl,k(T (ζ),x, T (u),v) = Jl,k(ζ, T−1(x),u, T−1(v)), for all T ∈ O(m).

(4) Jl,k(x,x,u,u) = dimBl(Rm × B
m,Hk(C)).
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(5) |Jl,k(ζ,x,u,v)| ≤ dimBl(Rm × B
m,Hk(C)).

Proof. Here we only provide an outline proof. To prove (1), we assume f ∈ Bl(Sm−1 ×
S

m−1,Hk(Sm−1)) is real valued. Then

0 = Imf(x,v) = Im
∫

Sm−1

∫
Sm−1

Jl,k(ζ,x,u,v)f(ζ,u)dS(ζ)dS(u)

= −
∫

Sm−1

∫
Sm−1

ImJl,k(ζ,x,u,v)f(ζ,u)dS(ζ)dS(u).

Now, we let f = ImJl,k(ζ,x,u,v) to immediately obtain ImJl,k = 0.
To prove (2), let {φ1, · · · , φdl,k

} be an orthonormal basis of Bl(Sm−1 × S
m−1,

Hk(Sm−1)), where dl,k = dimBl(Sm−1 × S
m−1,Hk(Sm−1)). Then, one has

Jl,kJl,k(ζ,x,u,v) =
dl,k∑
j=1

〈φj | Jl,k(·,x, ·,v)〉φj(ζ,u) =
dl,k∑
j=1

φj(x,v)φj(ζ,u). (3.6)

Since Jl,k is real valued, the equation above is unchanged after taking complex con-
jugation, which implies (2). One can obtain (3) immediately from the definition of
the reproducing kernel and the fact that the surface area element dS is rotationally
invariant.

In (3), if we let x = T (ζ) and v = T (u) in Jl,k(T (ζ),x, T (u),v), then we obtain
Jl,k(T (ζ), T (ζ), T (u), T (u)) = Jl,k(ζ, ζ,u,u), i.e., Jl,k(ζ, ζ,u,u) is invariant under rota-
tion. Letting x = ζ and v = u in 3.6 immediately gives us (4). Taking absolute
value on both sides of 3.6 and applying Cauchy–Schwarz inequality can easily provide
us (5). �

The following result tells us that the expression for the reproducing kernel Jl,k can be
obtained from a homogeneous series expansion of the Poisson kernel.

Proposition 3.11. For m ≥ 2, we have

P (ζ,x,u,v) =
∞∑

l=0

Jl,k(ζ,x,u,v)

for all x,v ∈ B
m, ζ,u ∈ S

m−1. The series converges absolutely and uniformly on S
m−1 ×

K × S
m−1 × Bm, where K ⊂ B

m is a sufficiently small compact subset containing 0.

Proof. Recall that in Proposition 3.1, we have shown that the Poisson kernel has the
following series expansion

P (ζ,x,u,v) =
∞∑

|γ|=0

gγ(ζ,u,v)xγ (3.7)

which converges absolutely when |x| <
√

2 − 1,u,v ∈ Bm, and gγ(ζ,u,v) ∈ Hk(v, C).
We claim that it also converges uniformly when |x| ≤ √

2 − 1 − ε,u,v ∈ Bm, where ε > 0
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can be arbitrarily small. This can be observed from∣∣∣∣
∞∑

|γ|=0

gγ(ζ,u,v)xγ

∣∣∣∣ ≤
∞∑

|γ|=0

∣∣∣∣gγ(ζ,u,v)xγ

∣∣∣∣ ≤
∞∑

|γ|=0

∣∣∣∣gγ(ζ,u,v)
∣∣∣∣|x||γ| < +∞,

for all |x| ≤ √
2 − 1 − ε,u,v ∈ Bm. The last step comes from the fact that∑∞

|γ|=0 gγ(ζ,u,v)xγ converges absolutely when |x| =
√

2 − 1 − ε, particularly with x =
(x1, 0, · · · , 0) and γ = (|γ|, 0, · · · , 0). Therefore, we have the result that the series expan-
sion for the Poisson kernel given in (3.7) converges absolutely and uniformly when
|x| ≤ √

2 − 1 − ε,u,v ∈ Bm with an arbitrarily small ε > 0. Hence, given a function
f ∈ Bl(Rm × B

m,Hk(C)), with the Poisson integral formula, we have

f(x,v) =
cm,k

2

∫
Sm−1

∫
Sm−1

∞∑
|γ|=0

gγ(ζ,u,v)xγf(ζ,u)dS(u)dS(ζ)

=
cm,k

2

∞∑
|γ|=0

∫
Sm−1

∫
Sm−1

gγ(ζ,u,v)f(ζ,u)dS(u)dS(ζ)xγ =:
∞∑

|γ|=0

fγ(v)xγ ,

where fγ(v) ∈ Hk(v, C) and |x| ≤ √
2 − 1 − ε,v ∈ Bm. We remind the reader that the

uniform and absolute convergence of the series expansion of the Poisson kernel when |x| ≤√
2 − 1 − ε,u,v ∈ Bm, f is a polynomial and Fubini’s Theorem allow us to interchange

the integral and infinite sum in the last second step above. However, since f ∈ Bl(Rm ×
B

m,Hk(C)), we take the degree l (with respect to x) terms on the right- hand side above,
we have f =

∑
|γ|=l fγ(v)xγ . This implies that fγ(v) = 0 for all |γ| �= l. In other words,

we indeed have

f(x,v) =
cm,k

2

∫
Sm−1

∫
Sm−1

∑
|γ|=l

gγ(ζ,u,v)xγf(ζ,u)dS(u)dS(ζ),

for all f ∈ Bl(Rm × B
m,Hk(C)). Hence, we have the expression for our reproducing kernel

as Jl,k(ζ,x,u,v) = cm,k

2

∑
|γ|=l gγ(ζ,u,v)xγ , which completes the proof as well. �

Remark 3.12. We have already noticed the fact that functions in Bl(Rm ×
B

m,Hk(C)) are homogeneous polynomials in the variables x and u, and these functions
are uniquely determined by their values on the unit sphere (or arbitrarily small ball with
centre 0). Therefore, although the expression of Jl,k is obtained in a sufficiently small ball
centred at 0, we immediately know that it is also the expression for Jl,k in R

m × R
m.

Now, with the proof of the proposition above and Proposition 3.10, we claim that there
is an orthogonality property between homogeneous polynomial null solutions to Dk. More
specifically,

Theorem 3.13. Suppose that f ∈ Bs(Rm × B
m,Hk(C)) and g ∈ Bt(Rm × B

m,Hl(C)),
then f is orthogonal to g with respect to the inner product given in (3.3) when s �= t or
k �= l.
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Proof. Firstly, it is easy to observe that 〈f | g〉 = 0 when k �= l, this is because of the
already known orthogonality between functions in Hk(C) and functions in Hl(C) with
respect to the L2 inner product on S

m−1. Hence, we assume k = l in the rest of the proof.
With the help of the previous proposition, we have

〈f | g〉 =
∫

Sm−1

∫
Sm−1

f(x,v)g(x,v)dS(v)dS(x)

=
∫

Sm−1

∫
Sm−1

∫
Sm−1

∫
Sm−1

Js,k(ζ,x,u,v)f(ζ,u)dS(u)dS(ζ)

·
∫

Sm−1

∫
Sm−1

Jt,l(η, ,x,ω,v)g(η,ω)dS(ω)dS(η)dS(v)dS(x)

=
∫

Sm−1

∫
Sm−1

∫
Sm−1

∫
Sm−1

∫
Sm−1

∫
Sm−1

Js,k(ζ,x,u,v)Jt,l(η,x,ω,v)dS(v)dS(x)

× f(ζ,u)g(η,ω)dS(u)dS(ζ)dS(ω)dS(η).

In the last step above we interchange the order of integrations because all terms in the
integrand are polynomials. Now, we take a look at∫

Sm−1

∫
Sm−1

Js,k(ζ,x,u,v)Jt,l(η,x,ω,v)dS(v)dS(x)

=
∫

Sm−1

∫
Sm−1

Jt,l(η,x,ω,v)Js,k(ζ,x,u,v)S(v)dS(x),

where the last step above uses (2) in Proposition 3.10. We notice that Js,k(ζ,x,u,v) ∈
Bs(Rm × B

m,Hk(C)) and Jt,l(η,x,ω,v) is the reproducing kernel in Bt(Rm ×
B

m,Hl(C)), with the orthogonality property given in Theorem 3.13, we have∫
Sm−1

∫
Sm−1

Jt,l(η,x,ω,v)Js,k(ζ,x,u,v)S(v)dS(x) = 0, when t �= s.

Therefore, we have 〈f | g〉 = 0, when t �= s as desired. �

Remark 3.14. The theorem above implies that the decompositions given in
Proposition 3.6, 3.7 and 3.8 are all orthogonal decompositions. Further, with
Proposition 3.6, the theorem above immediately gives us the following useful corollary.

Corollary 3.15. Suppose f ∈ Ps(Sm−1 × S
m−1,Hk(Sm−1)) and g ∈ Bt(Sm−1 ×

S
m−1,Hk(Sm−1)). Then, f is orthogonal to g with respect to the inner product (3.3)

when s < t.

Proposition 3.11 also implies that for any f ∈ C2(Bm × B
m,Hk(C)) and Dkf = 0, the

homogeneous series expansion for f given in Proposition 3.2 has a stronger convergence
property as follows.

Proposition 3.16. If f ∈ C2(B(a, r) × B
m,Hk(C)) and Dkf = 0 in B(a, r) × B

m.
Then there exist fl ∈ Bl(Rm × B

m,Hk(C)) such that f(x,v) =
∑∞

l=0 fl(x − a,v) for all
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x ∈ B(a, r) and v ∈ B
m. Further, the series converges absolutely and uniformly on K ×

Bm, where K is a compact subset of B(a, r).

Proof. Firstly, we assume that f ∈ C2(Bm × B
m,Hk(C)) ∩ C(Bm × Bm,Hk(C)) and

Dkf = 0 in B
m × B

m. Then, with the Poisson integral formula and Proposition 3.11, for
x ∈ B(0, ε), v ∈ B

m, with 0 < ε < 1, we have

f(x,v) =
cm,k

2

∫
Sm−1

∫
Sm−1

P (ζ,x,u,v)f(ζ,u)dS(u)dS(ζ)

=
cm,k

2

∫
Sm−1

∫
Sm−1

∞∑
l=0

Jl,k(ζ,x,u,v)f(ζ,u)dS(u)dS(ζ)

=
cm,k

2

∞∑
l=0

∫
Sm−1

∫
Sm−1

Jl,k(ζ,x,u,v)f(ζ,u)dS(u)dS(ζ) =
∞∑

l=0

fl(x,v),

where fl(x,v) =
∫

Sm−1

∫
Sm−1 Jl,k(ζ,x,u,v)f(ζ,u)dS(u)dS(ζ) and Dkfl = 0 in R

m ×
B

m. Notice that (5) of Proposition 3.10 tells us that

|Jl,k(ζ,x,u,v)| ≤ dimBl(Rm × B
m,Hk(C))|x|l|v|k = dimHk · dimHl|x|l|v|k

≤ Cm(kl)m−2|x|l|v|k,

where Cm is a constant only depending on m. Hence, one can see that

∞∑
l=0

|fl(x,v)| ≤ Cmkm−2|v|k
∞∑

l=0

∫
Sm−1

∫
Sm−1

lm−2|x|l|f(ζ,u)|dS(u)dS(ζ) < +∞,

when (x,v) ∈ B(0, ε) × Bm. This implies that
∑∞

l=0 fl converges absolutely and uniformly
to f in B(0, ε) × Bm. Applying a dilation and a translation to the argument above can
immediately give us the result on B(a, r) × B

m as desired. �

4. Bergman spaces related to bosonic Laplacians

Let Ω be an open bounded domain in R
m and 1 ≤ p < ∞. In this section, we will intro-

duce bosonic Bergman spaces, denoted by bp(Ω × B
m,Hk(C)), which are generalizations

of harmonic Bergman spaces in higher spin spaces. It turns out that this bosonic Bergman
space is also a Hilbert space when p = 2 with respect to a given L2 inner product. This
reveals the existence of a reproducing kernel for b2(Ω × B

m,Hk(C)), and then a descrip-
tion for this reproducing kernel and a related Bergman projection is provided in terms of
the reproducing kernel Jl,k (3.5) when Ω = B

m.
The bosonic Bergman space bp(Ω × B

m,Hk(C)) is the set of functions f(x,u) ∈ Lp(Ω ×
B

m,Hk(C)) ∩ C2(Ω × B
m,Hk(C)) satisfying Dkf = 0 in Ω × B

m and

‖f‖bp(Ω×Bm,Hk(C)) :=
(∫

Ω

∫
Bm

|f(x,u)|pdudx

) 1
p

< +∞.
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4.1. Reproducing kernels for bosonic Bergman spaces

For a fixed (x,u) ∈ Ω × B
m, we call the linear map f �→ f(x,u) the point evaluation

of f at (x,u). The following proposition shows that point evaluation is continuous on
bp(Ω × B

m,Hk(C)).

Proposition 4.1. Suppose f ∈ bp(Ω × B
m,Hk(C)), a ∈ Ω and v ∈ B

m. Then,

|f(a,v)| ≤ (m + 2k − 2)‖f‖bp(Ω×Bm,Hk(C))

(m − 2)V (Bm)2/pd(a, ∂Ω)m/pd(v, Sm−1)m/p
.

Proof. Let 0 < r1 < d(a, ∂Ω) and 0 < r2 < d(v, Sm−1). We firstly apply the volume
version of the mean-value property [11, Proposition 5.3] with respect to x on B(x, r1) to
obtain

|f(a,v)|p ≤
(

m + 2k − 2
m − 2

)p

V (B(a, r1))−1

∫
B(a,r1)

|f(x,ω)|pdx, (4.1)

where ω = (x−a)v(x−a)
|x−a|2 and Jensen’s inequality is applied above. Further, we notice that

ω is obtained from v by a rotation, which implies that f(x,ω) ∈ Hk(ω, C). This motivates
us to apply the volume version of the mean-value property to f(x,ω) with respect to ω
on B(ω, r2) to have

|f(x,ω)|p ≤ V (B(ω, r2))−1

∫
B(ω,r2)

|f(x,u)|pdu. (4.2)

Plugging (4.2) into (4.1), we obtain

|f(a,v)|p ≤
(

m + 2k − 2
m − 2

)p

V (B(a, r1))−1

∫
B(a,r1)

V (B(ω, r2))−1

×
∫

B(ω,r2)

|f(x,u)|pdudx

≤
(

m + 2k − 2
m − 2

)p

r−m
1 r−m

2 V (Bm)−2‖f‖p
bp(Ω×Bm,Hk(C)).

Now, we let r1 → d(a, ∂Ω), r2 → d(v, Sm−1) and take pth root on both sides above to
complete the proof. �

With the previous proposition and a similar argument as in Proposition 5.16, we obtain
the following result, which tells us that bp(Ω × B

m,Hk(C)) is a Banach space.

Proposition 4.2. The bosonic Bergman space bp(Ω × B
m,Hk(C)) is a closed subspace

of Lp(Ω × B
m,Hk(C)).
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In particular, let p = 2, we have that b2(Ω × B
m,Hk(C)) is a Hilbert space with inner

product

〈f, g〉b2 :=
∫

Ω

∫
Bm

f(x,u)g(x,u)dudx, f, g ∈ L2(Ω × B
m,Hk(C)).

Now, for each fixed x ∈ Ω and v ∈ B
m, with Proposition 4.1, we notice that the map f �→

f(x,v) is a bounded linear functional on the Hilbert space b2(Ω × B
m,Hk(C)). Hence,

there exists a unique function Rk,Ω×Bm(·,x, ·,v) ∈ b2(Ω × B
m,Hk(C)), such that

f(x,v) = 〈Rk,Ω×Bm(·,x, ·,v), f〉b2 =
∫

Ω

∫
Bm

Rk,Ω×Bm(y,x,u,v)f(y,u)dudy.

We call the function Rk,Ω×Bm the reproducing kernel of b2(Ω × B
m,Hk(C)). One can also

obtain similar properties for Rk,Ω×Bm with a similar proof as in Proposition 3.10.

Proposition 4.3. The reproducing kernel Rk,Ω×Bm has the following properties.

(1) Rk,Ω×Bm is real valued.

(2) Rk,Ω×Bm(y,x,u,v) = Rk,Ω×Bm(x,y,v,u) for all x,y ∈ Ω and u,v ∈ B
m.

(3) If {φj}∞j=1 is an orthonormal basis for b2(Ω × B
m,Hk(C)), then

Rk,Ω×Bm(y,x,u,v) =
∞∑

j=1

φj(x,v)φj(y,u).

(4) ‖Rk,Ω×Bm(·,x, ·,v)‖b2(Ω×Bm,Hk(C)) =
√

Rk,Ω×Bm(x,x,v,v) for all x ∈ Ω and v ∈
B

m.

Since b2(Ω × B
m,Hk(C)) is a closed subspace of the Hilbert space L2(Ω × B

m, C), there
is a unique orthogonal projection of L2(Ω × B

m, C) onto b2(Ω × B
m,Hk(C)), denoted

by Bk,Ω×Bm . We call this projection the bosonic Bergman projection on Ω × B
m. The

following proposition reveals the connection between the bosonic Bergman projection
and the reproducing kernel Rk,Ω×Bm .

Proposition 4.4. Suppose x ∈ Ω and v ∈ B
m, then we have

Bk,Ω×Bm [f ](x,v) =
∫

Ω

∫
Bm

Rk,Ω×Bm(y,x,u,v)f(y,u)dudy,

for all f ∈ L2(Ω × B
m, C).
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Proof. Let f ∈ L2(Ω × B
m, C), x ∈ Ω and v ∈ B

m. Then

Bk,Ω×Bm [f ](x,v) = 〈Rk,Ω×Bm(·,x, ·,v), Bk,Ω×Bm [f ]〉b2 .
Since Bk,Ω×Bm is an orthogonal projection, it is also self-adjoint and Rk,Ω×Bm(x, ·,v, ·) ∈
b2(Ω × B

m,Hk(C)) tells us that Bk,Ω×Bm [Rk,Ω×Bm(·,x, ·,v)] = Rk,Ω×Bm(·,x, ·,v). There-
fore, the equation above is equal to

〈Rk,Ω×Bm(·,x, ·,v), f〉b2 =
∫

Ω

∫
Bm

Rk,Ω×Bm(y,x,u,v)f(y,u)dudy,

which completes the proof since Rk,Ω×Bm is real valued. �

4.2. Reproducing kernels on the unit ball

In this section, we will introduce the connection between the reproducing kernel
Rk,Bm×Bm and the reproducing kernel Jl,k of Bl(Rm × B

m,Hk(C)) (Section 3.3). This
also provides an expression of Bk,Bm×Bm in terms of Jl,k.

Recall that in (3.5), we define the reproducing kernel Jl,k with integrals over the unit
sphere. Now, we will firstly use polar coordinates to obtain an analog of (3.5) with integrals
over the unit ball for f ∈ Bl(Bm × B

m,Hk(C)).∫
Bm

∫
Bm

Jl,k(y,x,u,v)f(y,u)dudy

=
∫ 1

0

∫ 1

0

∫
Sm−1

∫
Sm−1

rm−1
1 rm−1

2 Jl,k(r1ζ,x, r2η,v)f(r1ζ, r2η)dS(ζ)dS(η)dr1dr2

=
∫ 1

0

∫ 1

0

∫
Sm−1

∫
Sm−1

rm+2l−1
1 rm+2k−1

2 Jl,k(ζ,x,η,v)f(ζ,η)dS(ζ)dS(η)dr1dr2

= (m + 2k)−1(m + 2l)−1

∫
Sm−1

∫
Sm−1

Jl,k(ζ,x,η,v)f(ζ,η)dS(ζ)dS(η)

= (m + 2k)−1(m + 2l)−1f(x,v), (4.3)

where ζ = y
|y| and η = u

|u| . Now, we claim that all homogeneous polynomial null solutions
in P(Bm × B

m,Hk(C)) for Dk are dense in b2(Bm × B
m,Hk(C)). In other words,

Proposition 4.5. There holds

b2(Bm × B
m,Hk(C)) =

∞⊕
l=0

Bl(Bm × B
m,Hk(C)).

Proof. We firstly notice that for a function f ∈ L2(Bm × B
m,Hk(C)), fl(x,v) :=

f( l−1
l x,v) ∈ L2(Bm × B

m,Hk(C)) for l = 1, 2, · · · . Further, we can see that fl con-
verges to f in L2(Bm × B

m,Hk(C)) when l → ∞. This can be observed from the case
f ∈ C(Bm × Bm,Hk(C)) and the fact that C(Bm × Bm,Hk(C)) is dense in L2(Bm ×
B

m,Hk(C)). More specifically, for f ∈ L2(Bm × B
m,Hk(C)), there exists a sequence

{gs}∞s=1 ∈ C(Bm × Bm,Hk(C)) such that for arbitrary ε > 0, there exists N > 0, such
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that ‖f − gs‖L2(Bm×Bm,Hk(C)) < ε when s > N . Let gs,l(x,v) = gs( l−1
l x,v), then we can

easily check that ‖fl − gs,l‖L2(Bm×Bm,Hk(C)) < l
l−1ε when s > N . Therefore, we have

‖f − fl‖L2(Bm×Bm,Hk(C)) ≤ ‖f − gs‖L2(Bm×Bm,Hk(C)) + ‖gs − gs,l‖L2(Bm×Bm,Hk(C))

+ ‖gs,l − fl‖L2(Bm×Bm,Hk(C)) ≤ ε + ε +
l

l − 1
ε =

3l − 1
l

ε,

(4.4)

when l > N ′ and s > N , where N ′ is sufficiently large so that ‖gs − gs,l‖L2(Bm×Bm,Hk(C)) <
ε, which comes from the continuity of gs.

Since kerDk is invariant with respect to dilations, any function f ∈ b2(Bm ×
B

m,Hk(C)) can be approximated by a sequence of functions {fl}∞l=1 satisfying Dkfl = 0
in Bm × Bm. Further, notice that fl ∈ C2( l

l−1B
m × B

m,Hk(C)), then Proposition 3.16
tells us that each fl can be approximated by a sequence of homogeneous polynomial null
solutions to Dk, which converges absolutely and uniformly in Bm × Bm. Hence, with a
similar argument as applied in (4.4), there exists a sequence of homogeneous polynomials
null solutions to Dk which converges to f in L2(Bm × B

m,Hk(C)) as desired.
The claim that the decomposition is an orthogonal decomposition can be observed by

changing to polar coordinates and applying Theorem 3.13. �

The proposition below provides a series of expansion for the reproducing kernel
Rk,Bm×Bm in terms of Jl,k.

Proposition 4.6. Let x,v ∈ B
m, then we have

Rk,Bm×Bm(y,x,u,v) =
∞∑

l=0

(m + 2l)(m + 2k)Jl,k(y,x,u,v),

the series converges absolutely and uniformly in B
m × K × B

m × B
m for all compact

subset K ⊂ B
m.

Proof. For x,y,u,v ∈ B
m\{0}, we have

|Jl,k(y,x,u,v)| = |xy|l|uv|k|Jl,k

(
y

|y| ,
x

|x| ,
u

|u| ,
v

|v|
)
| ≤ |xy|l|uv|k|dimHk dimHl

≤ Cm(lk)m−2|x|l|y|l|u|k|v|k.

This implies that
∑∞

l=0(m + 2l)(m + 2k)Jl,k(y,x,u,v) converges absolutely and uni-
formly in B

m × K × B
m × B

m, where K is a compact subset of B
m. Now, if we

denote F (y,x,u,v) =
∑∞

l=0(m + 2l)(m + 2k)Jl,k(y,x,u,v), then F (·,x, ·,v) ∈ kerDk is
bounded in B

m × B
m for fixed x,v ∈ B

m and hence F (·,x, ·,v) ∈ b2(Bm × B
m,Hk(C)).

Now, if f is a polynomial solution to Dk, then with the calculation in (4.3) and the
orthogonality given in Proposition 3.13, we can easily obtain that 〈F (·,x, ·,v), f〉b2 = f in
B

m × B
m. Further, the previous proposition tells us that a function in b2(Bm × B

m,Hk(C)
can be approximated by polynomial solutions to Dk. This immediately gives us that for
any f ∈ b2(Bm × B

m,Hk(C), we have 〈F (·,x, ·,v), f〉b2 = f in B
m × B

m. This implies
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that F (·,x, ·,v) is the reproducing kernel of b2(Bm × B
m,Hk(C), which completes the

proof. �

The next result provides an expression for the bosonic Bergman projection in terms of
the reproducing kernel Jl,k.

Proposition 4.7. Let f ∈ Ps(Bm × B
m,Hk(C)). Then degx Bk,Bm×Bm [f ] ≤ s, and

Bk,Bm×Bm [f ](x,v) = (m + 2k)
s∑

l=0

(m + 2l)
∫

Bm

∫
Bm

Jl,k(y,x,u,v)f(y,u)dudy,

for all x,v ∈ B
m.

Proof. This result can be observed from the previous proposition and Proposition 4.4.
The orthogonality given in Corollary 3.15 and the decomposition given in Theorem 3.7
explain the disappearance of the terms in the series with l > s. �

The following corollary tells us the connection between the bosonic Bergman projection
of a function in Ps(Bm × B

m,Hk(C)) and its Poisson integral.

Corollary 4.8. Let f ∈ Ps(Bm × B
m,Hk(C)) and

∑∞
l=0 fl is the solution to the

Dirichlet problem in the unit ball with boundary data f
∣∣
Sm−1×Sm−1 , where fl ∈ Bl(Bm ×

B
m,Hk(C)). Then, we have

Bk,Bm×Bm [f ] =
s∑

l=0

m + 2l

m + l + s
fl.

Proof. For 0 ≤ l ≤ s and x,v ∈ B
m, one has∫

Bm

∫
Bm

Jl,k(y,x,u,v)f(y,u)dudy

=
∫ 1

0

∫ 1

0

∫
Sm−1

∫
Sm−1

rm−1
1 rm−1

2 Jl,k(r1ζ,x, r2η,v)f(r1ζ, r2η)dS(η)dS(ζ)dr1dr2

=
∫ 1

0

∫ 1

0

∫
Sm−1

∫
Sm−1

rm+l+s−1
1 rm+2k−1

2 Jl,k(ζ,x,η,v)f(ζ,η)dS(η)dS(ζ)dr1dr2

= (m + l + s)−1(m + 2k)−1

∫
Sm−1

∫
Sm−1

Jl,k(ζ,x,η,v)f(ζ,η)dS(η)dS(ζ)

= (m + l + s)−1(m + 2k)−1fl(x,v),

where the last equation is obtained by applying the Poisson integral formula (3.2), the
expression of the Poisson kernel given in Proposition 3.11, the decomposition of f(ζ,η)
given in Theorem 3.7 and the orthogonality given in Theorem 3.13 . Plugging the equation
above into the previous proposition gives us the desired result. �
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5. Hardy spaces related to bosonic Laplacians

Recall that we defined the Poisson integral of a function f ∈ C(Sm−1 × S
m−1,Hk(Sm−1))

in [11, (3.13)]. In this section, we generalize this definition for a certain complex measure
space. Weak∗ convergence properties and growth estimates for the Poisson integrals of
these complex measures are investigated. Further, the growth estimates lead us to a
generalization of harmonic Hardy spaces in higher spin spaces, named as bosonic Hardy
spaces. Some growth estimates and characterizations for functions in the bosonic Hardy
spaces are also studied here.

5.1. Poisson integrals of measures and weak∗ convergence

Recall that the Poisson integral given in (3.2), we call

P (ζ,x,u,v) =
cm,k

2
1 − |x|2
|x − ζ|m Zk

(
(x − ζ)u(x − ζ)

|x − ζ|2 ,v

)
, x,v ∈ B

m, ζ,u ∈ S
m−1

the Poisson kernel of the bosonic Laplacian in the unit ball. Now, we extend the definition
of the Poisson integral above as follows. For a complex measure μ = μ1 × μ2 on S

m−1 ×
S

m−1, where μi are finite complex measures on S
m−1, i = 1, 2, the Poisson integral of μ,

denoted by P [μ], is given by

P [μ](x,v) :=
∫

Sm−1

∫
Sm−1

P (ζ,x,u,v)dμ2(u)dμ1(ζ). (5.1)

Further, differentiating under the integral sign above, we can see that DkP [μ] = 0 on
B

m × B
m.

Let M(Sm−1 × S
m−1) stand for the set of finite complex Borel measures on S

m−1 ×
S

m−1. The total variation norm of μ ∈ M(Sm−1 × S
m−1) is denoted by ‖μ‖. Since

M(Sm−1 × S
m−1) is a Banach space under the total variation norm, the Riesz Repre-

sentation Theorem tells us that M(Sm−1 × S
m−1) is isometrically isomorphic to the dual

space of C(Sm−1 × S
m−1) with the following identification

M(Sm−1 × S
m−1) −→ C(Sm−1 × S

m−1)∗,

μ �→ Λμ, (5.2)

where

Λμ(f) =
∫

Sm−1

∫
Sm−1

fdμ, for f ∈ C(Sm−1 × S
m−1).

Let Lp(Sm−1 × S
m−1), 1 ≤ p < ∞ be the space of the Borel measurable functions f on

S
m−1 × S

m−1 for which

‖f‖p
p =

∫
Sm−1

∫
Sm−1

|f(x,u)|pdS(x)dS(u) < +∞.

L∞(Sm−1 × S
m−1) consists of the Borel measurable functions f on S

m−1 × S
m−1 for

which ‖f‖∞ < +∞, where ‖f‖∞ stands for the essential supremum norm on S
m−1 ×

S
m−1 with respect to dS × dS.
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Let C(Sm−1 × S
m−1,Hk(C)) stand for functions f(x,u) ∈ C(Sm−1 × S

m−1) and for
each fixed x ∈ S

m−1, f(x,u) ∈ Hk(C) in the variable u. A similar definition applies to
Lp(Sm−1 × S

m−1,Hk(C)). We also define M(Sm−1 × S
m−1,Hk(C)) to be the subspace of

the space of finite complex measures on S
m−1 × S

m−1, which satisfies that for each μ =
μ1 × μ2 ∈ M(Sm−1 × S

m−1,Hk(C)), then μ ∈ M(Sm−1 × S
m−1) and dμ2 = hdS, where

h is a k-homogeneous harmonic polynomial. We claim that the identification given in
(5.2) also provides an isometrical isomorphism between M(Sm−1 × S

m−1,Hk(C)) and
C(Sm−1 × S

m−1,Hk(C))∗, which is stated as follows.

Lemma 5.1. M(Sm−1 × S
m−1,Hk(C)) is isometrically isomorphic to the dual space

of C(Sm−1 × S
m−1,Hk(C)) with the identification

M(Sm−1 × S
m−1,Hk(C)) −→ C(Sm−1 × S

m−1,Hk(C))∗,

μ �→ Λμ,

where

Λμ(f) =
∫

Sm−1

∫
Sm−1

fdμ, for f ∈ C(Sm−1 × S
m−1,Hk(C)).

Proof. Indeed, the difference between the isometrical isomorphism given in (5.2) and
the isomorphism above is the extra condition Hk(C) added to the second variable u.
Therefore, to prove the lemma above, we only need to show that for the variable u,

M(Sm−1,Hk) −→ Hk(C)∗,

μ �→ Λμ, (Λμ(f) =
∫

Sm−1
fdμ, for f ∈ Hk(C)), (5.3)

is an isometrical isomorphism, where M(Sm−1,Hk(C)) stands for the space of finite
complex Borel measures given by dμ = hdS, and h is a k-homogeneous harmonic
polynomial. To prove this, it suffices to show the linear map (5.3) is into, because
dim M(Sm−1,Hk(C)) = dimHk(C)∗ = dimHk(C) is finite. This is equivalent to prove
that if Λμ(f) = 0 for all f ∈ Hk(C), then μ = 0. Assume that μ = hdS, where h ∈ Hk(C),
then

Λμ(f) =
∫

Sm−1
fdμ =

∫
Sm−1

fhdS.

Since f ∈ Hk(C) is arbitrary, then h = 0, which means μ = 0. This completes the proof
for (5.3). Hence, our lemma is true. �

When given a function f on B
m × B

m, the notation fr1,r2 stands for the function
on S

m−1 × S
m−1 defined by fr1,r2(ξ,η) = f(r1ξ, r2η), where 0 ≤ r1, r2 < 1. Next, we

introduce growth estimates for the Poisson integrals of measures.

Theorem 5.2. The following estimates apply to Poisson integrals.

(1) If μ = μ1 × μ2 ∈ M(Sm−1 × S
m−1,Hk(C)). Further, let f = P [μ], then ‖fr1,r2‖1 ≤

m+2k−2
m−2 ‖μ‖ for all r1, r2 ∈ [0, 1).
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(2) If 1 ≤ p ≤ ∞, g ∈ Lp(Sm−1 × S
m−1,Hk(C)) and f = P [g], then ‖fr1,r2‖p ≤

m+2k−2
m−2 ‖g‖p for all r1, r2 ∈ [0, 1).

Remark 5.3. One can easily check that when k = 0, the results above reduce to the
properties of Laplacian Δx.

Proof. To prove (1), firstly, we have

fr1,r2(ξ,η)

= f(r1ξ, r2η) = P [μ](r1ξ, r2η)

=
cm,k

2

∫
Sm−1

∫
Sm−1

1 − |r1ξ|2
|r1ξ − ζ|m Zk

(
(r1ξ − ζ)u(r1ξ − ζ)

|r1ξ − ζ|2 , r2η

)
h(u)dS(u)dμ1(ζ)

=
cm,k

2

∫
Sm−1

∫
Sm−1

1 − |r1ξ|2
|r1ξ − ζ|m Zk

(
u, φ(η)

)
h(u)dS(u)dμ1(ζ)

= ω−1
m

∫
Sm−1

1 − |r1ξ|2
|r1ξ − ζ|m h(φ(η))dμ1(ζ),

where φ(η) = (r1ξ−ζ)r2η(r1ξ−ζ)
|r1ξ−ζ|2 , and ωm is the area of S

m−1. The last equation above
is obtained from the facts that Zk(aua,v) = Zk(u,ava) with a ∈ R

m and Zk is the
reproducing kernel of k-homogeneous harmonic polynomials and [11, Lemma 3.6].

Now, we have

‖fr1,r2‖1 =
cm,k

2

∫
Sm−1

∫
Sm−1

∣∣∣∣
∫

Sm−1

1 − |r1ξ|2
|r1ξ − ζ|m h(φ(η))dμ1(ζ)

∣∣∣∣dS(ξ)dS(η)

≤ cm,k

2

∫
Sm−1

∫
Sm−1

1 − |r1ξ|2
|r1ξ − ζ|m

∫
Sm−1

|h(φ(η))|dS(η)dS(ξ)d|μ1|(ζ).

Further, noticing that φ(η) is a reflection of r2η, hence, the integral above becomes

cm,k

2

∫
Sm−1

∫
Sm−1

1 − |r1ξ|2
|r1ξ − ζ|m

∫
Sm−1

|h(r2η)|dS(η)dS(ξ)d|μ1|(ζ)

=
m + 2k − 2

m − 2

∫
Sm−1

∫
Sm−1

|h(r2η)|dS(η)d|μ1|(ζ)

≤ m + 2k − 2
m − 2

∫
Sm−1

∫
Sm−1

|h(η)|dS(η)d|μ1|(ζ)

=
m + 2k − 2

m − 2

∫
Sm−1

∫
Sm−1

d|μ2|(η)d|μ1|(ζ) ≤ m + 2k − 2
m − 2

‖μ‖,

where the following facts are used in the last two steps above

ω−1
m

∫
Sm−1

1 − |r1ξ|2
|r1ξ − ζ|m dS(ξ) = ω−1

m

∫
Sm−1

1 − |r1|2
|ξ − r1ζ|m dS(ξ) = 1,

and
∫

Sm−1 |h(r2η)|dS(η) is increasing with respect to r2, since h is harmonic, see
[1, Corollary 6.6].
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For (2), we firstly assume that 1 ≤ p < ∞, with similar argument applied to (1), we
obtain

|fr1,r2(ξ,η)| ≤ cm,k

2

∫
Sm−1

1 − |r1ξ|2
|r1ξ − ζ|m |g(ζ, φ(η))|dS(ζ).

Then, with the Jensen’s integral inequality, we have

(∫
Sm−1

∫
Sm−1

|fr1,r2(ξ,η)|pdS(ξ)dS(η)
)1/p

≤ cm,k

2

(∫
Sm−1

∫
Sm−1

∫
Sm−1

1 − |r1ξ|2
|r1ξ − ζ|m |g(ζ, φ(η))|pdS(ζ)dS(ξ)dS(η)

)1/p

=
cm,k

2

(∫
Sm−1

∫
Sm−1

∫
Sm−1

1 − |r1ξ|2
|r1ξ − ζ|m |g(ζ,η)|pdS(η)dS(ζ)dS(ξ)

)1/p

=
m + 2k − 2

m − 2

(∫
Sm−1

∫
Sm−1

|g(ζ,η)|pdS(η)dS(ζ)
)1/p

=
m + 2k − 2

m − 2
‖g‖p.

Similar argument as above can be applied to p = ∞. �

An immediately consequence of the theorem above is the following.

Corollary 5.4. Let 1 ≤ p < ∞, g ∈ Lp(Sm−1 × S
m−1,Hk(C)) and f = P [g]. Then,

‖fr1,r2‖p ≤ m + 2k − 2
m − 2

‖gs1,s2‖p

for all 0 ≤ rj ≤ sj ≤ 1, j = 1, 2.

Proof. This can be obtained immediately from the previous theorem and [11,
Theorem 3.7] as follows

‖fr1,r2‖p = ‖P [gs1,s2 ] r1
s1

,
r2
s2
‖p ≤ m + 2k − 2

m − 2
‖gs1,s2‖p. �

Recall that [11, Theorem 3.7] tells us that if g ∈ C2(Sm−1 × B
m,Hk(C)), and f = P [g],

then fr,1 → g in C(Sm−1 × B
m) as r → 1. Actually, with the previous theorem, we have

a generalized result of [11, Theorem 3.10] as follows.

Corollary 5.5. Suppose 1 ≤ p < ∞. If g ∈ Lp(Sm−1 × S
m−1,Hk(C)) and f = P [g],

then we have ‖fr1,r2 − g‖p → 0 as r1, r2 → 1.

Proof. Suppose 1 ≤ p < ∞ and a function g ∈ Lp(Sm−1 × S
m−1,Hk(C)), let f =

P [g]. For a fixed ε > 0, there exists a function h ∈ C(Sm−1 × S
m−1,Hk(C)), such that

‖g − h‖p < ε. Let f† = P [h], then ‖fr1,r2 − g‖p ≤ ‖fr1,r2 − f†
r1,r2

‖p + ‖f†
r1,r2

− h‖p +
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‖h − g‖p. According to Theorem 5.2, we observe that

‖fr1,r2 − f†
r1,r2

‖p = ‖P [g − h]r1,r2‖p ≤ m + 2k − 2
m − 2

‖g − h‖p ≤ m + 2k − 2
m − 2

ε.

Further, with [11, Theorem 3.7] and [1, Theorem 6.7], we obtain ‖f†
r1,r2

− h‖p ≤ ε when
r1, r2 → 0. Therefore, we have ‖fr1,r2 − f†

r1,r2
‖p ≤ (m+2k−2

m−2 + 2)ε. Since ε is arbitrary, we
complete the proof. �

Theorem 5.6. Poisson integrals also have the following weak∗ convergence
properties.

(1) If μ = μ1 × μ2 ∈ M(Sm−1 × S
m−1,Hk(C)) and f = P [μ], then fr1,r2 → μ weak∗ in

M(Sm−1 × S
m−1,Hk(C)) as r1, r2 → 1.

(2) Let 1 ≤ p ≤ ∞, if g ∈ Lp(Sm−1 × S
m−1,Hk(C)) and f = P [g], then fr1,r2 → g

weak∗ in Lp(Sm−1 × S
m−1,Hk(C)) as r1, r2 → 1.

Proof. Recall that M(Sm−1 × S
m−1,Hk(C)) = C(Sm−1 × S

m−1,Hk(C))∗, let f =
P [μ] with μ = μ1 × μ2 ∈ M(Sm−1 × S

m−1,Hk(C)). To prove (1), we only need to show
that for all g ∈ C(Sm−1 × S

m−1,Hk(C)),

lim
r1,r2→1

∫
Sm−1

∫
Sm−1

fr1,r2(ξ,η)g(ξ,η)dS(ξ)dS(η) =
∫

Sm−1

∫
Sm−1

g(ζ,u)dμ1(ζ)dμ2(u).

Now, we look at the integral on the left side, with a similar argument as in (1)
in Theorem 5.2,

lim
r1,r2→1

∫
Sm−1

∫
Sm−1

fr1,r2(ξ,η)g(ξ,η)dS(ξ)dS(η)

= lim
r1,r2→1

∫
Sm−1

∫
Sm−1

∫
Sm−1

∫
Sm−1

P (ζ, r1ξ,u, r2η)dμ2(u)dμ1(ζ)g(ξ,η)dS(ξ)dS(η).

Recall that P (ζ, r1ξ,u, r2η) = cm,k

2
1−r2

1
|r1ξ−ζ|m Zk( (r1ξ−ζ)u(r1ξ−ζ)

|r1ξ−ζ|2 , r2η). Since Zk(u,v) is a

homogeneous polynomial, when r1, r2 → 1, the singularities only happen in 1−r2
1

|r1ξ−ζ|m .
Therefore, we can let r1 = r2 = 1 in Zk, ω above. Further, since ζ,η ∈ S

m−1, we have
1−r2

1
|r1ξ−ζ|m = 1−r2

1
|ξ−r1ζ|m . Hence, the integral above becomes

lim
r1,r2→1

∫
Sm−1

∫
Sm−1

∫
Sm−1

∫
Sm−1

P (r1ζ, ξ,u, r2η)g(ξ,η)dS(ξ)dS(η)dμ2(u)dμ1(ζ)

= lim
r1→1

∫
Sm−1

∫
Sm−1

∫
Sm−1

∫
Sm−1

P (r1ζ, ξ,u,η)g(ξ,η)dS(ξ)dS(η)dμ2(u)dμ1(ζ)
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= lim
r1→1

∫
Sm−1

∫
Sm−1

P [g]r1,1(ζ,u)dμ2(u)dμ1(ζ)

= lim
r1,r2→1

∫
Sm−1

∫
Sm−1

P [g]r1,r2(ζ,u)dμ2(u)dμ1(ζ)

=
∫

Sm−1

∫
Sm−1

g(ζ,u)dμ2(u)dμ1(ζ),

which completes the proof of (1).
The proof of (2) is similar as in (1). Firstly, we prove the case 1 < p < ∞. We notice that

Lp(Sm−1 × S
m−1,Hk(C))∗ = Lq(Sm−1 × S

m−1,Hk(C)), where q is the conjugate number
of p, i.e., 1

p + 1
q = 1. Let g ∈ Lp(Sm−1 × S

m−1,Hk(C)) and f = P [g], we need to show
that for all h ∈ Lq(Sm−1 × S

m−1,Hk(C)),

lim
r1,r2→1

∫
Sm−1

∫
Sm−1

(
fr1,r2(ξ,η) − g(ξ,η)

)
h(ξ,η)dS(ξ)dS(η) = 0.

According to Hölder’s inequality, the integral above can be estimated by

≤‖fr1,r2 − g‖p · ‖h‖q −→ 0, as r1, r2 → 1,

where Corollary 5.5 and h ∈ Lq(Sm−1 × S
m−1,Hk(C)) are applied above. This proves (2)

when 1 < p < ∞. The argument is the same for the case p = 1 except that we do not
need to use Hölder’s inequality.

For p = ∞, we notice that L1(Sm−1 × S
m−1,Hk(C))∗ = L∞(Sm−1 × S

m−1,Hk(C)).
With g ∈ L∞(Sm−1 × S

m−1,Hk(C)) and f = P [g], we need to show that for all h ∈
L1(Sm−1 × S

m−1,Hk(C)),

lim
r1,r2→1

∫
Sm−1

∫
Sm−1

fr1,r2(ξ,η)h(ξ,η)dS(ξ)dS(η)

=
∫

Sm−1

∫
Sm−1

g(ξ,η)h(ξ,η)dS(ξ)dS(η).

With a similar argument as in (1), the left-hand side of the equation above becomes

lim
r1,r2→1

∫
Sm−1

∫
Sm−1

P [g]r1,r2(ζ,u)h(ζ,u)dS(u)dS(ζ).

The Corollary 5.5 tells us that P [g]r1,r2(ζ,u) converges to g(ζ,u) in L1(Sm−1 ×
S

m−1,Hk(C)) as r1, r2 → 1, since g ∈ L∞(Sm−1 × S
m−1,Hk(C)), we also have that

P [g]r1,r2(ζ,u)h(ζ,u) converges to g(ζ,u)h(ζ,u) in L1(Sm−1 × S
m−1,Hk(C)) as r1, r2 →

1. This completes the proof of the theorem. �

Recall that in [11], for a function f ∈ Lp(Bm × B
m,Hk(C)) with 1 ≤ p < ∞, we define

the norm

‖f‖Lp(Bm×Bm,Hk(C)) :=
(∫

Bm

∫
Sm−1

|f(x,u)|pdS(u)dx

)1/p

.

We can also obtain a growth estimate of the Lp-norm of the Poisson integral of the
measure space M(Sm−1 × S

m−1,Hk(C)).

https://doi.org/10.1017/S0013091522000426 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000426


Polynomial null solutions, bosonic Bergman and Hardy spaces 983

Proposition 5.7. Let μ ∈ M(Sm−1 × S
m−1,Hk(C)) and 1 ≤ p < m

m−1 . Then, there
exists a constant λm,k, which only depends on m and k, such that

‖P [μ]‖Lp(Bm×Bm,Hk(C)) ≤ λm,k‖μ‖.

Proof. Let μ = μ1 × μ2 ∈ M(Sm−1 × S
m−1,Hk(C)), p > 1 and q is the conjugate

number of p. For convenience, all λm,k in this proof are positive constants only depending
on m and k but not necessarily the same. We have

|P [μ](x,v)| =
∣∣∣∣
∫

Sm−1

∫
Sm−1

P (ζ,x,u,v)dμ2(u)dμ1(ζ)
∣∣∣∣

=
∣∣∣∣
∫

Sm−1

∫
Sm−1

cm,k

2
1 − |x|2
|x − ζ|m Zk

(
(x − ζ)u(x − ζ)

|x − ζ|2 ,v

)
dμ2(u)dμ1(ζ)

∣∣∣∣
≤ λm,k

∣∣∣∣
∫

Sm−1

∫
Sm−1

1 − |x|2
|x − ζ|m d|μ2|(u)d|μ1|(ζ)

∣∣∣∣
≤ λm,k

[∫
Sm−1

∫
Sm−1

(
1 − |x|2
|x − ζ|m

)p

d|μ2|(u)d|μ1|(ζ)
] 1

p

×
[∫

Sm−1

∫
Sm−1

d|μ2|(u)d|μ1|(ζ)
] 1

q

,

where the fact that |Zk(u,v)| ≤ dimHk(C) for u,v ∈ B
m [1, Proposition 5.27] is applied

above. Notice that

1 − |x|2
|x − ζ|m ≤ 1 + |x|

|x − ζ|m−1
≤ 2|x − ζ|1−m, for all x ∈ B

m, ζ ∈ S
m−1.

Therefore, we obtain |P [μ](x,v)| ≤ λm,k|x − ζ|1−m‖μ‖ 1
q + 1

p = λm,k|x − ζ|1−m‖μ‖. Thus,

‖P [μ]‖Lp(Bm×Bm,Hk(C)) ≤ λm,k

(∫
Bm

|x − ζ|p(1−m)dx

)1/p

‖μ‖ ≤ λm,k‖μ‖,

where the integral in the parentheses above exists if p(1 − m) > −m, i.e., p < m
m−1 , which

completes the proof for p > 1. The proof for the case p = 1 is much easier, one can adapt
the same argument without using the Hölder’s inequality. �

With the proposition above, one can easily see that

Corollary 5.8. Suppose {μn} strongly converges to μ in M(Sm−1 × S
m−1,Hk(C)) as

n → ∞, and 1 ≤ p < m
m−1 . Then we have {P [μn]} strongly converges to P [μ] in Lp(Bm ×

B
m,Hk(C)) as n → ∞.

5.2. Bosonic Hardy spaces and growth estimates

The growth estimates in Theorem 5.2 suggest us to define analogs of harmonic Hardy
spaces as follows.
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Let 1 ≤ p ≤ ∞, we define bosonic Hardy spaces, denoted by hp(Bm × B
m,Hk(C)), to

be the class of functions f(x,u) ∈ C2(Bm × B
m,Hk(C)) such that Dkf = 0 on B

m × B
m

and

‖f‖hp = sup
0≤r1,r2<1

‖fr1,r2‖p < ∞.

One can easily verify that hp(Bm × B
m,Hk(C)) is a normed linear space with the norm

‖ · ‖hp .

Theorem 5.9. The Poisson integral induces the following bijective maps.

(1) The map μ �→ P [μ] is a linear bijective map from M(Sm−1 × S
m−1,Hk(C)) to

h1(Bm × B
m,Hk(C)). Further, ‖μ‖ ≤ ‖P [μ]‖h1 ≤ m+2k−2

m−2 ‖μ‖.
(2) For 1 < p ≤ ∞, the map g �→ P [g] is a linear bijective map from Lp(Sm−1 ×

S
m−1,Hk(C)) to hp(Bm × B

m,Hk(C)). Further, ‖g‖p ≤ ‖P [g]‖hp ≤ m+2k−2
m−2 ‖g‖p.

To prove the theorem above, we need to follow the result on weak∗ convergence.

Proposition 5.10 (Theorem 6.12, [1]). If X is a separable normed linear space,
then every norm-bounded sequence in X∗ contains a weak∗ convergent subsequence.

Now, we are ready to prove Theorem 5.9.

Proof. (1). Firstly, it is obvious that the map μ �→ P [μ] is linear. Hence, we only need
to prove it is bijective. We will prove this by showing it is an injective and surjective
map, respectively. To prove it is an injective map, we only need to prove the inequalities
in (1). Let f ∈ h1(Bm × B

m,Hk(C)), on the one hand, Theorem 5.2 already tells us that
‖P [μ]‖h1 ≤ m+2k−2

m−2 ‖μ‖. On the other hand, since {P [μ]r1,r2} converges weak∗ to μ as in
Theorem 5.6, we have

‖μ‖ ≤ lim inf
r1,r2→1

‖P [μ]r1,r2‖1 ≤ sup
0≤r1,r2<1

‖P [μ]r1,r2‖1 = ‖P [μ]‖h1 ,

which completes the proof of the inequalities in (1). Hence, the map in (1) is injective.
To prove the map is surjective, let f ∈ h1(Bm × B

m,Hk(C)), according to
the definition, there exists a family of functions {fr1,r2 , r1, r2 ∈ [0, 1)}, which is
norm-bounded in L1(Sm−1 × S

m−1,Hk(C)), and hence in M(Sm−1 × S
m−1,Hk(C)) =

C(Sm−1 × S
m−1,Hk(C))∗. Further, since M(Sm−1 × S

m−1) is a separable metric space
and M(Sm−1 × S

m−1,Hk(C)) is a subspace of M(Sm−1 × S
m−1). This implies that

M(Sm−1 × S
m−1,Hk(C)) is also separable. Therefore, we have that {fr1,r2 , r1, r2 ∈ [0, 1)}

is a norm-bounded sequence in a separable normed linear space M(Sm−1 × S
m−1,Hk(C)).

According to Proposition 5.10, we know that there exists a subsequence converges weak∗

to some μ ∈ M(Sm−1 × S
m−1,Hk(C)). Now, to complete the proof of (1), we only need

to show that f = PB [μ]. Recall that, for fixed x,v ∈ B
m, the Poisson integral formula
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given in [11] tells us that

f(r1x, r2v) = PB [f ](r1x, r2v) =
cm,k

2

∫
Sm−1

∫
Sm−1

PB(ζ,x,u, r2v)f(r1ζ,u)dS(u)dS(ζ).

Since PB(ζ,x,u,v) is continuous on S
m−1 for fixed x,v ∈ B

m, then by the continuity of
f , we let r1, r2 → 1 to immediately obtain that

f(x,v) = lim
r1,r2→1

PB [f ](r1x, r2v) =
cm,k

2

∫
Sm−1

∫
Sm−1

PB(ζ,x,u,v)dμ(u, ζ).

In other words, f = PB[μ].
(2). The proof of (2) is similar. Let 1 < p ≤ ∞, and f ∈ hp(Bm × B

m,Hk(C)). To prove
the map is injective, one can apply a similar argument as in (1), with the help of Theorem
5.2 and Theorem 5.6, one can obtain the inequalities in (2), which also implies that the
map in (2) is injective. To prove it is surjective, let q is the conjugate number of p,
then {fr1,r2 , r1, r2 ∈ [0, 1)} is norm-bounded in Lp(Sm−1 × S

m−1,Hk(C)) = Lq(Sm−1 ×
S

m−1,Hk(C))∗. Theorem 5.10 tells us that there exists a subsequence of {fr1,r2 , r1, r2 ∈
[0, 1)}, which converges weak∗ to some function g ∈ Lp(Sm−1 × S

m−1,Hk(C)). To com-
plete the proof of (2), we need to show that f = PB[g]. This can be derived from a
similar argument as in (1) if we can prove that PB(·,x, ·,v) ∈ Lq(Sm−1 × S

m−1,Hk(C)).
This can be observed from the fact that, for fixed x ∈ B

m, the classical Poisson kernel
1−|x|2
|x−ζ|m ∈ Lq(Sm−1) with respect to ζ and the reproducing kernel Zk is bounded. �

Remark 5.11. Recall that a bosonic Laplacian reduces to the classical Laplacian Δx

when k = 0. In this case, the constant m+2k−2
m−2 = 1 in the theorem above. Hence, the

theorem above also reduces to some properties of Laplacian. For instance, when k = 0,
(1) states that the classical Poisson integral is a linear bijective isometry from the complex
Borel measure space M(Sm−1) to the harmonic Hardy space h1(Bm).

Theorem 5.9 immediately gives us the following characterizations of the bosonic Hardy
spaces.

Proposition 5.12 (Characterization of hp(Bm × B
m, Hk(C))).

(1) Let f ∈ hp(Bm × B
m,Hk(C)) and 1 < p ≤ ∞. Then there exists a unique

g ∈ Lp(Sm−1 × S
m−1,Hk(C)) such that f = P [g]. Moreover, ‖g‖p ≤ ‖f‖hp ≤

m+2k−2
m−2 ‖g‖p.

(2) Let f ∈ h1(Bm × B
m,Hk(C)). Then there exists a unique μ ∈ M(Sm−1 ×

S
m−1,Hk(C)) such that f = P [μ]. Moreover, ‖μ‖ ≤ ‖f‖h1 ≤ m+2k−2

m−2 ‖μ‖.
Next, we have a growth estimate for functions in hp(Bm × B

m,Hk(C)).

Proposition 5.13. Suppose 1 ≤ p ≤ ∞ and f ∈ hp(Bm × B
m,Hk(C)), then we have

|f(x,v)| ≤ cm,k,p

(
1 + |x|

(1 − |x|)m−1

) 1
p

‖f‖hp ,

for all x ∈ B
m and v ∈ Bm, where cm,k,p = m+2k−2

m−2 (ωm)
p−2

p dimHk(C).
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Proof. We firstly consider the case 1 < p < ∞. Suppose f ∈ hp(Bm × B
m,Hk(C)),

then the previous theorem tells us that there exists a function g ∈ Lp(Sm−1 ×
S

m−1,Hk(C)) such that f = P [g]. Let q be the conjugate number of p, then we have

|f(x,v)| =
∣∣∣∣
∫

Sm−1

∫
Sm−1

P (ζ,x,u,v)g(ζ,u)dS(u)dS(ζ)
∣∣∣∣

≤
(∫

Sm−1

∫
Sm−1

|P (ζ,x,u,v)|qdS(u)dS(ζ)
) 1

q

×
(∫

Sm−1

∫
Sm−1

|g(ζ,u)|pdS(u)dS(ζ)
) 1

p

=
(∫

Sm−1

∫
Sm−1

|P (ζ,x,u,v)|qdS(u)dS(ζ)
) 1

q

‖g‖p. (5.4)

Now, recall that P (ζ,x,u,v) = cm,k

2
1−|x|2
|x−ζ|m Zk( (x−ζ)u(x−ζ)

|x−ζ|2 ,v), x,v ∈ B
m, ζ,u ∈ S

m−1,

and Zk(u,v) ≤ dimHk(C) for u,v ∈ Bm, see [1, Proposition 5.27]. Then,

(∫
Sm−1

∫
Sm−1

|P (ζ,x,u,v)|qdS(u)dS(ζ)
) 1

q

≤ cm,k

2
dimHk(C)

[∫
Sm−1

∫
Sm−1

(
1 − |x|2
|x − ζ|m

)q

dS(u)dS(ζ)
] 1

q

≤ cm,k

2
dimHk(C) sup

ζ∈Sm−1

(
1 − |x|2
|x − ζ|m

) q−1
q
(∫

Sm−1

∫
Sm−1

1 − |x|2
|x − ζ|m dS(u)dS(ζ)

) 1
q

=
m + 2k − 2

m − 2
(ωm)

p−2
p dimHk(C)

(
1 + |x|

(1 − |x|)m−1

) 1
p

. (5.5)

Further, Theorem 5.2 tells us that ‖P [g]r1,r2‖p ≤ m+2k−2
m−2 ‖g‖p and we also know that

limr1,r2→1 P [g]r1,r2 = P [g] = g on S
m−1 × S

m−1. This implies that

‖g‖p ≤ ‖P [g]‖hp = sup
0≤r1,r2<1

‖P [g]r1,r2‖p ≤ m + 2k − 2
m − 2

‖g‖p,

in other words, with f = P [g], it is equivalent to m−2
m+2k−2‖f‖hp ≤ ‖g‖p ≤ ‖f‖hp . Plugging

this together with (5.5) into (5.4) completes our proof immediately. �

Remark 5.14. This growth estimate also reduces to the one for Laplacian when
k = 0. More specifically, when considering the real-valued case with k = 0, m+2k−2

m−2 = 1,
dimHk = 1 and the ωm term will disappear if we normalize our area element dS, which
eventually gives us Proposition 6.16 in [1].

With the proposition above, we can obtain an estimate for the Lp-norm in terms of
the hp norm.
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Corollary 5.15. Let 1 ≤ p < m
m−1 and f ∈ hp(Bm × B

m,Hk(C)), then we have

‖f‖Lp(Bm×Bm,Hk(C)) ≤ Cm,k,p‖f‖hp .

Proof. From the proof of the proposition above, we have that

‖f‖p
Lp(Bm×Bm,Hk(C)) ≤ Cm,k,p

∫
Bm

∫
Bm

∫
Sm−1

|x − ζ|p(1−m)dS(ζ)dxdv‖f‖p
hp

≤ C ′
m,k,p

∫
Bm

∫
Sm−1

|x − ζ|p(1−m)dS(ζ)dx‖f‖p
hp ≤ C ′′

m,k,p‖f‖p
hp ,

when 1 ≤ p < m
m−1 . This completes the proof. �

Proposition 5.13 also tells us the following result, which implies that hp(Bm ×
B

m,Hk(C)) is a Banach space, in particular, it is a Hilbert space when p = 2.

Proposition 5.16. The bosonic Hardy space hp(Bm × B
m,Hk(C)) is a closed sub-

space of Lp(Bm × B
m, C).

Proof. Suppose that {fj}∞j=1 converges to f in Lp(Bm × B
m, C) and {fj}∞j=1 is a

Cauchy sequence in hp(Bm × B
m,Hk(C)). We will show that f ∈ hp(Bm × B

m,Hk(C))
up to a modification on a set of measure zero on B

m × B
m.

Let K1 × K2 ⊂ B
m × B

m be a compact subset. Proposition 5.13 tells us that there
exists a constant C > 0 only depending on m, k and p such that |fj(x,v) − fi(x,v)| ≤
C‖fj − fi‖hp , for all (x,v) ∈ K1 × K2 and all j, i. Since {fj}∞j=1 is a Cauchy sequence
in hp(Bm × B

m,Hk(C)), {fj}∞j=1 is also a Cauchy sequence in C(K1 × K2). Hence,
{fj}∞j=1 converges uniformly on K1 × K2. According to [11, Proposition 5.8], {fj}∞j=1

converges uniformly to a function g ∈ C2(Bm × B
m,Hk(C)) and Dkg = 0 on B

m × B
m.

Since {fj}∞j=1 converges to f in Lp(Bm × B
m, C), some subsequence of {fj}∞=1 converges

to f pointwise almost everywhere on B
m × B

m. Therefore, f = g almost everywhere on
B

m × B
m and thus f ∈ hp(Bm × B

m,Hk(C)), which completes the proof. �
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