ON SOME PROPERTIES OF FUNCTIONS REGULAR IN THE UNIT CIRCLE

P.G. Rooney ${ }^{1}$
(received Oct. 1, 1957)

The space $H_{p}, l \leq p \leqslant \infty$ consists of those analytic functions $f(z)$ regular in the unit circle, for which $M_{p}(f ; r)$ is bounded for $0 \leqslant r<1$, where
$M_{p}(f ; r)=\left\{\begin{array}{ll}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right. \\ \sup ^{l} / p, 1 \leqslant p<\infty \\ 0 \leqslant \theta \leqslant 2 \pi & \left|f\left(r e^{i \theta}\right)\right|,\end{array} \quad p=\infty\right.$
These spaces have been extensively studied.
One well known result concerning these spaces is that if $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\left\{a_{n}\right\} \quad \varepsilon \quad \ell_{p}$ for some $p, 1 \leq p \leq 2$, then $f \varepsilon H_{q}$, where $p^{-1}+q^{-1}=1$, and conversely if $f \varepsilon H_{p}, 1 \leq p \leq 2$, then $\left\{a_{n}\right\} \varepsilon l_{q}$. We propose to generalize this result to deal with functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ with $\left\{n^{-\lambda} a_{n} ; n=1,2, \ldots\right\} \varepsilon l_{p}$, where $\lambda \geqslant 0$. The resulting generalization is contained in the theorems below.

However, in order to make these generalizations we must first generalize the spaces H_{p}. To this end we make the following definition.

DEFINITION. $H_{o, p}=H_{p}$. For $\boldsymbol{\lambda}>0, H_{\lambda}$, consists of those analytic functions $\underset{f}{ }$, regular in the unit circle and such that $M_{\lambda, p}(f)$ is finite, where
$M_{\lambda, p}(f)=\left\{\begin{array}{l}\int_{0}^{1}\left(1-r^{2}\right) q \lambda-1\left(M_{p}(f ; r)\right)^{q} r d r, 1<p \leqslant \infty, p^{-1}+q^{-1}=1, \\ \sup _{0 \leqslant r<1}\left(1-r^{2}\right)^{\lambda} M_{l}(f ; r), \quad p=1 .\end{array}\right.$

Can. Math. Bull., vol. 1, no. 1, Jan. 1958

THEOREM 1. If for some $p, 1 \leqslant p \leqslant 2$, and some $\lambda \geqslant 0$

Proof. As mentioned previously, the proof for $\lambda=0$ is well-known. Let $\lambda>0$ and suppose first that $p \neq 1$. Then since $M_{\lambda, p}(f)<\infty$, it follows that $M_{p}(f ; r)<\infty$ for almost all r, $0 \leq r<1$. But by [2], $M_{p}(f ; r)$ is a steadiiy increasing logarith-micly-convex function of P_{r}. Hence $\mathrm{M}_{\mathrm{p}}(\mathrm{f} ; \cdot)<\infty$ for all r , $0 \leqslant r<1$. Thus for each $r, 0 \leqslant r<l^{p}, f\left(r e^{i \theta}\right) \& L_{p}(\theta, 2 \pi)$. But

$$
f\left(r e^{i \theta}\right)=\sum_{0}^{\infty} a_{n} r^{n} e^{i n \theta}
$$

Hence by the Hausdorff-Young theorem [3; p. 190], if $0 \leq r<1$

$$
\left(\sum_{0}^{\infty}\left|a_{n}\right|_{r^{q n}}\right)^{1 / q} \leq\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}=M_{p}(f ; r),
$$

that is,for $0 \leqslant r<1$

$$
\sum_{1}^{\infty}\left|a_{n}\right|_{r}^{q n} \leq\left(M_{p}(f ; r)\right)^{q}-\left|a_{o}\right|^{q}
$$

Multiplying both sides of this last inequality by $r\left(1-r^{2}\right)^{q \lambda-1}$ and integrating from zero to one we obtain
$\frac{1}{2} \Gamma(q \lambda) \sum_{1}^{\infty} \frac{\Gamma\left(1+\frac{1}{2} q n\right)}{\Gamma\left(1+q \lambda+\frac{1}{2} q n\right)}\left|a_{n}\right|^{q} \leqslant M_{\lambda_{,}}(f)-\frac{\left|a_{0}\right|^{q}}{2 q \lambda}<\infty$.
But from $[1 ; 1.18(4)]$

$$
\Gamma\left(1+\frac{1}{2} q n\right) / \Gamma\left(1+q \lambda+\frac{1}{2} q n\right) \sim\left(\frac{1}{2} q n\right)^{-q \lambda} \text { as } n \rightarrow \infty,
$$

so that

$$
\sum_{1}^{\infty}\left|n^{-\lambda} a_{n}\right|^{q}<\infty
$$

and $\left\{n^{-\lambda} a_{n}, n=1,2, \ldots\right\} \in \ell_{q}$.

$$
\text { If } p=1 \text {, we have for } 0<r<1 \text { that }
$$

$$
a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) r^{-n} e^{-i n \theta} d \theta
$$

so that

$$
\left|a_{n}\right| \leqslant \frac{r^{-n}}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta=r^{-n} M_{1}(f ; r)
$$

Hence

$$
\left(1-r^{2}\right)^{\lambda} r^{n}\left|a_{n}\right| \leq\left(1-r^{2}\right)^{\lambda} M_{1}(f ; r) \leq M_{\lambda, 1}(f) .
$$

Thus

$$
\sup _{0 \leq r<1}\left(1-r^{2}\right)^{\lambda} r^{n}\left|a_{n}\right| \leq M_{\lambda, 1}(f) .
$$

But an easy calculation shows that

$$
\sup _{0 \leqslant r<1}\left(1-r^{2}\right)^{\lambda} r^{n}=\left(\frac{2 \lambda}{n+2 \lambda}\right)^{\lambda}\left(\frac{n}{n+2 \lambda}\right)^{\frac{1}{2} n} \sim e^{-\lambda}(2 \lambda)^{\lambda} n^{-\lambda} \text { as } n \rightarrow \infty
$$

so that

$$
\begin{aligned}
& n^{-\lambda}\left|a_{n}\right| \leq K, n=1,2, \ldots \text { and } \\
& \left\{n^{-\lambda} a_{n}, n=1,2, \ldots\right\} \varepsilon l_{\infty} .
\end{aligned}
$$

THEOREM 2. If for some $p, 1 \leqslant p \leqslant 2$, and some $\lambda \geqslant 0$

$$
\left\{n^{-\lambda} a_{n}, n=1,2, \ldots\right\} \varepsilon \ell_{p}, \quad \text { and } f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

then $f \in H_{\lambda}, q$ where $p^{-1}+q^{-1}=1$.
Proof. The series for $f(z)$ clearly converges for $|z|<1$. The proof for $\lambda=0$ is well known. Let $\lambda>0$ and suppose first that $p \neq 1$. Since
and

$$
\begin{aligned}
& \sum_{1}^{\infty}\left|n^{-\lambda} a_{n}\right|^{p}<\infty \\
& \quad r^{p n} \leq K(r) n^{-\lambda}, \quad 0 \leq r<1
\end{aligned}
$$

it follows that

$$
\sum_{1}^{\infty}\left|a_{n}\right| p r_{r}^{p r}<\infty \quad, \quad 0 \leqslant r<1
$$

Hence by $[3 ; p .190]$ it follows that there is a function $f(r, \theta)$ such that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f(r, \theta) e^{i n \theta} d \theta=\left\{\begin{array}{ll}
a_{n} r^{n} & n \geqslant 0 \\
0 & n<0
\end{array}, 0<r<1,\right.
$$

$$
\left.\qquad \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(r, \theta)|^{q} d \theta\right\}^{1 / q} \leqslant\left\{\sum_{0}^{\infty}\left|a_{n}\right|^{p} r_{r}^{p n}\right\}^{1 / p}
$$

But clearly if $0<r<1$

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) e^{i n \theta} d \theta=\left\{\begin{array}{ll}
a_{n} r^{n} & n \geqslant 0 \\
0 & n<0
\end{array},\right.
$$

so that for each such $r, f(r, \theta)=f\left(r e^{i \theta}\right)$ a. e.,
and our inequality on $f(r, \theta)$ becomes

$$
M_{q}(f ; r)=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\sum_{0}^{\infty}\left|a_{n}\right|^{p}{ }_{r} p\right\}^{1 / p} .
$$

Hence we have

$$
\left(M_{q}(f ; r)\right)^{p} \leqslant \sum_{0}^{\infty}\left|a_{n}\right|^{p} \quad r^{p n}
$$

and this inequality remains true for $p=1$. For then

$$
\left|f\left(r e^{i \theta}\right)\right| \leq \sum_{n=0}^{\infty}\left|a_{n}\right| r^{n},
$$

and hence

$$
M_{\infty}(f ; r) \leq \sum_{n=0}^{\infty}\left|a_{n}\right| r^{n}
$$

Thus we have for any $p, 1 \leq p \leq 2$,

$$
\begin{aligned}
& M_{\lambda, q}(f)=\int_{0}^{1}\left(1-r^{2}\right)^{p \lambda-1}\left(M_{q}(f ; r)\right)^{p} r d r \\
& \quad \leqslant \frac{1}{2} \Gamma(p \lambda) \sum_{0}^{\infty} \frac{\Gamma\left(1+\frac{1}{2} p n\right)}{\Gamma\left(1+p+\frac{1}{2} p n\right)}\left|a_{n}\right|^{p} .
\end{aligned}
$$

But by $[1 ; 1.18(4)]$,

$$
\Gamma\left(1+\frac{1}{2} p n\right) / \Gamma\left(1+p \lambda+\frac{1}{2} p n\right) \sim\left(\frac{1}{2} p n\right)^{p \lambda},
$$

and thus since

$$
\sum_{1}^{\infty}\left|n^{-\lambda} a_{n}\right| p<\infty
$$

we must have $M_{\lambda, q}(f)<\infty$, and $f \varepsilon H_{\lambda}, p$.

REFERENCES

1. A. Erdélyi et al., Higher transcendental functions I, (New York, 1953).
2. G.H. Hardy, The mean value of the modulus of an analytic function, Proc. Lond. Math. Soc. 14 (1914), 269-277.
3. A. Zygmund, Trigonometrical series, (Warsaw, 1935).

University of Toronto

1. This work was done in part while the author was a holder of a summer research associateship of the National Research Council of Canada.
