
J. Austral. Math. Soc. {Series A) 42 (1987), 353-364

LIPSCHITZ AND DIFFERENTIABLE DEPENDENCE
OF SOLUTIONS ON A PARAMETER

IN A SCALARIZATION METHOD

ALICIA STERNA-KARWAT

(Received 30 July 1985; revised 2 October 1985)

Communicated by R. O. Vyborny

Abstract

This paper is concerned with a vector optimization problem set in a normed space where optimality is
defined through a convex cone. The vector problem can be solved using a parametrized scalar
problem. Under some convexity assumptions, it is shown that dependence of optimal solutions on the
parameter is Lipschitz continuous. Hence differentiable dependence on the solutions on the parameter
is derived.

1980 Mathematics subject classification (Amer. Math. Soc): 49 A 27, 49 A 50.

1. Introduction

This paper is concerned with a vector optimization problem where optimality is
defined through a convex cone. In order to find solutions we use a scalarization
method proposed by Pascoletti and Serafini [15], which relies on a parametrized
scalar problem. The question arises of how the solutions of the vector problem
depend on the parameter. In [20] it is shown that for a large class of vector
optimization problems this independence is semi-continuous or even continuous.
Pascoletti and Serafini have proved that in the finite dimensional case with the
optimality defined through a polyhedral convex cone, we may obtain a differen-
tiable dependence of solutions on the parameter. In this paper we set the vector
optimization problem in a normed space and the optimality is taken with respect
to an arbitrary convex cone. We show, under some convexity assumptions, that
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the dependence of solutions to the vector problem on the parameter is Lipschitz
continuous. Hence we derive some results concerning differentiable dependence
of solutions and maximal values on the parameter (Section 5). In general, we do
not impose any differentiable properties on the objective function. We assume
only that the image of the objective function satisfies a convexity property. As far
as maximal values are concerned we do not suppose even that the objective
function is continuous (Section 3). When we turn our attention to solutions we
need in general that the objective function admits locally a Lipschitz inverse
(Section 4).

2. Preliminaries

Let Y be a real linear space and let B be a subset of Y. By span B and aff B
we denote the smallest linear subspace and the smallest affine subspace of Y
containing B, respectively. Let C be a convex cone in Y (that is, C # 0 ,
C + C c C, tC c C for t > 0) with icrC * 0 . Here icrC stands for the intrinsic
core of C [8, page 7], that is,

icrC = ( c e C : V j e span C 3 £ > 0 V 0 < f < e c + f y e C } .

If Y is finite dimensional icrC # 0 holds for every convex cone C.
Following [16, 17], we say that an element e of a subset B c Y is C-maximal

(also called C-optimal or C-efficient) in 5 if { f teB: 6 - e e C, ft#e}= 0 ,
and we write e e ec(B) (see, for instance, [4, 7,10, 22]).

If icrC # 0 then icrC is a convex cone, whenever C is; and in that case
ec(B) c eicrC(B) for every subset B c Y. Elements of eicrC(B) we shall call
C-quasi maximal.

Let X be a given set and / : X -» Y be a mapping. We consider the following
vector maximization problem:

(P): maximize f(x), subject to x e X,
which means: find all x e X such that f(x) e ec(f(X)). Any such x and f(x)
we shall call a C-maximal point and a C-maximal value of / on A', respectively.
Following [15] we define for (P) a family of scalar problems P(q, q) where
(p, q) e 7 X spanC.

Let R denote the space of real numbers and let m: R x X X Y -* R be the first
projection, that is, ir(t, x, y) = t for (t, x, y) e R X X X Y. Then the problem
P(p, q) is defined as follows

P(p, q): maximize ir{t, x, y), over {(t, x, y): f(x) = p + tq + y, y e C}.
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It was shown in [15] that for each C-quasimaximal point of / on X (hence any
C-maximal one) x0 there is a solution (t, x, y) to P(p, q) for some (/>, q) e Y X
spanC with x = x0 and conversely, for every (/>, q) e y x spanC and every
solution (t, x, y) to P(p,q), x is a C-quasimaximal point of / on X

The conditions ensuring that the x & X obtained by solving P(p, q} is actually
a C-maximal point of / on X are given in [15, Theorem 3.7] and [20, Section 3].
We shall use some of them in a later part of this paper.

Let Y be now a topological vector space. We shall assume that f(X) - C is
closed and convex. The assumptions guaranteeing that f(X)- C is closed are
discussed in [20, Section 4]. For instance, observe here that if f(X) is compact
and C is closed then f(X) — C is closed. Following [20] we denote by m:
Y X span C -* R the marginal function for the family of scalar problems
{P(p, q): (p, q) e Y x spanC}, that is, m(p, q) = sup{f: p + tq e f(X) - C)
for (p, q) e Y X spanC, with the usual convention that the supremum over the
empty set is — oo. Let M denote the effective domain of m; this is the set of those
(p, q) for which m(p, q) is finite.

Let us recall that the relative interior of a subset B in Y, which we denote riB
is defined as the interior, when B is regarded as a subset of aff B. By int B we
shall denote the interior taken in Y.

In [20, Corollary 6.1] it is shown that m is continuous on M at (p0, qQ) e M
whenever (po + Rq0) n n(f(X) - C) ¥= 0 . In this paper, we show that m is
actually Lipschitz continuous on some neighbourhood of (/>„, q0) in M, if Y is a
normed space. Hence we derive some differentiable dependence of solutions and
maximal values to (P) on the parameter (p, q).

3. Lipschitz dependence of maximal values on the parameter (p,q)

In what follows Y is a normed space with norm || • || and Y x Y is equipped
with the norm |K7i, .V2)ll = ll̂ ill + ll^ll f ° r Ji. >*2 G Y. By rB we denote the
closed ball in Y centered at 0 with radius r > 0. If K is a convex, absorbing set [8,
page 13] then pK\ Y -* R denotes its Minkowski functional, that is,

PK{y) = inf{f: t > 0, y e /A"} for}» e 7.

A mapping f: G -* Y, where G is a subset of a normed space Z, is said to be
locally Lipschitz at z0 e G if there exists a neighbourhood F of z0 in Z and a
number L > 0 such that H-F^) - -F(22)ll <

 L\\zi ~ Z2\\ whenever zv z2 e V n
G. The mapping F is said to be locally Lipschitz if it is locally Lipschitz at every
z0 G G. Here, by abusing the notion, || • || denotes both norms, in Y and in Z
respectively.

https://doi.org/10.1017/S1446788700028639 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028639


356 Alicia Stema-Karwat [4 ]

By | | we shall denote the usual absolute value in R. First let us observe that we

cannot expect to be able to deduce the local Lipschitz continuity of m from its

continuity using convexity since, in general, m may be convex in no neighbour-

hood of (pQ, q0) e M even if f(X) — C is a closed, convex subset of R and

p0 e in t ( / (A r ) - C). To see this, take f(X)-C = ] -oo , 1], p0 = 0 and q0 = 1.

Then m(p, q) = q~x(\ — p) for p < 1 and q > 0. The Hessian of m is not

positive semidefinite at any (p,q) with p < 1 and q > 0, hence m cannot be

convex on any ]-e, e [ x ] l — E, 1 + e[ with 0 < e < 1. Here and further on by

[zY, z2] and ]zx, z2[ we denote the closed and open line segment with end points

zx, z2, respectively.

In Lemma 3.1 and Proposition 3.1 below Yo denote the maximal linear

subspace parallel to aff A for A c Y, that is, aff A = Yo + y0 for every y0 e aff A.

LEMMA 3.1. Let A be a convex set in a normed space Y with ri A ¥= 0. Then the

function h: (ri A) X Yo -» R defined by h(p, q) = pA-p(q) for (p, q) e (ri A) X

YQ is locally Lipschitz.

PROOF. Without loss of generality we may assume that Yo = Y and then

ri A = int A. Take p0 e int A, q0 e Y and let r > 0 be such that p0 + rB c A.

Put U = p0 + 2~Vfi and take p e £/. For every 4 ,̂ ^ 2 G y we have that

(1) \PA-P(9I) ~ PA-P{QI) I < ™Z*{PA-P(<1I ~ 4i), PA-MI ~ 9i)}

< P2-V«(?i ~ ^2) = 2r"1||^1 - q2\\.

In particular

(1') \PA-P(q)\<2r-I\\q\\ forany^ey.

Let F = q0 + 55 be a fixed neighbourhood of q0, for some s > 0, and let

# G V. Take /»x, /?2 e [/. If q G ;(Y4 - p2) for some r > 0 then

q^t(A -p1) + t(pl-p2)

c / (^ - ^ ^ + /(p^.,^^! - p2) + e)(^ - Pl)

= *(l + PA-PI(PI -Pz) + E)(A -Pi), f o r e v e r y £ > 0 .

Hence, for every e > 0, we obtain that

( l + PA-PI(PI ~ Pi) + e ) ^ e f(A ~ Pi)'

which proves that

https://doi.org/10.1017/S1446788700028639 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028639


[5 ] Lipschitz and differentiable dependence 357

Thus, we must actually have that

PA-

and

Replacing px with p2 we end up with the following inequality

(2) \PA-PM) ~ PA-PM)\

< iaax{ pA.P2(q)pA_Pl(pl - p2), PA-PI(<I)PA-PI{P2- PI)}

<2r-
l\\q\\2r-l\\Pl-p2\\

<4r-2(j + ||9o||)||/>1-,p2||,

using (1') and the fact that pv p2 e U.
Finally take (/>„ qt) e U X V, i = 1, 2. Then, using (1) and (2) we obtain that

where L = max{2r"1,4r"2(j + ||<7OII)}> which proves that h is Lipschitz continu-
ous on U X V.

Let us note that the function h in the above lemma may be convex in no
neighbourhood of (pQ, q0) e (int A) X Y. An example can be provided with the
same subset f(X) — C =]-oo,l] in R and p0 = 0, q0 = 1 as that was used for
the function m.

PROPOSITION 3.1. Let A = f(X) - C be convex and closed with ri A # 0 . Let
(/>()> 4o) G M be such that (pQ + R<70) (^ri A ^ 0. Then the marginal function m
is locally Lipschitz at (p0, q0) on (p0 + YQ) X spanC. //, moreover, spanC = Y
then m is locally Lipschitz at ( p0, q0) on Y X Y.

PROOF. Let pQ + toq0 e ri A for some t0 e R. It is easy to check that for every
(p,q)^ (po+

 Yo) x spanC we have m(p - toq, q) = m(p, q) + t0, with the
usual convention that ± oo + /0 = + oo. Hence (p0 + toqo, q0) e M if and only
if (p0, q0) e M and Lipschitz continuity of m at O 0 + toqo, q0) on {p0 + Yo) X
spanC together with spanC c Yo imphes that m is locally Lipschitz at (p0, qQ)
on (p0 + Y0)X spanC as well. Thus without loss of generality we may assume
that p0 e nA. Then by Lemma 3.1 the function h: (ri A) X spanC -> R is
Lipschitz continuous on some neighbourhood of (p0, q0) in (p0 + Yo) X spanC.
Since m(p, q) = (h(p, q))'1 for any (p, q) e (ri A) X spanC with h(p, q) =t= 0
and h(p0, q0) # 0 w e must actually have that m is Lipschitz continuous on some
neighbourhood of ( p0, q0) in ( p0 + Yo) X span C as well.
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If span C = Y then Yo = Y; this observation completes the proof of Proposi-
tion 3.1.

Let g: M -* Y denote the mapping defined by g(p, q) = p + m(p, q)q for
(p, q) G M. Let us note that g(p, q) e d(f(X) - C) for any (p, q) e M, where
the symbol 9 denotes the relative topological boundary in Y.

The next corollary is straightforward.

COROLLARY 3.1. Under the assumptions of Proposition 3.1 g is locally Lipschitz at
(Po> <7o) on (Po + ^o) x spanC. If moreover spanC = Y then g is locally Lipschitz
at(Po,q0)onYX Y.

Let us note that we do not assume in Proposition 3.1 and its corollary that
int C * 0.

Following [20] we say that the line segment [y, z] with y =£ z is parallel to C if
z - y e C U ( -C) .

The next proposition is proved in [20].

PROPOSITION 3.2. Let: (•) f(X) - C be convex and closed and let (p0, q0) e M,

and suppose that there exists QQY with g(p0, q0) e int Q such that d(f(X) - C)
Pi Q contains no line segment parallel to C. Then any x e X obtained by solving
P(p0, q0) is a C-maximalpoint off on X. Moreover, g(p0, q0) e ec(f(X)), that
is, g(p0, q0) is a C-maximal value for (P) andf(x) = g(p0, q0).

Let us observe that the condition that d(f(X) — C) C\ Q contains no line
segment parallel to C, ensures that we cannot move from g(pQ, qQ) in a direction
of -c =f= 0 with c e C, while still being on the relative boundary of /(X) — C.

Combining Corollary 3.1 and Proposition 3.2 we obtain Lipschitz dependence
of maximal values on the parameter (p,q).

THEOREM 3.1. Let us suppose that the assumptions of Proposition 3.1 and (*) in
Proposition 3.2 hold at some (p0, q0) e At. Then there exist a neighbourhood U of
Po 'nPo + ^o and a neighbourhood Vofq0 in span C such that g(p, q) e ec(f(X))
for (p,q) G U X V. Hence there exists a Lipschitz continuous mapping on U X V,
whose values are maximal values for (P). If span C = Y the above U and V can be
taken in Y.

PROOF. By Corollary 3.1 there exists a neighbourhood U X V of (p0, q0) in
(Po + *o) x spanC, such that g is Lipschitz continuous on U X V. We may
choose U X V so that g(p, q) e int Q for (p,q)e Ux V, where Q is the set
given in the assumptions of Proposition 3.2. Applying Proposition 3.2 to each
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g(p,q) with (p,q)e U X V we obtain that g(p,q) e ec(f(X)), whenever
(p,q) e U X V, which completes the proof.

4. Lipschitz dependence of solutions on the parameter ( p, q)

In this section we turn our attention to solutions obtained by solving P(p, q)
for (p,q) sufficiently close to given (pQ,q0). Precisely, we want to prove the
existence of a Lipschitz continuous mapping defined on some neighbourhood of
(/>o> %) m M whose values are optimal solutions to (P). To this end we shall
assume that the mapping / admits locally a Lipschitz continuous inverse.

Let us recall that a multifunction F: Zx -* Z2, where Z1 and Z2 are topologi-
cal spaces, is said to be upper continuous (u.c.) at some zx e Zx if for every open
set Q QZ2 containing F(zl) there exists a neighbourhood V of zx such that

F(z) ^ Q f ° r e v e r v z e V-
The reader can find studies on topological properties of multifunctions in

[2,5,9], for instance. However, usually the terminology varies from author to
author.

Following [20] we denote by S: Y x span C -* Y the solution multifunction,
that is, for (p, q) e Y X spanC

S(P> 0) = i x G X: f(x) =P + m(p> <l)4 + c- for some c ^ C}.

Conditions ensuring that S is u.c. at (pQ, q0) are given in [20, Corollary 6.2].
For instance, we may observe here that S is u.c. at (p0, q0) e M whenever the
marginal function m is continuous at (p0, qQ), X is compact and / is continuous.

From now on we shall assume that A!" is a subset of a topological space Z and /
is defined on some neighbourhood G of X in Z.

THEOREM 4.1. Let the assumptions of Theorem 3.1 hold at some (pQ, q0) e M
with the multifunction S being u.c. at (po,qo). Moreover, suppose that Z is a
normed space, f is a homeomorphism on some neighbourhood of S(p0, q0) inZ and
its inverse is locally Lipschitz. Then there exist neighbourhoods U of p0 in p0 + Yo

and V of q0 in span C and Lipschitz continuous mapping s: U X V -* X such that
s(p, q) is a C-maximalpoint of f on X for each (p,q) e U X V. If spanC = Y
then U and V can be taken in Y.

PROOF. Under the assumptions of Theorem 3.1 and using the fact that / is a
homeomorphism on a neighbourhood of S(p0, q0) we must actually have that
S(p0, q0) consists of only one point. Let Go be a neighbourhood of S(p0, q0) in
Z such that / : Go -* f(G0) is a homeomorphism and its inverse f'1: f(G0) -» Go
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is Lipschitz continuous on f(G0). Applying Theorem 3.1 and using the fact that S
is u.c. at (p0, q0) we can find a neighbourhood U X V of (p0, q0) in (p0 + Y0)X
spanC such that g is Lipschitz continuous on U X V, g(p, q) e ec(f(X)) and
S(p, q) c Go for (p,q) G U X F. Under our assumptions it actually follows that
if x G S(p, q) with (p, q) G [/ X V then g(/>, 4) = f(x) G /(Go). Hence the
mapping s:U X F -+ X defined by s(/>, #) = f~xg(p, q) for (p,q) e U X V is
Lipschitz continuous on £/ X F and s(p, q) is C-maximal for each (p, q) G U X
F, which completes the proof.

Let us note here that we do not require that /(Go) is open in the above proof.
There exist a number of theorems ensuring that the mapping / admits locally a

Lipschitz inverse, see, for example [6, page 30], [3, page 242], [18], [21, page 69].

5. Differentiable dependence of solutions on the parameter {p,q)

In the previous sections we have shown that under suitable assumptions the
maximal values and solutions depend in Lipschitz way on the parameter (p,q).
Hence they both admit differentiable properties to some degree.

We shall assume again that X is a subset of a topological space Z and / is
defined on some neighbourhood G of X in Z.

Let us remind that Theorems 3.1 and 4.1 yield mappings g and s giving
maximal values and maximal points for (P), respectively. In finite dimensions
using the Rademacher's theorem [19, page 30] we have immediately the following
proposition.

PROPOSITION 5.1. If Y is finite-dimensional and (p0, q0) e M then under the
assumptions of Theorem 3.1 there exist neighbourhoods U and V of p0 in p0 + Yo

and q0 in span C, respectively, such that g is Frechet differentiable almost every-
where onU XV; if also Z is finite dimensional and the assumptions of Theorem 4.1
hold then the same is true for s. If, moreover, span C = Y then the mappings g and
s are differentiable almost everywhere in some neighbourhood of (po,q0) in Y X Y.

In the above proposition "almost everywhere" is meant in the sense of
Lebesgue measure.

There exist a number of generalizations of Rademacher's theorem to infinite
dimensions, they can be applied in order to obtain differentiability of g and s
when Y and Z are not finite-dimensional. In the rest of this section we shall
discuss some of these possibilities. We need the following notation [21].

Let Zj, Z2 be topological vector spaces over the reals and let A: U -* Z2 be a
mapping defined on some neighbourhood U oi z in Zv The mapping h is said to
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be directionally differentiable at z if for every d e Z j

(3)
r-»0

exists.
If the above h'(z; •): Zx -* Z2 is a continuous linear mapping then we say that

h is Gateaux differentiable at z and we denote h\z; •) simply by h\z), that is,
h'(z)(d) = h'(z; d) for every d e Zv If moreover the convergence in (3) is
uniform with respect to d on each compact set in Zx we say that h is Hadamard
differentiable at z.

It is easily seen that if Zx and Z2 are normed spaces and h is a locally
Lipschitz mapping at z, then it is sufficient for h'(z, •) to be linear in order to be
Gateaux differentiable at z. Moreover, if a locally Lipschitz mapping at z is
Gateaux differentiable at z then it is Hadamard differentiable at z as well [21,
page 19].

THEOREM 5.1. Suppose that Y is a separable Banach space and that spanC = Y.
Assume that the assumptions of Theorem 3.1 hold at some (po,qQ)eM. Then g is
Hadamard differentiable on a dense subset of some neighbourhood of (pQ,q0) in
YX Y.

PROOF. By Proposition 3.1 we obtain that the marginal function m is Lipschitz
on a neighbourhood V of (p0, qQ) in Y X Y. As Y is a separable Banach space,
the result of Mankiewicz [12, Theorem 4.5] ensures that m is Gateaux differentia-
ble, hence Hadamard differentiable, on a dense subset of V. The Hadamard
differentiability of m implies the Hadamard differentiability of the mapping g.
Applying Theorem 3.1 we get the theorem.

The proof of the next result is analogous, using Theorem 4.1 and Theorem 4.5'
in [12].

THEOREM 5.2. Assume that Y is a separable Banach space and that span C = Y.
Suppose that the assumptions of Theorem 4.1 hold at some (p0, q0) e M with Z
being a reflexive Banach space. Then s is Hadamard differentiable on a dense subset
of some neighbourhood of (p0, q0) in Y X Y.

Hypotheses on Z other than reflexivity under which Theorem 5.2 still holds can
be found in [12, Definition 2.4, Theorem 4.5].

However, Theorems 5.1 and 5.2 extend Proposition 5.1 to infinite dimensions,
but their strength is far less, as they ensure differentiability only on a dense subset
compared; with "almost everywhere" in Proposition 5.1. Mankiewicz [13, Theo-
rem 3.6] has proved that if h is a Lipschitz mapping from an open subset of a

https://doi.org/10.1017/S1446788700028639 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028639


362 Alicia Stema-Karwat [10]

separable Banach space Zt to a so-called GF-space Z2 (for example every
reflexive Banach space is GF-space) then the set of those points, where h is not
Gateaux differentiable is of "measure zero" in Zx. The class of subset of
"measure zero" [13] in a separable Banach space used in the above result is
defined in such a way that they behave like sets of Lebesgue measure zero in
Euclidean space. Aronszajn [1, Theorem 1, page 166] has strengthened the result
of Mankiewicz to a class of exceptional subsets, which is more restricted then the
class of subsets of "measure zero" in [13]. Applying the above results of
Mankiewicz and Aronszajn one may considerably strengthen Theorems 5.1 and
5.2. However, rather than discuss these more complicated situations here, we refer
the reader to the above-mentioned papers of Mankiewicz and Aronszajn. See [11]
also.

Let us observe that in the above results we have not supposed that / satisfies
any differentiability assumptions.

6. Conclusions

We end our discussion with the observation that for a quite large class of vector
optimization problems set in nonned spaces the results of the previous sections
can be applied locally. Let us recall the definition of local optimal solutions for
the problem (P).

Let X be a topological space and let / : X -* Y be a continuous mapping. We
say that x e X is a locally C-maximal point of / on X if there exists a
neighbourhood N of x such that x is a C-maximal point of / on N.

We can apply the results of the previous sections whenever there exists a
neighbourhood Q in Y such that f(X)C\Q¥= 0 and f(X) n Q - C is convex
and closed. Considering the problem (P) with X replaced by N = f~l(Q) which is
a neighbourhood in X in view of the continuity of / , we obtain a Lipschitz and
differentiable dependence of locally C-maximal values and locally C-maximal
points of / on X on the parameter (p,q). Moreover, observe that we do not
assume here that X is convex, in fact the space Z, of which X is a subset, need
not be a linear space. The mapping / is an arbitrary continuous mapping on X.
However, let us note that if C is a pointed convex cone (that is, C n (-C) = {0}),
/ is (-C)-convex on a convex subset X (that is, (1 — 0/(*i) + tf(x2) ~
/((I - t)x1 •+ tx2) e -C for every xx, x2 e X and t <= [0,1]) then any locally C-
maximal point of / on X is a globally C-maximal point of / on X.
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