
A hierarchical model for real-time monitoring of variation in

risk of non-specific gastrointestinal infections

I. KAIMI* AND P. J. DIGGLE

Department of Medicine, School of Health and Medicine, Lancaster University, UK

(Accepted 10 January 2011; first published online 9 February 2011)

SUMMARY

The AEGISS (Ascertainment and Enhancement of Disease Surveillance and Statistics) project

uses spatio-temporal statistical methods to identify anomalies in the incidence of gastrointestinal

infections in the UK. The focus of this paper is the modelling of temporal variation in incidence

using data from the Southampton area in southern England. We identified and fitted a

hierarchical stochastic model for the time series of daily incident cases to enable probabilistic

prediction of temporal variation in risk, and demonstrated the resulting gains in predictive

accuracy by comparison with a conventional analysis based on an over-dispersed Poisson

log-linear regression model. We used Bayesian methods of inference in order to incorporate

parameter uncertainty in our predictive inference of risk. Incorporation of our model in the

overall spatio-temporal model, will contribute to the accurate and timely prediction of unusually

high food-poisoning incidence, and thus to the identification and prevention of future outbreaks.
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INTRODUCTION

Food poisoning is defined as ‘any disease of an

infectious or toxic nature caused by the consumption

of food or drink’ (Digestive Disorders Foundation,

2004). It is a common disease, with an estimated two

million people infected each year in the UK. Reported

cases usually present mild symptoms, typically in-

cluding nausea, vomiting, abdominal cramps, head-

ache and diarrhoea. Symptoms may extend to fever

and chills, bloody stools, dehydration and nervous

system damage. The severity of the infection is mostly

determined by the species of the infectious agent; the

most common bacteria responsible for food poisoning

in the UK are Campylobacter and Salmonella.

Although the illness is usually short-lived, it can be

serious or even life-threatening, especially in vulner-

able groups such as young children and the elderly.

Recording and investigating cases of suspected food

poisoning can help the public health authorities to

identify sources in order to prevent and control

emerging outbreaks. However, current monitoring

tools suffer from very incomplete reporting and delays

in confirmation of reported cases. The AEGISS

(Ascertainment and Enhancement of Disease

Surveillance and Statistics) project was designed to

address these deficiencies, with the aim of reducing the

time of detection of a problem to 3 days (HPA press

release, 12 February 2001). This would enable timely

intervention in order to prevent further cases in the

community. (For published work regarding the

AEGISS project see [1–3].)
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In this paper we present an extension of the work in

Diggle et al. [2] which gave predictions of poor quality.

This suggested that periodic review of the parameters

of the fitted log-Gaussian Cox spatio-temporal pro-

cess model [4] is required. Furthermore, it gave cause

to doubt the adequacy of a static regression model for

the continually changing temporal trend, thereby en-

couraging examination of stochastic models. We thus

focus on modelling the underlying temporal variation

of food-poisoning cases. Correct modelling of the

time trend is essential for a correct interpretation

of the spatio-temporal patterns in the data. If the

mean number of daily incidences is overestimated

or underestimated, the identification of spatially and

temporally localized occurrences of unusually high

incidence of food poisoning will be obscured. Time-

series regression models for count data are the candi-

date stochastic models for the evolving temporal

trend in incidence of food-poisoning cases. At a later

stage, our model, incorporated in the overall spatio-

temporal model presented in [2], will help in making

valid predictions of food-poisoning cases towards the

identification and prevention of future outbreaks.

METHODS

Data

Southampton was the test area and NHS Direct the

source of the data used. NHS Direct is a 24-hour

phone-in nurse advice and health information service,

aimed at helping people in the UK to make the right

choice and meeting their needs concerning medical

issues. Information on NHS Direct is available at the

service’s website (www.nhsdirect.nhs.uk). The data

gathered by NHS Direct are less likely to be incom-

patible and temporally restricted in reporting rates

over time than the data provided by general prac-

titioners (GPs). Moreover, they are more suitable for

the predictive intentions of the AEGISS project, since

the chance of reporting delays is eliminated, as no

appointments are necessary.

The available data are the number of cases reported

each day fromAugust 2000 toDecember 2003.We dis-

carded data prior to January 2001 because the service

was new and not well established before that date.

The service was out of use from 13 to 30 September

2001 inclusive, hence that part of the data was also

removed. The proportion of zeros in the data for the

3 years 2001–2003 was 3%, i.e. on 32 out of the 1077

days there were no calls to NHS Direct. If the service

was not in use on a particular day, for technical or

other reasons, the number of cases was recorded as

zero instead of as missing. We were therefore unable

to distinguish between a fault in the NHS service re-

sulting in no data, and no actual cases on those days.

In addition, food-poisoning incidence was different

in 2001 compared to the corresponding daily inci-

dence in the two subsequent years, with a lower mean

and median and a larger proportion of zeros. Our aim

was not to describe the mechanisms that lead to

different behaviour at one point in time compared to

another, but rather to find a suitable model with

which to make valid predictions. Allowing the model

to depend on unrepresentative data would result in

inaccurate forecasts. Hence, we only considered data

for 2002 and 2003, which are sufficiently well de-

scribed by a Poisson distribution, the natural choice

for distribution for count data. The 2001 data will be

used later to assess the validity of our model.

Initial model fitting

We first fitted generalized linear models (GLMs [5])

to our data as an exploratory tool. There are standard

and well established statistical tests to assess par-

ameter significance and model fit for GLMs. Thus,

using GLMs adjusted for over-dispersion [5], we

examined the relationships between the daily number

of food-poisoning cases with day-of-week effects and

a linear time trend. Fourier terms up to the second

harmonic were included in the model to account for

seasonality in food-poisoning incidence. An assumed

full model that adjusts for the effects of all the ex-

planatory variables is

log(mt)=dd(t)+a1 cos(vt)+b1 sin(vt)

+a2 cos(2vt)+b2 sin(2vt)+ct, (1)

where dd(t) is the effect of the day-of-week and

v=2p/365 is the annual periodicity in incidence rates.

Hierarchical time-series models

The data exhibited temporal correlation and were

hence not independently distributed as assumed for

parametric (GLM) regression analysis. Our statistical

model needed to account for the dependence between

the observations. An inappropriate static model can

be disastrous as it does not have the flexibility to ad-

just to model departures. A stochastic model would

be expected to provide a better fit to our data and

supply an improved forecasting tool.
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The models we fitted to our data have the same

justification as in [6] and were applied in a similar

context, defining models for hierarchical analysis as in

[7]. The hierarchy of the models was formulated in

two levels :

(1) We assumed that conditionally on the means

mt ;t=1,…,T the observations yt are independently

distributed as Poisson random variables.

(2) The conditionalmeans are related to the regression

effects and the time-series random effects through

the log-linear relationship

log (mt)=Xtb+Wt, (2)

where Xt is the matrix of explanatory variables, b

their regression coefficients (hence Xtb=dd(t)+a1

cos(vt)+b1 sin(vt)+a2 cos(2vt)+b2 sin(2vt)+ct, as

before), and Wt is an appropriately chosen stochastic

process. Wt can be an autoregressive process of order

suitably selected given the autocorrelations present in

the data, a random noise process to account for extra

variability in the data, or the sum of the two.

Bayesian Markov Chain Monte Carlo (MCMC)

methods were used for inference. Their flexibility was

exploited to fit a number of different models. MCMC

methods provided posterior distributions for both

regression and time-series parameters in our models

and predictions were able to account for the uncer-

tainty present in the parameter estimates.

Model comparisons

For each of the models fitted we calculated the

deviance information criterion (DIC) and the mean

square error prediction (MSEP) in order to identify

the best-fitting model. DIC [8] is an asymptotic cri-

terion that reflects both goodness of fit (i.e. residual

variance) and degree of parameterization. It is defined

as a classical estimate of fit, the deviance, plus twice

the effective number of parameters, the complexity

(the expected deviance minus deviance at the pos-

terior expectation of the parameters), both calculated

from MCMC output. Smaller DIC suggests a better

model.

Our objective was to make future predictions based

on the current data. Hence, the quality of predictions

from each model should be assessed, and our choice

of best-fitting model should reflect this. The MSEP

criterion is usually the best measure of the quality of

predictions and corresponds to predicting within the

population from which the fitted data are drawn, as it

represents the difference between the actual observa-

tions and the response predicted by the model.

Predictions

The AEGISS data are updated daily, and hence we

were interested in short-term predictions because of

the infectious nature of the disease. We calculated

predictions for December 2003, the last month in the

dataset used. These data were available, thus com-

parisons between predictions and the actual number

of food-poisoning cases recorded were possible.

We first predicted the future values of the process

Wt in our model, to discover how accurately we can

predict the intensity of food-poisoning cases. Of the

different kinds of predictions we were able to make

using the {Wt} process, the most interesting were:

(1) Using data up to time t, make predictions for time

point t+k. The same procedure was followed for

different consecutive time points, t1, …, tn. This is

the so-called k-step-ahead predictor, which can be

updated daily. For short-term predictions k is

kept small. We used k=1 for one-step-ahead

predictions.

(2) Using data up to the present time to predict the

current intensity. This can be considered as the

zero-step-ahead prediction in the previous cat-

egory. This kind of prediction enables prediction

of today’s intensity and its evaluation as high

or low compared with previous values. This pre-

dicted intensity can also be used to examine the

spatial variation. Performing the same step on

consecutive days would indicate whether the in-

tensity remains at an elevated level, signalling

outbreak, or returns to normal.

Finally, the question of whether our model can be

used to make valid predictions of food-poisoning

cases also arises. Making future forecasts involves

simulation from the conditional distribution of daily

incidence, conditional on the daily incidence up to

time t (for details of all prediction types see the

Supplementary Appendix, available online).

Software

We used WinBUGS, a recently developed software

package [9] that implements the Gibbs sampler to fit

time-series regression models using the Bayesian

approach to our data. WinBUGS assumes a Bayesian

model in which all parameters are treated as random
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variables. The posterior distribution of the parameters

is obtained by conditioning on the data. The use of

WinBUGS is justified by its flexibility and ease of use.

For validation of the Bayesian models fitted to the

data, the results were processed in R, and the CODA

package (convergence diagnosis and output analysis

software for Gibbs sampling output) was used for

analysing the output obtained from WinBUGS. R is

an integrated suite of software facilities for data

manipulation, calculation and graphical display (see

http://www.r-project.org for details). CODAproduces

a number of plots : trace plots (to assess mixing of the

chains), autocorrelation plots (high autocorrelations

within chains indicate slow mixing and slow conver-

gence), cross-correlation plots between the monitored

variables for each chain (high correlations among

parameters may result in slow convergence) and con-

vergence diagnostics based on Cowles & Carlin [10].

RESULTS

Exploratory analysis

The data consisted of 6735 food-poisoning cases

over the 2-year period 2002–2003, which yielded a

daily mean number of 9.2 cases, and a variance of

18.8, suggesting the presence of over-dispersion [5].

It was expected that the daily incidence would be

greater at weekends when the traditional sources

of medical advice, such as GPs and nurse units, are

unavailable [2]. The summary statistics of cases by

day-of-week confirm this, since on Sundays the num-

ber of cases recorded is the highest and the number of

cases recorded on Saturdays is relatively large

compared to the corresponding number recorded on

weekdays (Monday–Friday). We also include an

‘eighth weekday’ for public holidays (1, 2 January,

24, 25, 26 December and Good Friday). The average

number of cases on a public holiday is larger than on

normal weekends probably because GPs are often

inaccessible on those days.

In Figure 1 the time-series plot over the years

2002–2003 suggests a seasonal pattern that peaks

during the spring months. Additional smaller peaks

appear during the autumns of 2002 and 2003. The

sharpest increase in the number of cases was recorded

during the period 21 December 2002 to 3 January

2003, indicating a possible outbreak during that

period, which also includes 4 days classified as hol-

idays. Figure 1 does not reveal any monotone (rising

or decreasing) overall time trend.

Static model

The day-of-week effects were found to be strong and

statistically significant, whereas the coefficients of

the sinusoidal terms that account for and model the

seasonal patterns in the data are only marginally sig-

nificant. Under the incorrect assumption of indepen-

dence between the observations made for a GLM

model, the data can be interpreted as providing strong

evidence of decreasing food-poisoning incidence.

The dependence between the observations can

be assessed by the plots of the autocorrelation and

partial autocorrelation functions. Using the raw data,

the presence of serial correlation is obvious. The
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Fig. 1. Time-series plot of gastrointestinal incidence in Southampton between 2002 and 2003.

Temporal epidemiology using AEGISS data 1857

https://doi.org/10.1017/S0950268811000057 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268811000057


corresponding plots of the residuals of the GLM in

Figure 2 are more instructive; any departure from

white noise is identified by autocorrelation coefficients

at any lag other than 1 lying outside these limits [11].

Serial dependence is no longer present. The 14th and

28th autocorrelation coefficients are now significant,

which suggests that there might be correlation be-

tween the number of cases 2 or 4 weeks apart, imply-

ing a possible weekly effect. Biologically this cannot

be justified, unless some variable that changes every

14 or 28 days and affects food-poisoning incidence,

e.g. temperature, is not taken into account.

Time-series modelling

AR(1) model

The most commonly used time-series model is the

autoregressive model of order 1 [7, 12, 13].

Here we assume that the observations are indepen-

dently distributed as Poisson random variables. The

conditional means are associated with the regression

effects and the time-series random effects through

log(mt)=dd(t)+a1 cos(vt)+b1 sin(vt)

+a2 cos(2vt)+b2 sin(2vt)+At, (3)

where At is an autoregressive process of order 1.

Details on the analytical representation of the process

and our choice for prior distributions are given in the

Supplementary Appendix.

The posterior mean for the autoregressive par-

ameter of the process (w1) is equal to 0.35, and

the variance of the At values is y0.08, which results

in a rather rough autoregressive process. The auto-

correlation plot of the residual process

{"t=yt+1xŷyt(1), t=1, :::,T}, where ŷyt(1) denotes

the one-step-ahead forecast for yt+1 made at time

t, suggests that the process is consistent with

the white-noise assumption and indicates a good

model fit.

AR(2) model

We next replaced the autoregressive process of order

1 in the linear predictor of model (3) with an auto-

regressive process of order 2. This is identified as the

trial over-fitting procedure [11], which states that, in

general, in order to assess if the provisional time-series

model is adequate, it should be compared with models

that include an additional autoregressive parameter.

The model with the higher-order process is preferred

only if it provides improved model fit. Following

the same fitting process as for the AR(1) model (see

Supplementary Appendix), both the first- and second-

order autoregressive parameters were found to be

significant.

AR(7) model

The autocorrelation plots of the Pearson residuals

of the GLM (Fig. 2) showed that at lags 14 and 28

the correlation coefficients are significant, possibly

owing to an unaccounted temporal variable or a re-

porting effect. We thus defined an autoregressive

process of order 7 (see Supplementary Appendix). The

autoregressive parameters of the model were again

found to be significant, but the residuals’ process was

not consistent with the white-noise assumption. This

suggests that the added complexity induced by

increasing the order of the autoregressive process

is unnecessary.
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Fig. 2. Autocorrelation (left) and partial autocorrelation (right) functions of the Pearson residuals of the fitted generalized

linear model. Dashed lines correspond to the 95% confidence intervals.
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Inclusion of extra random noise in the stochastic

process

The considerable variability in our data induces a large

variance in the time-series models presented. We thus

added a random process {Bt}, to the linear predictors

of each of the models AR(1), AR(2) and AR(7). This

was intended to capture the variability of the data and

reduce the roughness of the autoregressive process,

leading to a smoother function of daily incidence over

time, as desired. The second level of model (2) becomes

log(mt)=dd(t)+a1 cos(vt)+b1 sin(vt)

+a2 cos(2vt)+b2 sin(2vt)+At+Bt,

where Bt are independently and identically distributed

Normal (0,t2) variables.

The inclusion of the random-noise process resulted

in a reduction in the variance of the autoregressive

processes in the models by a factor of 20–25, sug-

gesting that the random variation is absorbed in the

random-noise process in all cases. In addition, the

autoregressive parameters in the models are now

larger; the biggest change being the change in the

autoregressive parameter w1 from 0.35 in the AR(1)

model to 0.91 when random noise is added. The

increase in the autoregressive coefficients is an indi-

cation that by allowing for over-dispersion, the auto-

regressive processes becomes smoother and the strong

dependence between observations is uncovered.

Model comparisons: final model

The values of DIC and MSEP for the stochastic

models fitted are given in Table 1. Both criteria suggest

that the best-fitting model is the one that includes

an autoregressive process of order 1 {At}, and also

incorporates extra random noise {Bt} in the stochastic

process : yt|mt y Poisson(mt)

log(mt)=dd(t)+a1cos(vt)+b1sin(vt)

+a2cos(2vt)+b2sin(2vt)+At+Bt: (4)

Table 2 summarizes the results for model (4). All

parameters have much smaller variances than the

those assigned to them a priori, suggesting that the

prior distributions we chose were not influential and

the outcomes reflect the patterns and associations

present in the data. The strong and significant day-of-

week effects dominate and the annual and 6-monthly

cycles are not highly statistically significant (P<0.07).

The autoregressive parameter (w1) is estimated as 0.91

with a small standard error, and the variance of the

autoregressive process At is smaller than the variance

of the random-noise process Bt, suggesting that the

residual over-dispersion and the large variability in

the data are captured by the random-noise process.

Figure 3 shows the time-series plot of the number of

cases. On the same plot, the random-noise process

{Bt} (yellow line) as well as the smooth autoregressive

{At} process (red line) are superimposed; both have

been added to the mean daily incidence and ex-

ponentiated to be on the scale of the number of cases.

The sinusoidal terms of the model were added to the

At process, multiplied by their regression coefficients

given in Table 2.

Predictions

Zero-step-ahead predictions of the {At} process

The zero-step ahead prediction is effectively the pos-

terior mean of {At}, given data up to time t. We thus

fit model (4) iteratively to datasets that have data for

one additional day in each iteration. Figure 4 displays

Table 1. DIC and MSEP calculated for models 0–6

Model DIC MSEP

0 GLM 4427.8 18.73
1 AR(1) 4425.9 15.71

2 AR(2) 4488.1 15.78
3 AR(7) 4441.8 15.96
4 AR(1)+Bt 4411.2 14.76

5 AR(2)+Bt 4441.6 15.54
6 AR(7)+Bt 4429.9 15.62

DIC, Deviance information criterion ; MSEP, mean square
error prediction; GLM, generalized linear model.
Models 1–3 correspond to autoregressive processes for

orders 1, 2 and 7, respectively.
Models 4–6: same as models 1–3, plus random noise.

Table 2. Final model

Variable Mean S.E. 2.5% 97.5%

Sunday 2.37 0.05 2.27 2.47
Monday 2.21 0.06 2.11 2.32

Tuesday 2.04 0.06 1.93 2.16
Wednesday 2.05 0.05 1.94 2.15
Thursday 2.02 0.06 1.91 2.15

Friday 2.10 0.06 1.99 2.22
Saturday 2.31 0.05 2.21 2.41
Bank holiday 2.56 0.13 2.31 2.81
w1 0.91 0.01 0.74 0.98

1/t2 14.16 2.31 10.28 19.28
1/s2 356.7 224.4 70.56 905.1

Mean, standard error (S.E.) and 95% credibility interval for
all model parameters.
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the posterior mean of the At values, t=700, …, 714,

corresponding to 1–15 December 2003, given data

up to time t (zero-step-ahead forecasts for At), their

95% credibility intervals, and the posterior means of

the At values given the whole dataset (i.e. given data

y1, …, y730). Since the autoregressive process is an un-

observed latent process, we did not have the actual

values of At to compare, so comparisons can only be

made with the posterior means conditional on the

whole dataset. We can infer that the two posterior

means are quite close.

One-step-ahead predictions of the {At} process

Figure 5 shows the posterior mean of At+1, t=
700, …, 714 (1–15 December 2003), given data up to

time t (one-step-ahead forecasts for At), their 95%

credibility intervals and the posterior means of the

At+1 values given the whole dataset (i.e. given data

y1, …, y730). Comparing the two posterior means un-

covers more randomness than in the procedure of

calculating the zero-step-ahead predictions which

leads to additional noise of the one-step-ahead pre-

dictions. However the predictions are still close to

what we consider as the truth.

Future forecasts of daily number of food poisoning cases

Figure 6 presents the predictions and their 95%

credibility interval superimposed on the actual num-

ber of food-poisoning cases in December 2003 (thus

l=1, …, 31, t=699). The predictions appear to follow
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Fig. 3. Smooth function of daily incidence over time: raw data (- – -), posterior mean of exp(Bt+�dd) (yellow line) and posterior
mean of exp(At+�dd+seasonals) (red line).
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Fig. 4. Zero-step-ahead predictions for At, 1–15 December 2003: E(At|y1, …, yt) (*), their 95% credibility intervals (+) and
E(At|y1, …, yt) (#).
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the pattern of the actual cases. The weekly cycles im-

posed by the model are roughly in accordance with the

weekly cycles of the data. Only two observations fall

out of the credibility intervals, which is to be expected

for 31 observations and a 95% credibility interval.

DISCUSSION

We have identified a model suitable for describing the

food-poisoning dataset, that can be incorporated in

the overall spatio-temporal model in [2]. The model

allows for day-of-week effects and a seasonal pattern

with high peaks in food-poisoning incidence in spring

and lower peaks in autumn. It also allows for depen-

dence between observations through a latent stoch-

astic process which is adequately described by an

autoregressive process of order 1, with small variance

and high autoregressive parameter, showing evidence

of a highly correlated underlying intensity. Empirical

autocorrelations of the Poisson log-linear model, cal-

culated before including the autoregressive process in

our model, appeared to be small but still significant.

Yet, those small autocorrelations are influential, as we

may infer by the significance of the autoregressive

parameter in our process. Their magnitude is masked

by the residual over-dispersion in the model.

This over-dispersion is induced in the model by an

unobserved spatio-temporal stochastic process [2],

which is captured by the the random-noise process

{Bt} in our model. Estimation of the underlying latent

process is possible when taking into account the

variation induced by the residual over-dispersion.
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Fig. 5. One-step-ahead predictions for At, 1–15 December 2003: E(At+1|y1, …, yt) (*), their 95% credibility intervals (+) and
E(At+1|y1,…yt) (#).
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Fig. 6. Predictions ($) and 95% credibility intervals (+) of food-poisoning cases in December 2003.
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Our final model is robust since it is flexible and

adapts quickly and effectively to changes in incidence.

Furthermore, different types of predictions can be

made using this model, each answering to a number of

questions that may be of interest. The advantages

of the proposed stochastic model over the temporal

static model, that has been previously used to model

the time-trend relationship of food-poisoning inci-

dence, are its flexibility and its capability of giving

adequate forecasts.

Overestimation or underestimation of the temporal

variation in the incidence rate, which is the mean

number of incident cases per day, would lead to

overestimation or underestimation of the intensity of

cases, which in turn would result in instances of high

incidence being either masked or wrongly detected. A

poor model for the temporal trend in the data would

therefore result in poor information about food-

poisoning cases being used by health professionals.

On the other hand, a model that provides good fit to

the data assists in meeting the AEGISS project’s goals

of quick and correct identification of outbreaks,

which can be exploited to prevent their spread.

In summary, our suggested model can contribute to

early detection of outbreaks of food poisoning when

incorporated into the general spatio-temporal model

for the AEGISS data. With public health authorities

being notified, attempts to stop emerging outbreaks

can be made, thus meeting the original goals set by the

AEGISS project. The model is useful in its own right

as a time-series model in similar situations where the

time series of events are available.

NOTE

Supplementary material accompanies this paper on

the Journal’s website (http://journals.cambridge.org/

hyg).
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