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Abstract. We consider a kinetic modulational instability of broadband (random
phase) magnetic-field-aligned circularly polarized dispersive Alfvén waves in plas-
mas. By treating random phase Alfvén waves as quasi-particles, we consider their
nonlinear interactions with ion quasi-modes within the framework of the wave-
kinetic and Vlasov descriptions. A nonlinear dispersion relation governing such
interactions is derived and analyzed. An explicit expression for the kinetic mod-
ulational instability growth rate is presented. Our results can be of relevance to
the nonlinear propagation of incoherent Alfvén waves, which have been frequently
observed in interstellar media, in the solar corona and in the solar wind, as well as
in the foreshock regions of planetary bow-shocks and laboratory plasmas.

Dispersive Alfvén waves (DAWs) are of fundamental importance in astrophysical,
space and laboratory plasmas [1–8]. They can be either circularly polarized elec-
tromagnetic waves, or an admixture of electrostatic and electromagnetic fields. The
dispersion of low-frequency (in comparison with the ion gyrofrequency) circularly
polarized DAWs comes from the ion inertia [3], while that of kinetic (inertial) Alfvén
waves [9, 10] arises from the ion thermal gyroradius/ion polarization (the parallel
electron inertia) effect. Large-amplitude DAWs, which can be excited by electron
and proton beams, are capable of energizing charged particles and producing elec-
tron and ion heating in magnetoplasmas [11,12].
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Large-amplitude coherent non-dispersive and DAWs are subjected to a great
variety of nonlinear effects [2, 3, 9, 13–22]. The latter include the three-wave de-
cay [13–16,22] and modulational instabilities [18–21]. However, the coherent wave–
wave and wave–particle [15,21] interactions are inappropriate when the DAWs have
random phases/broadband spectra.
In this letter, we consider the kinetic modulational instability of broadband right-

hand circularly polarized DAWs propagating along the external magnetic field ẑB0

in a plasma, where ẑ is the unit vector along the z-axis in a Cartesian coordinate
system and B0 is the strength of the magnetic field. The wave magnetic field is
given by Bk = (Bx + iBy) exp(−iωkt+ ikz), where Bx(By) is the x(y) component of
the wave magnetic field, and the wave frequency and wavenumber are related by

ωk ≈ kVA(1 + kVA/2ωci), (1)

where VA = B0/
√

4πnimi and ωci = eB0/mic are the Alfvén speed and the ion
gyrofrequency, respectively, ni is the ion number density, mi is the ion mass, e is
the magnitude of the electron charge and c is the speed of light in vacuum. We note
that the wave dispersion in (1) comes from the finite frequency correction, and that
ω � ωci.
We treat the DAWs, given by (1), as quasi-particles. The latter obey the Liouville

equation [23,24]
∂Ik

∂t
+ Vg

∂Ik

∂z
+ Fk

∂Ik

∂k
= 0, (2)

where Ik = |Bk|2/8π is the Alfvén wave energy density, Vg = ∂ωk/∂k = VA0 +
kV 2

A0/ωci is the group velocity of the Alfvén wavepacket, and VA0 = B0/
√

4πn0mi.
The force exerted due to the background ion number density perturbation n1

(n1 � n0, where n0 is the unperturbed ion number density) on the Alfvén quasi-
particles is

Fk = −∂ωk

∂z
=

kVA0

2n0

∂n1

∂z
. (3)

The perturbed ion number density is

n1 =
∫

du f1(t, z), (4)

which requires the knowledge of the perturbed ion distribution function f1(t, z) in
the presence of the Alfvén quasi-particles. Using a hybrid approach, we start with
the collisionless ion Vlasov equation

∂f1

∂t
+ u

∂f1

∂z
+

e

mi

(
Ez +

1
c

〈vk × Bk〉 · ẑ
)

∂f0

∂u
= 0, (5)

where Ez is the magnetic-field-aligned electric field associated with the ion quasi-
mode, the angular bracket denotes the ensemble average over the Alfvén quasi-
particles, u is the z component of the ion velocity, vk is the ion velocity in the
dispersive Alfvén wave fields and f0 is the unperturbed ion velocity distribution
function. The inertialess electron equation of motion

Ez +
1
c

〈vk × Bk〉 · ẑ = − 1
n0e

∂

∂z

(∑
k

Ik + Ten1

)
(6)

determines the parallel electric field Ez. Here Te is the electron temperature. The
quasi-neutrality condition for the ion quasi-mode has been invoked in (6). Hence,
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from (5) and (6) we have

∂f1

∂t
+ u

∂f1

∂z
− 1

ρ

∂

∂z

(∑
k

Ik + Ten1

)
∂f0

∂u
= 0, (7)

where ρ = n0mi is the ion mass density.
Supposing that Ik = Ik0 + Ik1 exp(−iΩt + iKz), where Ik1 � Ik0 and where Ω(K)

is the frequency (wavenumber) of the ion quasi-mode, we obtain from (2)

Ik1 =
KVA0

2
k∂Ik0/∂k

(Ω − KVA − kVG)
n1

n0
, (8)

where VG = KV 2
A0/ωci.

Furthermore, supposing that f1(t, u) is proportional to exp(−iΩt + iKz), we
obtain from (7)

f1 = −K

ρ

∂f0/∂u

(Ω − Ku)

(∑
k

Ik1 + Ten1

)
. (9)

Multiplying both sides of (9) by du and integrating over the velocity space, we
obtain by using (4)

n1

(
1 +

KC2
s

n0

∫
du ∂f0/∂u

ω − Ku

)
+

K

ρ

∫
du ∂f0/∂u

Ω − Ku

∑
k

Ik1 = 0, (10)

where Cs = (Te/mi)1/2 is the ion sound speed.
Inserting Ik1 from (8) into (10) we thus obtain the dispersion relation

1 +
KC2

s

n0

∫
du ∂f0/∂u

Ω − Ku
+

K2VA0

2ρn0

∫
du ∂f0/∂u

Ω − Ku

∑
k

k ∂Ik0/∂k

Ω0 − kVG
= 0, (11)

where Ω0 = Ω − KVA0. Assuming a Maxwellian ion distribution function

f0 =
n0√
2πVT

exp(−u2/2V 2
T ), (12)

where VT = (Ti/mi)1/2 is the ion thermal speed and Ti is the ion temperature, we
obtain from (11)

1 +
Te
Ti

W (ξi) +
KVA0W (ξi)

2VGn0Ti

L

2π

∫
dk k∂Ik0/∂k

(k − Ω0/VG)
= 0, (13)

where the length of the system is L, and the W function is [25]

W (ξi) =
1√
2π

∫
dξ ξ exp(−ξ2/2)

ξ − ξi

with ξi = Ω/KVT.
We now choose

Ik0 =
I00√

2πkwL
exp[−(k − k0)2/2k2

w], (14)

where I00 is the maximumAlfvén wave magnetic field energy density corresponding
to a mean wavenumber k0, and kw represents the width of the DAW spectrum.
Substituting for Ik0 from (14) into (13) we finally obtain the desired dispersion
relation

1 +
Te
Ti

W (ξi) − (Ω − KVA0)KVA0W (ξi)
k2
wV 2

G

I00

8πn0Ti
W (ξ0) = 0, (15)
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where ξ0 = [Ω − (KVA0 + k0VG)]/kwVG. For ξ0 � 1, (15) reduces to

[Ω − (KVA0 + k0VG)]2 = −(Ω − KVA0)KVA0
W (ξi)

[1 + σW (ξi)]
I00

8πn0Ti
, (16)

where σ = Te/Ti. Letting Ω = KVA0 + k0VG + iγ ≡ Ωr + iγ, where γ � Ωr, we
obtain from (16) the growth rate

γ = (k0VGKVA0)1/2(ReQ)1/2

(
I00

8πn0Ti

)1/2

, (17)

where Q = W (ξr)/[1 + σW (ξr)] with ξr = Ωr/KVT. Equation (15), together with
(17), is the main result of this paper.
In summary, we have considered the nonlinear propagation of a broadband

magnetic-field-aligned right-hand circularly polarizedDAW in an electron–ionmag-
netoplasma. The dynamics of the broadband DAW has been treated by a wave
kinetic equation, considering DAW propagation in a slowly varying medium con-
taining ion density ripples (ion quasi-modes). The latter, which are obtained from
the ion Vlasov equation and the parallel component of the ion momentum equation,
are coupled with the random phase DAW via the ponderomotive force effect. The
governing equations have been linearized around the equilibrium state to obtain a
new dispersion relation, which admits a kinetic modulational instability of broad-
band DAWs in magnetized plasmas. In conclusion, we stress that the present result
is important for understanding the stimulated scattering of incoherent (random
phase) DAWs of ion quasi-modes in astrophysical [7] and laboratory plasmas [22].
Specifically, the present mechanism suggests a novel nonlinear scenario for the
dissipation of DAW energy in magnetized plasmas.
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