
COMPOSITIO MATHEMATICA

FOUNDATION 

COMPOSITIO 

MATHEMATICA

Random walks on projective spaces

Yves Benoist and Jean-François Quint

Compositio Math. 150 (2014), 1579–1606.

doi:10.1112/S0010437X1400726X

https://doi.org/10.1112/S0010437X1400726X Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0010437X1400726X
https://doi.org/10.1112/S0010437X1400726X


Compositio Math. 150 (2014) 1579–1606

doi:10.1112/S0010437X1400726X

Random walks on projective spaces

Yves Benoist and Jean-François Quint

Abstract

LetG be a connected real semisimple Lie group, V be a finite-dimensional representation
ofG and µ be a probability measure onG whose support spans a Zariski-dense subgroup.
We prove that the set of ergodic µ-stationary probability measures on the projective
space P(V ) is in one-to-one correspondence with the set of compact G-orbits in P(V ).
When V is strongly irreducible, we prove the existence of limits for the empirical
measures. We prove related results over local fields as the finiteness of the set of ergodic
µ-stationary measures on the flag variety of G.

Contents

1 Introduction 1579
2 Equicontinuous operators 1583
3 Linear random walks 1589
4 Compact minimal subsets in homogeneous spaces 1591
5 Finite stationary measures on homogeneous spaces 1600
References 1605

1. Introduction

1.1 Random walks on P(V )
Let K be a local field of characteristic zero, i.e. K = R, C or a finite extension of Qp. Let V be
the K-vector space V = Kd, X be the projective space X = P(V ) and µ be a probability measure
on the linear group GL(V ). In this text, ‘probability measure’ will stand for ‘Borel probability
measure’. We set Γµ for the smallest closed subsemigroup of GL(V ) such that µ(Γµ) = 1 and Gµ
for the Zariski closure of Γµ in GL(V ).

We assume that the action of Γµ on V is semisimple, i.e. every Γµ-invariant vector subspace
of V admits a Γµ-invariant complementary subspace. Equivalently, the algebraic group Gµ is
reductive.

A Borel probability measure ν on X is said to be µ-stationary if µ ∗ ν = ν. It is said
to be µ-ergodic if it is extremal among the µ-stationary probability measures. We denote by
Fν = supp(ν) the support of ν.

A closed subset F ⊂ X is said to be Γµ-invariant if gF ⊂ F for all g in Γµ. It is said to be
Γµ-minimal if it is minimal for the inclusion among the non-empty Γµ-invariant closed subsets.
If ν is a µ-stationary Borel probability measure on X, its support Fν is a Γµ-invariant closed
subset.

The aim of this text is to describe the asymptotic properties of the random walk on P(V )
associated to µ. We will also describe the µ-ergodic µ-stationary Borel probability measures on
P(V ) and check that they are in one-to-one correspondence with the Γµ-minimal subsets of P(V ).
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This paper extends previous works of Furstenberg, Guivarc’h and Raugi.

1.2 Empirical measures on P(V )
Let V = Kd, X = P(V ) and x ∈ X. Our first result describes the asymptotic behavior in law
at time n of the random walk induced by µ on P(V ) starting from x. This behavior is given
by the probability measure µ∗n ∗ δx. We want to prove the existence of a limit for this sequence
in the set of probability measures on X endowed with the ∗-weak topology. We will assume that
Γµ is strongly irreducible, i.e. that the only Γµ-invariant finite union of vector subspaces of V is
{0} or V .

Theorem 1.1 (Asymptotic law). Let K be a local field of characteristic 0, X := P(Kd), µ be a
probability measure on GL(Kd) such that the action of Γµ on Kd is strongly irreducible.

(i) Then for every x in X, the limit probability measure

νx := lim
n→∞

1

n

n∑
k=1

µ∗k ∗ δx (1.1)

exists, is µ-stationary and depends continuously on x.

(ii) When K = R and the Zariski closure of Γµ is semisimple, one has

νx = lim
n→∞

µ∗n ∗ δx. (1.2)

Remarks 1.2. We make the following remarks.

(i) Theorem 1.1 is due to Guivarc’h and Raugi when X is an ‘isometric extension’ of a flag
variety of G and K = R (see [GR07] and [Gui08]).

(ii) Theorem 1.1(ii) cannot be extended to any local field K. For instance, when K = Qp, and
when the support Supp(µ) is included in the compact open group K = SL(d,Zp) and is equal to
a translate of a small open normal subgroup of K, (1.2) may not be satisfied.

(iii) When K = R, semisimplicity of the Zariski closure of Γµ is necessary for Theorem 1.1(ii)
to be true. For instance, when µ is a Dirac mass supported by an irrational rotation of R2, (1.2)
is not satisfied.

Our second result describes, when V is strongly irreducible, the asymptotic behavior of the
trajectories of the random walk induced by µ on P(V ) starting from x. We denote N∗ = {1, 2, . . .}.
This behavior is given by the empirical measures (1/n)

∑n
k=1 δbk···b1x for a sequence (bn)n>1 of

elements of GL(Kd) chosen independently with law µ, i.e. for β-almost all such sequences where
β = µ⊗N

∗
.

Theorem 1.3 (Empirical measures). Let K be a local field of characteristic 0, X := P(Kd), µ be
a probability measure on GL(Kd) such that the action of Γµ on Kd is strongly irreducible. Then,
for every x in X, for β-almost all sequences b = (bn)n>1, the limit of the empirical probability
measures

νx,b = lim
n→∞

1

n

n∑
k=1

δbk···b1x (1.3)

exists and is a µ-ergodic µ-stationary probability measure on X. Moreover, one has

νx =

∫
νx,b dβ(b).

Remarks 1.4. We make the following remarks.

(i) We note that the assumption ‘V is strongly irreducible’ is crucial for Theorems 1.1 and
1.3 to be true (see Example 3.3).
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(ii) Even when K = R, the limit measures νx might be non-µ-ergodic and hence the limit
measures νx,b might not be equal to νx. See Remark 1.9 and Example 2.11 (for a Markov chain
which does not come from a group action).

1.3 Stationary measures on P(V )
In our third result, we do not assume that the representation V is irreducible, and we describe
the µ-stationary probability measures on P(V ).

Theorem 1.5 (Stationary measures). Let K be a local field of characteristic zero, X := P(Kd),
µ be a probability measure on GL(Kd) such that the action of Γµ on Kd is semisimple. Then the
map ν 7→ supp(ν) is a bijection between the sets

{µ-ergodic probability on X}←→ {Γµ-minimal subset of X}. (1.4)

Remarks 1.6. We make the following remarks.

(i) Theorem 1.5 is due to Furstenberg when the action of Γµ on Kd is strongly irreducible, and
‘proximal’, i.e. when there exists a sequence gn in Γµ such that the sequence gn/‖gn‖ converges
to a rank-one endomorphism π in End(V ). In this case, P(Kd) supports a unique µ-stationary
probability measure called ‘Furstenberg measure’ (see the book [BL85]).

(ii) When K = R and the action of Γµ on Kd is strongly irreducible, Theorem 1.5 can also be
seen as a corollary of the main result of Guivarc’h and Raugi in [GR07] where a bijection such
as (1.4) is obtained for ‘isometric extensions’ X of flag varieties.

(iii) We note also that even for a deterministic topological dynamical system on a compact
space X, the support of an ergodic probability measure is not always minimal. For instance, the
Lebesgue probability measure on the circle T = R/Z is ergodic for the map t 7→ 2t. It might also
happen that X is minimal without being uniquely ergodic (see [Fur61, p. 585]).

(iv) We note that, when the action of Γµ is not supposed to be semisimple, the support of a
µ-ergodic probability measure is not always Γµ-minimal. Here is an example with V = R2 and
µ the finitely supported measure

µ =
1

2
(δa0 + δa1) where a0 =

(
1 0
0 2

)
and a1 =

(
1 1
0 1

)
.

In this case one has P(V ) = R ∪ {∞} and {∞} is the only minimal Γµ-invariant subset of P(V )
while there exists a µ-ergodic µ-stationary probability on P(V ) whose support is [0,∞].

When K = R and X = P(Rd), applying the following theorem with Γ = Γµ, one can describe
more precisely the µ-ergodic probability measures on X (see Proposition 5.5).

Theorem 1.7 (Minimal subsets). Let Γ ⊂ GL(Rd) be a subsemigroup whose action on Rd
is semisimple and let G be the Zariski closure of Γ. Every minimal Γ-invariant subset F of
X := P(Rd) is supported by a compact G-orbit OF , and the map F 7→ OF is a bijection between
the sets

{Γ-minimal subset of X}←→ {compact G-orbit in X} . (1.5)

Remark 1.8. It is easy to describe the set of compact orbits of this real reductive group G. Indeed,
let MAN be a minimal parabolic subgroup of G, AN its maximal R-split solvable subgroup and
XAN the set of fixed point of AN in X. Then, the map O 7→ O ∩XAN is a bijection between
the sets

{compact G-orbit in X}←→
{
M -orbit in XAN

}
(1.6)
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(see Proposition 4.2 and Lemma 4.15). In particular, one recovers the well-known fact due to
Furstenberg, Guivarc’h, Raugi, Goldsheid and Margulis (see [Fur63], [GM89] and [GR85]): there
exists a unique µ-stationary probability measure νP on the flag variety P of G. This measure is
called the Furstenberg measure.

Remark 1.9. Even when V is strongly irreducible the sets (1.6) may be uncountable. For instance,
for G := SO(n, 1) acting on V := Λ3Rn+1 with n > 5. In this case the compact group M is
isomorphic to O(n−1), the set XAN is P(W ) where W = Λ2Rn−1 and M has uncountably many
orbits in XAN .

1.4 Stationary measures on the flag variety
Let p be a prime number. When K = Qp there may exist more than one µ-stationary probability
measure on the flag variety P of G (see § 4.1 for the definition of P). However, one has the
following finiteness result. We recall that the expression K-group is a shortcut for algebraic group
defined over K.

Theorem 1.10 (Finiteness). Let G be the group of Qp-points of a reductive Qp-group, µ be a
probability measure on G such that Γµ is Zariski dense in G. Then there exist only finitely many
µ-ergodic µ-stationary probability measures on the flag variety P of G.

1.5 Strategy of proofs
In order to prove Theorems 1.1 and 1.3, we will introduce the averaging operator

Pµ : C0(X)→ C0(X); ϕ 7→ Pµ(ϕ) =

∫
Γµ

ϕ(gx) dµ(g), (1.7)

and prove in Proposition 3.1 that, as soon as Γµ acts strongly irreducibly on V , this Markov–Feller
operator is equicontinuous (see [Ros64, Rau92] and § 2 below for definitions; this strategy is
inspired by the work of Guivarc’h and Raugi [GR07]). When K = R and Γµ has semisimple
Zariski closure, the only eigenvalue of modulus one of this operator Pµ is one (Lemma 5.6). Then
Theorems 1.1 and 1.3 will occur as special cases of statements about equicontinuous Markov–
Feller operators.

For Theorem 1.1, we will use well-known decomposition theorems for operators in Banach
spaces spanning a compact semigroup (Propositions 2.2 and 2.3), that we will recall in § 2.1, and
that we will apply to equicontinuous Markov–Feller operators (Proposition 2.9).

For Theorem 1.3, we will use a general fact due to Raugi [Rau92] about equicontinuous
Markov–Feller operators P : for such operators the empirical measures converge almost surely
toward a P -ergodic probability measure (Proposition 2.9(v)).

In the setting of Theorems 1.5 and 1.7, the Markov–Feller operator Pµ might be non-
equicontinuous. Hence, we have to develop new tools (Lemmas 5.3 and 5.4) to be able to describe
the algebraic homogeneous G-spaces which support a µ-stationary probability measure. When
K = R, those homogeneous spaces are exactly the compact ones, and each of them supports
a unique µ-stationary probability measure (Proposition 5.5). When K is any local field, those
homogeneous spaces are exactly those containing a Γµ-invariant compact subset (Proposition
5.1). The description of these homogeneous spaces (Proposition 4.2) occupies most of § 4. An
important tool that we have to introduce is a compact group MΓ that we associate to any
Zariski-dense subsemigroup Γ and that we call the limit group of Γ (Propositions 4.5 and 4.9).

In the setting of Theorem 1.10, the Markov–Feller operator Pµ is again equicontinuous. We
can use directly Proposition 2.9 and we only have to check that there exist only finitely many
Γµ-minimal subsets in the flag variety (Proposition 4.17) using again the limit group MΓ.
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2. Equicontinuous operators

The aim of this section is to recall decomposition theorems for bounded operators on Banach

spaces spanning a compact semigroup (Propositions 2.2 and 2.3), to recall Breiman law of large

numbers for Markov–Feller operators on a compact space (Proposition 2.4) and the results of

Raugi about equicontinuous Markov–Feller operators (Propositions 2.7 and 2.9).

2.1 Decomposition theorems

We begin by recalling the JLG decomposition theorem for bounded operators spanning a compact

semigroup.

Let (E, ‖.‖) be a Banach space. We endow the space L(E) of bounded linear operators with

the strong topology: a sequence Pn in L(E) converges strongly towards P in L(E) if and only

if, for any f in E, one has limn→∞ ‖Pnf − Pf‖ = 0.

Definition 2.1. We say that an operator P in L(E) spans a strongly compact semigroup if

P belongs to a semigroup of L(E) which is compact for the strong topology. Equivalently, the

operators Pn have uniformly bounded norms: supn>1 ‖Pn‖ <∞, and for every f in E, the orbit

(Pnf)n>1 is strongly relatively compact in E.

We endow the dual Banach space E∗ with the ∗-weak topology: a sequence νn in E∗ converges

∗-weakly towards ν in E∗ if and only if, for any f in E, one has limn→∞ νn(f) = ν(f). For any

operator P in L(E), we will write ν 7→ νP for the adjoint operator of P in E∗ , EP for the set

of P -invariant vectors and (E∗)P for the set of P -invariant linear forms:

EP := {f ∈ E | Pf = f}, (E∗)P := {ν ∈ E∗ | νP = ν}. (2.1)

We also introduce the Banach subspaces

EP :=

{
f ∈ E

∣∣∣∣ lim
n→∞

1

n

n∑
k=1

P kf = 0 strongly

}
, (2.2)

(E∗)P :=

{
ν ∈ E∗

∣∣∣∣ lim
n→∞

1

n

n∑
k=1

νP k = 0 ∗-weakly

}
. (2.3)

The following proposition is known as ‘von Neumann functional ergodic theorem’.

Proposition 2.2. Let E be a Banach space and P ∈ L(E) be an operator spanning a strongly

compact semigroup. Then:

(i) the restriction map ν 7→ ν|EP is an isomorphism (E∗)P ' (EP )∗;

(ii) one has the decomposition E = EP ⊕ EP ;

(iii) one also has the decomposition E∗ = (E∗)P ⊕ (E∗)P .

Sketch of proof. (i) To prove injectivity, we start with a linear form ν on E which is zero on
EP . Since, by [Rud73, Theorem 3.20.c)], the convex hull of a compact subset of E is relatively
compact, for any f in E, we can choose a cluster point y∞ of the sequence (1/n)

∑n
k=1 P

kf . This
point is P -invariant and one has ν(f) = ν(y∞) = 0. Hence, one has ν = 0.

To prove surjectivity, we start with a linear form on EP extend it by the Hahn–Banach
theorem to a linear form ν on E and note that any cluster point of the weakly relatively compact
sequence (1/n)

∑n
k=1 νP

k is P -invariant and has the same restriction to EP as ν.
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(ii) Again, for f in E, the sequence (1/n)
∑n

k=1 P
kf is relatively compact. If y∞ is a cluster

point of it, for any P -invariant linear form ν, one has ν(y∞) = ν(f). Hence, the sequence
(1/n)

∑n
k=1 P

kf admits a unique cluster point, that is it converges to some πP f ∈ EP . The
map πP : E → E is then a P -invariant projector whose image is EP and whose kernel is EP .

(iii) This follows from (ii). The map ν 7→ νπP is a P -invariant projector E∗ → E∗ whose
image is (E∗)P and whose kernel is (E∗)P . 2

The following JLG decomposition is a strong improvement of Proposition 2.2. We will only
use it to prove Theorem 1.1(ii).

For any complex number χ we consider the eigenspace

Eχ := {f ∈ E | Pf = χf},

set Er for the linear closure of
⊕
|χ|=1Eχ and Es for the space

Es :=

{
f ∈ E

∣∣∣∣ lim
n→∞

Pnf = 0 strongly

}
. (2.4)

Proposition 2.3 (Jacobs, de Leeuw and Glicksberg). Let E be a Banach space and P ∈ L(E)
be an operator spanning a strongly compact semigroup. Then we have the following results.

(i) One has the decomposition E = Er ⊕ Es.
(ii) In particular, if one is the only eigenvalue of P with modulus one, then the following

limits exist:

(a) for every f in E, limn→∞ P
nf = πP f strongly,

(b) for every ν in E∗, limn→∞ νP
n = νπP ∗-weakly.

Sketch of the proof. Let S be the closure of the semigroup spanned by P in L(E) for the strong
topology. Then one easily checks that S is compact and that the composition map S×S→ S is
continuous. We let T be a non-empty minimal closed subset of S such that ST ⊂ T . One checks
that one has T = Su where u is an idempotent element and that the composition map induces a
group structure on T with identity element u. We have E = keru⊕ imu and since S is abelian,
both of these subspaces are S-invariant. Since the image of S in L(imu) is a strongly compact
abelian group, we have imu ⊂ Er and it only remains to prove that one has keru ⊂ Es. Indeed, if
f belongs to keru, as u belongs to the strong closure of the sequence Pn, there exists a sequence
nk of integers with ‖Pnkf‖→ 0. Now, by the Banach–Steinhaus theorem, the sequence ‖Pn‖ is
bounded and hence ‖Pnf‖→ 0, what should be proved. 2

For a detailed proof, see [EFHN09, ch 12].

2.2 Empirical measures for Markov–Feller operators
For further quotation, we recall in this section the Breiman law of large numbers.

Let X be a compact metrizable space, E = C0(X) be the Banach space of continuous
functions on X endowed with the supremum norm. Its dual space E∗ is the space M(X) of
complex measures on X. We denote by X the compact set X = XN of infinite sequences x =
(x0, x1, x2, . . .).

Let P : C0(X) → C0(X) be a Markov–Feller operator, i.e. a bounded operator such that
‖P‖ 6 1, P1 = 1 and such that Pf > 0 for all functions f > 0. Such a Markov–Feller operator
can be seen alternatively as a continuous map x 7→ Px from X to the set of probability measures
on X, where Px is defined by Px(f) = (Pf)(x) for all f in C0(X). We denote by Px the Markov
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probability measure on X which gives the law of the trajectories of the Markov chain starting
from x associated to P .

For any trajectory x ∈ X, and n > 1 the probability measures νx,n := (1/n)
∑n

k=1 δxk are
called empirical measures. Heuristically this sequence of measures tells us where the trajectories
spend a positive proportion of their time. We want to understand the behavior of this sequence
of measures. The first result in that direction is Breiman’s law of large numbers.

Proposition 2.4 (Breiman). Let X be a compact metrizable space and P be a Markov–Feller
operator on X. Then, for every point x in X, for Px-almost every trajectory x ∈ X, every ∗-weak
cluster point ν∞ of the sequence of empirical measures (1/n)

∑n
k=1 δxk is P -invariant.

In particular, if P is uniquely ergodic, i.e. admits a unique P -invariant probability measure
ν on X, then, for every point x in X, for Px-almost every trajectory x ∈ X, one has

lim
n→∞

1

n

n∑
k=1

δxk = ν. (2.5)

For a proof, see [Bre60] or [BQ12].

Example 2.5. When P is not uniquely ergodic, the limit (2.5) does not always exists. This is
already the case for deterministic operators: for example, if P is the Markov–Feller operator on
T = R/Z such that Px = δ2x, x ∈ T.

2.3 Equicontinuous Markov–Feller operators
We now recall the description of P -invariant measures of an equicontinuous Markov–Feller
operator P .

Definition 2.6. We say that the Markov–Feller operator P is equicontinuous if, for every f in
C0(X), the family of functions (Pnf)n>1 is equicontinuous.

Equivalently, by the Ascoli theorem, this means that P spans a strongly compact semigroup
in L(C0(X)).

Let P be a Markov–Feller operator on X. A closed subset F ⊂ X is said to be P -invariant
if, for all x in F , one has Px(F ) = 1. A P -invariant subset F is said to be P -minimal if it is
minimal among the non-empty closed P -invariant subsets of X.

We shall now describe the structure of the P -minimal subsets of X. We recall from [Rud73,
Theorem 11.12] that if A is a commutative C∗-algebra, there exists a unique compact space Z
such that A is isomorphic to the algebra C0(Z). The space Z is called the spectrum of A. If
ϕ : A1→ A2 is a morphism of commutative C∗-algebras and if Z1 and Z2 are the spectra of A1

and A2, then there exists a unique continuous map θ : Z2→ Z1 such that, for any f in A1, one
has ϕ(f) = f ◦ θ.
Proposition 2.7. Let X be a compact metrizable space and P be an equicontinuous Markov–
Feller operator on X. Let Y be the closure of the union of P -minimal subsets of X. Then:

(i) the restriction map
C0(X)P → C0(Y )P (2.6)

is an isometry of Banach spaces;

(ii) more generally, when |χ| = 1, the restriction map between the eigenspaces

C0(X)χ→ C0(Y )χ (2.7)

is an isometry of Banach spaces;
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(iii) each P -invariant function f ∈ C0(X)P is constant on the P -minimal subsets and hence
C0(Y )P is a Banach sub-C∗-algebra of C0(Y ).

Let Z be the spectrum of C0(X)P and π : Y → Z be the surjective continuous map associated
with the inclusion C0(Y )P → C0(Y ):

(iv) for any z in Z, the preimage π−1(z) is P -invariant and contains a unique P -minimal subset
Fz. The map z 7→ Fz is a bijection between Z and the set of P -minimal subsets of X.

This result is essentially due to Raugi [Rau92, Theorem 2.6].

Example 2.8. It might happen that the union of P -minimal subsets is not closed and that, for
some z in Z, the preimage π−1(z) is not minimal. This is the case when X = N∗ ×{0, 1}, where
N∗ = N∗∪{∞} is the one-point compactification of N∗, and P is the Markov operator such that,
for any n in N∗, one has

P(n,0) = P(n,1) =
1

n
δn,0 +

(
1− 1

n

)
δn,1

and P(∞,0) = P(∞,1) = δ∞,1. Then one has Y = X, Z = N∗ and π is the map (n, u) 7→ n. In
particular, π−1(∞) = {(∞, 0), (∞, 1)} and this set is not P -minimal.

Proof of Proposition 2.7. (i) and (ii) We first prove that this restriction map is injective. Let f
be a continuous function on X such that Pf = χf with |χ| = 1. Assume that the restriction
of f to Y is zero. We want to prove that f = 0. The function g := |f | satisfies Pg > g. Let
M := supx∈X g(x). The set g−1(M) is then a closed P -invariant subset of X and, hence, contains
a P -minimal subset. This proves that M = 0 as required.

We now prove that this restriction map is a surjective isometry. Let g be a continuous function
on Y such that Pg = χg. This function can be extended as a continuous function h on X with
‖h‖C0(X) = ‖g‖C0(Y ). Since g is an eigenfunction of P , g is also the restriction of the functions

hn := (1/n)
∑n

k=1 χ
−kP kh, for n > 1. This sequence is equicontinuous and admits a cluster value

f in C0(X). By construction, this function f belongs to the eigenspace C0(X)χ, the restriction
of f to Y is equal to g and one has ‖f‖C0(X) = ‖g‖C0(Y ) as required.

(iii) Let f be a P -invariant continuous function with real values, F ⊂X be a closed P -minimal
subset and M = supF f . Then the set f−1(M) ∩ F is closed and P -invariant, hence f = M on
F , what should be proved.

(iv) Equip Z with a distance which defines its topology, fix z in Z and, for y in Y , set
f(y) = d(π(y), z). By definition of π, f is P -invariant, so that, if f(x) = 0, one has f(y) = 0 for
Px-almost any y, that is the set π−1(z) is P -invariant.

Let F1 6= F2 be closed P -minimal subsets. Then, as F1 ∩ F2 is closed and P -minimal,
one has F1 ∩ F2 = ∅. Let f be in C0(Y ) with f = 0 on F1 and f = 1 on F2 and set
g = limn→∞(1/n)

∑n
k=1 P

kf . Then g belongs to C0(X)P and g does not take the same value
on F1 and F2, so that π(F1) 6= π(F2), what should be proved. 2

Recall that a probability measure ν on X is said to be P -invariant1 if νP = ν. It is then said
to be P -ergodic if it is an extremal point of the compact convex set of P -invariant probability
measures on X.

1 Many synonyms for the word ‘invariant’ have been used in the literature such as ‘stationary’, ‘harmonic’ or even
‘regular’ in [Spi64].
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For an equicontinuous Markov–Feller operator P , one can describe the P -invariant
probability measures. For x in X, we denote by δx the Dirac mass at x and δxP

k its image
by the transpose of P k.

We have the following results by Raugi [Rau92, Propositions 3.2 and 3.3].
From Propositions 2.2 and 2.7, we obtain the following result.

Proposition 2.9. Let X be a compact metrizable space, P be an equicontinuous Markov–Feller
operator on X, Y be the closure of the union of the P -minimal subsets of X and Z be the
spectrum of the Banach algebra C0(Y )P .

(i) Any P -ergodic P -invariant probability measure on X has P -minimal compact support
and any P -minimal closed subset F of X carries a unique P -invariant probability measure νF .
The set of P -ergodic P -invariant probability measures on X is compact for the weak-∗ topology.

(ii) The map

M(Z)→M(X)P ;α 7→
∫
Z
νFz dα(z) (2.8)

is an isomorphism.

(iii) For every x in X, the limit probability measure

νx := lim
n→∞

1

n

n∑
k=1

δxP
k (2.9)

exists, is P -invariant and depends continuously on x.

(iv) Seeing these νx as measures on Z, the map

C0(Z)→ C0(X)P ; ϕ 7→ fϕ where fϕ(x) =

∫
Z
ϕ(z) dνx(z) (2.10)

is a Banach spaces isomorphism.

(v) For every x in X, for Px-almost every trajectory x ∈ X, the limit

νx := lim
n→∞

1

n

n∑
k=1

δxk (2.11)

exists, is P -invariant and P -ergodic, and one has the equality

νx =

∫
X
νx dPx(x). (2.12)

Remarks 2.10. We make the following remarks.

(i) In particular, any limit of a sequence of P -ergodic probability measures on X is also
P -ergodic.

(ii) Formula (2.10) is a kind of Poisson formula expressing every P -invariant function f
thanks to a continuous function ϕ on a ‘boundary’.

Proof of Proposition 2.9. Parts (i), (ii), (iii) and (iv) directly follow from Propositions 2.2
and 2.7. For part (i), note that, if π : Y → Z is the natural map, necessarily, for any z in Z, the
set π−1(z) carries a unique P -invariant probability measure ν. Since, by definition, Fz ⊂ π−1(z)
and Fz also carries a P -invariant probability measure, one has ν(Fz) = 1, and part (i) follows.

Let us prove part (v). We fix x in X. By Breiman’s proposition 2.4, we already know that the
cluster points of the sequence of empirical measures νx,n are P -invariant probability measures.
Hence, by Proposition 2.2(i) and since X is metrizable, to prove convergence in (2.11), we only
have to check that for every P -invariant function f on X, for Px-almost all trajectories x in X,
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the sequence νx,n(f) converges. For that, we note that, since f is P -invariant, the sequence of

functions Φn : x 7→ f(xn) is a bounded martingale on X, with respect to the natural filtration.

Hence, by Doob’s martingale theorem, for Px-almost all x in X, the sequence f(xn) converges.

Therefore, the Cesaro average νx,n(f) converges too.

It remains to check that, for Px-almost all trajectories x in X, the limit νx is P -ergodic.

Indeed, for any P -invariant continuous function f on X, for Px-almost all trajectories x in X,

the sequence f(xn) converges to ` = νx(f). Hence, all of the cluster points in X of the trajectory x

belong to the level set f−1(`) and the support of νx is contained in this level set. In particular, the

set π(suppνx) is a singleton z and ergodicity follows from part (i). Formula (2.12) is obvious. 2

Example 2.11. Here is an example where the limits of empirical measures νx given in (2.11) are

not equal to νx. Choose X := Z ∪ {−∞,∞} to be the two points compactification of Z and P

to be the Markov–Feller operator on X such that

P±∞ = δ±∞ and Pn = anδn−1 + (1− an)δn+1 (n ∈ Z)

with an = 1
3 and a−n = 2

3 for n > 0, and a0 = 1
2 . This operator P is equicontinuous and P has two

ergodic measures δ−∞ and δ∞. One computes using (2.10) that for x in Z the limit probability

measure νx in (2.12) is given by

νx = (1− 2x−1)δ−∞ + 2x−1δ∞ for x 6 0,

νx = 2−x−1δ−∞ + (1− 2−x−1)δ∞ for x > 0,

and hence νx is not P -ergodic.

A very similar example is obtained by choosing P = Pµ to be the averaging operator of

a probability measure µ on the group SO(2, 1) acting on the projective sphere X = S2 of R3

for which Γµ acts irreducibly on R3. In this case, P is equicontinuous and there exists exactly

two P -ergodic probability measures ν+ and ν− on X. Let f+ and f− be the dual P -invariant

continuous functions on X. One has then, by (2.10) and (2.12), the equalities, for every x in X,

νx = f+(x)ν+ + f−(x)ν− and f±(x) = Px(νx = ν±).

Another very similar example (in the setting of Theorem 1.3) can be obtained by choosing

P = Pµ to be the averaging operator of a probability measure µ on the group G = SO(5, 1) with

Γµ = G acting on the projective space X = P(V ) for the irreducible representation V = Λ3R6

of G introduced in Remark 1.9, and by choosing a point x = Rv in P(V ) for which the orbit

closure Gx contains uncountably many compact G-orbits. For instance v = v1 + wv2 where v1

and v2 are non-zero N -invariant vectors in V belonging to distinct MA-orbits and where w is

the non-trivial element of the Weyl group.

Example 2.12. When P has a unique P -ergodic probability measure ν, (2.5) gives us an

information on the statistical behavior of a typical trajectory starting from x. In particular

this trajectory spends most of the time near the support of ν. However, even when P is

equicontinuous, the limit set of (xk)k>1 may be strictly larger than Supp(ν). Here is an example:

choose X := Z ∪ {∞} to be the one-point compactification of Z and P to be the Markov–Feller

operator on X for which Px = µ ∗ δx where µ is the probability measure µ := 1
2(δ−1 + δ1), x 6=∞

and P∞ = δ∞. The operator P is equicontinuous and is uniquely ergodic with invariant measure

δ∞, but, for all x in Z, Px-almost all trajectories visit infinitely often every point in Z.
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3. Linear random walks

In this section, we use the results of § 2 in order to prove Theorems 1.1(i) and 1.3.

3.1 Equicontinuity on the projective spaces
The main step will be to understand when the Markov–Feller operator Pµ in (1.7) is
equicontinuous (see Proposition 3.1).

Let K be a local field of characteristic zero, V = Kd, X = P(V ) and µ be a probability
measure on the linear group GL(V ). We set Γµ for the smallest closed subsemigroup of GL(V )
such that µ(Γµ) = 1.

We recall the averaging operator that we introduced in (1.7): this operator is the Markov–
Feller operator P = Pµ : C0(X)→ C0(X) whose transition probabilities are given by Px = µ ∗ δx
for all x in X.

We set (B,B, β, T ) to be the one-sided Bernoulli shift with alphabet (Γµ, µ). This means
that B is the set of sequences b = (b1, . . . , bn, . . .) with bn in GL(V ), B is its Borel σ-algebra, β
is the product probability measure β = µ⊗N

∗
and T is the shift: Tb := (b2, b3, . . .).

For every x in X, the Markov measure Px is the image of β by the map

B→ X; b 7→ (x, b1x, b2b1x, b3b2b1x, . . .).

Proposition 3.1. Let K be a local field of characteristic 0, V = Kd, X := P(V ), µ be a
probability measure on GL(V ) such that the action of Γµ on V is strongly irreducible. Then
the Markov–Feller operator Pµ on X is equicontinuous.

We will need the following lemma.
We introduce a distance on P(V ). We fix a norm ‖.‖ on V : we choose it to be Euclidean

when K is R or C, and to be ultrametric when K is non-Archimedean. We endow Λ2V with a
compatible norm also denoted ‖ · ‖. The formula

d(x, y) =
‖v ∧ w‖
‖v‖ ‖w‖ for x = Kv and y = Kw in P(V ),

defines a distance on P(V ) which induces the usual compact topology.

Lemma 3.2. Let V = Kd and µ be a probability measure on GL(V ) such that the action of Γµ
on V is strongly irreducible. For all ε > 0:

(i) there exists cε > 0 such that, for all v in V r {0}, one has

β

({
b ∈ B

∣∣∣∣ inf
n>1

‖bn · · · b1v‖
‖bn · · · b1‖ ‖v‖

> cε

})
> 1− ε; (3.1)

(ii) there exists Mε > 0 such that, for all x, y in P(V ), one has

β

({
b ∈ B

∣∣∣∣ sup
n>1

d(bn · · · b1x, bn · · · b1y) 6Mε d(x, y)

})
> 1− ε. (3.2)

We recall that the proximal dimension of a subsemigroup Γ ⊂ GL(V ) is the smallest integer
r > 1 for which there exists an endomorphism π in End(V ) of rank r such that π = limn→∞λn gn
with λn in K and gn in Γ. The semigroup Γ is proximal if and only if r = 1.

Proof of Lemma 3.2. (i) By [BL85, Theorem 3.1], we know that there exists a Borel map b 7→
Wb from B to the Grasmannian variety Grd−r(V ), where r is the proximal dimension of Γµ
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in V , such that, for β-almost all b in B, Wb is the kernel of all of the matrices π ∈ End(V ) which
are cluster points of the sequence bn · · · b1/‖bn · · · b1‖. By [BL85, Proposition 2.3], we also know
that, for all x in P(V ), one has

β({b ∈ B | x ∈ P(Wb)}) = 0.

Hence, for all ε > 0, there exists αε > 0, such that, for all x in P(V ),

β({b ∈ B | d(x,P(Wb)) > αε}) > 1− ε/2. (3.3)

By definition of Wb, for all α > 0, for β-almost all b in B, there exists cα,b > 0 such that, for
all non-zero vector v in V with d(Kv,P(Wb)) > α, one has

inf
n>1

‖bn · · · b1v‖
‖bn · · · b1‖ ‖v‖

> cα,b. (3.4)

We choose then the constant cε > 0 such that

β({b ∈ B | cαε,b > cε}) > 1− ε/2. (3.5)

Then (3.1) follows from (3.3), (3.4) and (3.5).
(ii) For pn = bn . . . b1, v in x and w in y, we have

d(pnx, pny)

d(x, y)
=
‖pnv ∧ pnw‖
‖v ∧ w‖

‖v‖
‖pnv‖

‖w‖
‖pnw‖

6
‖pn‖ ‖v‖
‖pnv‖

‖pn‖ ‖w‖
‖pnw‖

,

hence (3.2) follows from (3.1) with Mε = (cε/2)−2. 2

Proof of Proposition 3.1. Let ϕ be a continuous function on X. We want to prove that the family
of functions (Pnϕ)n>1 is equicontinuous. We can assume ‖ϕ‖∞ 6 1. We fix ε > 0. By uniform
continuity of ϕ, there exists ηε > 0 such that, for all x′, y′ in P(V ),

d(x′, y′) 6 ηε =⇒ |ϕ(x′)− ϕ(y′)| 6 ε.

Let x, y be in P(V ) such that d(x, y) 6 ηε/Mε where Mε is as in Lemma 3.2. We know from this
lemma that the set

Bε,x,y :=

{
b ∈ B

∣∣∣∣ sup
n>1

d(bn · · · b1x, bn · · · b1y) 6Mε d(x, y)

}
satisfies β(Bc

ε,x,y) 6 ε. We compute then by decomposing the following integral into two pieces,

|(Pnµϕ)(x)− (Pnµϕ)(y)| 6
∫
B
|ϕ(bn · · · b1x)− ϕ(bn · · · b1y)| dβ(b)

6 ε β(Bε,x,y) + 2β(Bc
ε,x,y) 6 3 ε.

Since this upperbound does not depend on n, this computation proves that the family (Pnϕ)n>1

is equicontinuous. 2

Example 3.3. Lemma 3.2 and Proposition 3.1 are not always true when V is a semisimple
representation of Γµ which is not strongly irreducible. For instance, when V = W ⊕K is a direct
sum of an irreducible proximal representation of Γµ and the trivial representation, then the
operator Pµ on P(V ) is not equicontinuous. Indeed, in this case there are only two Pµ-ergodic
probability measures on P(V ): ν which is supported by P(W ) and the Dirac mass δx0 where x0

is the Γµ-invariant point in P(V ). For every x 6= x0, one has νx = limn→∞ µ
n ∗ δx = ν while

νx0 = δx0 . Hence, the map x 7→ νx is not continuous and, according to Proposition 2.9(iii), the
operator Pµ is not equicontinuous.
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However, Proposition 3.1 is also true under a slightly more general assumption than strong
irreducibility. This fact will be useful in the proof of Proposition 5.1.

Corollary 3.4. Let K be a local field of characteristic zero, V = Kd, X := P(V ), µ be
a probability measure on GL(V ). We assume that V is a direct sum of strongly irreducible
representations Vi of Γµ such that

sup
g∈Γµ

‖g|Vi‖
‖g|Vj‖

<∞ for all i, j. (3.6)

Then the Markov–Feller operator Pµ is equicontinuous.

Remark 3.5. One can prove that the converse is also true: when Pµ is equicontinuous, condition
(3.6) is satisfied.

Proof of Corollary 3.4. This is a corollary of the proofs of Proposition 3.1, Lemma 3.2 which are
true with the same proof under this assumption (3.6). 2

3.2 Limit law on projective spaces
We can now prove part of the first two theorems of the introduction.

Proof of Theorem 1.1(i). By Proposition 3.1, Pµ is equicontinuous. Our statement follows then
from Proposition 2.9. 2

Proof of Theorem 1.3. Just apply Propositions 2.9(iv) and 3.1. 2

Remark 3.6. When V is not irreducible, the limit (1.1) in Theorem 1.1 does not always exist.
Indeed, an example can be constructed with V = R2 and µ a probability measure (with infinite
moments) on the group of diagonal matrices Γ := {diag(et, e−t) | t ∈ R}.

4. Compact minimal subsets in homogeneous spaces

In this section G will be the group of K-points of a reductive K-group and Γ a Zariski-dense
subsemigroup of G. Our main goal is to describe the compact Γ-minimal subsets on an algebraic
homogeneous space G/H (Proposition 4.2) and, in particular when K = R, to prove Theorem 1.7.

Studying the compact Γ-minimal subsets on algebraic homogeneous spaces is equivalent
to studying the Γ-minimal subsets on projective spaces. Indeed, by Chevalley theorem, every
algebraic homogeneous space G/H can be realized as an orbit in the projective space P(V ) of
an algebraic representation V of G. Conversely, since the G-orbits in the projective space P(V )
of an algebraic representation of G are locally closed, any compact Γ-minimal subset on P(V ) is
supported by a G-orbit, i.e. by an algebraic homogeneous space G/H.

4.1 Zariski-dense subsemigroups
In this section we recall well-known definitions and properties of reductive groups and their
Zariski-dense subsemigroups.

Let K be a local field of characteristic zero, G be the group of K-points of a connected
reductive K-group G, and g be the Lie algebra of G. Let A be a maximal K-split torus of G, Z
be the centralizer of A in G and Z → a; z 7→ zω the universal morphism of Z in a real vector
space. Since A is central and cocompact in Z, any continuous morphism A → R extends in a
unique way as a continuous morphism Z → R and, hence, defines a linear form on a. Thus, for
any algebraic character χ of A, we let χω be the unique linear form on a, such that, for any z in
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A, |χ(z)| = eχ
ω(zω). Let Σ be the set of restricted roots of A in Z. The set Σω is a root system

in the real vector space a∗. Let a+ ⊂ a be a closed Weyl chamber, Z+ := {z ∈ Z | zω ∈ a+}, Π
be the corresponding set of simple restricted roots, N be the corresponding maximal unipotent
subgroup of G, P := ZN be the corresponding minimal parabolic subgroup, P ' G/P be the
full flag variety and xΠ ∈ P be the base point whose stabilizer is P .

Let K be a ‘good’ maximal compact subgroup of G with respect to a, so that one has the
Cartan decomposition G = KZ+K and the Iwasawa decomposition G = KZN . Every element
g of G can be written as

g = kg,1z
+
g kg,2 with kg,1 ∈ K, z+

g ∈ Z+, kg,2 ∈ K. (4.1)

The element κ(g) := (z+
g )ω ∈ a+ is uniquely defined and called the Cartan projection of g.

For every g in G and x = kxΠ in P with k in K, there exists an element zgk in Z such that

gk ∈ KzgkN.
The element σ(g, x) := (zgk)

ω ∈ a is uniquely defined and this map σ : G × P → a is a cocycle
which is called the Iwasawa cocycle

For any set Θ ⊂ Π of simple restricted roots, we let AΘ be the centralizer in A of the sum
of the root spaces associated to the elements of Θc, we let ZΘ be the centralizer in G of AΘ,
we let NΘ be the smallest unipotent normal subgroup of N whose Lie algebra contains the root
spaces associated to the elements of Θ, we let PΘ = ZΘNΘ be the normalizer in G of NΘ, we let
PΘ = G/PΘ be the associated partial flag variety and xΘ ∈ PΘ be the base point whose stabilizer
is PΘ. In particular when Θ = Π, one has

AΠ = A, ZΠ = Z, NΠ = N, PΠ = P, PΠ = P.
Let Γ be a Zariski-dense semigroup in G. Let Θ = ΘΓ ⊂ Π be the set of simple restricted

roots α for which the set α(κ(Γ)) ⊂ R is unbounded. Since the action of Γ on PΘ is proximal,
there exists a unique Γ-minimal subset ΛΓ ⊂ PΘ: it is called the limit set of Γ in PΘ (see
[Ben97, 3.6]). For a suitable choice of torus A and Weyl chamber a+, we may assume that

the base point xΘ belongs to the limit set ΛΓ. (4.2)

Let AΓ be the smallest subtorus A′ of A such that

κ(Γ) stays at bounded distance from ω(A′). (4.3)

and let HΓ be the following solvable subgroup of G

HΓ := AΓNΘ. (4.4)

Let ZΓ be the group
ZΓ := ZΘ/AΓ. (4.5)

The following G-equivariant fibration

YΓ = G/HΓ −→ PΘ = G/PΘ (4.6)

is a principal ZΓ-bundle. This homogeneous space YΓ will play a crucial role in our analysis. We
will denote by yΓ the base point of YΓ.

Remark 4.1. When K = R, according to [GM89] and [AMS95], one has ΘΓ = Π, and according to
[Ben97], one has AΓ = A, and hence HΓ = AN is a maximal R-split solvable algebraic subgroup
of G, the group ZΓ is compact equal to M/(M ∩A) and the principal bundle (4.6) is

YΓ = G/AN −→ PΠ = G/P.
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4.2 Minimal subsets in homogeneous spaces
The following Proposition 4.2, describes exactly which algebraic homogeneous spaces support a
compact Γ-invariant subset.

Proposition 4.2. Let K be a local field of characteristic 0, G be the group of K-points of
a connected reductive K-group, Γ be a Zariski-dense subsemigroup of G, H be an algebraic
subgroup of G and X = G/H. Then the following two assertions are equivalent:

(i) there exists a compact Γ-invariant subset in X;

(ii) H contains a conjugate of the group HΓ := AΓNΘΓ
.

We will need the following lemma which does not involve Zariski-dense subsemigroups and
which describes the cluster points of a G-orbit in a projective space.

Lemma 4.3. Let K be a local field of characteristic zero, G be the group of K-points of a
connected reductive K-group, (V, ρ) be an algebraic representation of G and Θ ⊂ Π a subset of
restricted simple roots. Let gk be a sequence in G such that

for all α in Θ, one has αω(κ(gk)) −−−→
k→∞

∞. (4.7)

and π be a non-zero limit point in End(V ) of a sequence λkρ(gk) with λk in K.

(i) For all x in P(V ) r P(kerπ), the limit limk→∞ gkx exists and belongs to the projective
space P(imπ).

(ii) This space P(imπ) is included in the set of fixed points of a conjugate of the unipotent
group NΘ.

(iii) More precisely, let A′ ⊂ A be the smallest subtorus of A such that supk d(κ(gk), A
′) <∞.

This space P(imπ) is included in the set of fixed points of a conjugate of the solvable group
A′NΘ.

Proof of Lemma 4.3. (i) The endomorphism π induces a well-defined map from P(V )rP(kerπ)
to P(V ) and the sequence gk converges toward π uniformly on compact subsets of P(V )rP(kerπ).

(ii) and (iii) Using the Cartan decomposition G = KZ+K and using the compactness of the
quotient Z/A, we may assume that the sequence gk is in A+. We may also assume that, for
any pair of weights χ1, χ2 of A in V , the sequence χω1 (κ(gk)) − χω2 (κ(gk)) converges to a limit
`χ1,χ2 ∈ R ∪ {±∞}. Let S be the non-empty set of weights of A in V such that, for all χ1 in S,
when χ2 is also in S, the limit `χ1,χ2 is finite and, when χ2 is not in S, the limit `χ1,χ2 is +∞. The
image of π is then the direct sum imπ =

⊕
χ∈S Vχ of the weight spaces Vχ of A in V such that χ

is in S. By definition of Θ, if χ belongs to S and α ∈ Σ+ is a positive root whose decomposition
into simple roots contains elements of Θ, the character χ+ α is not a weight of V . This proves
that imπ is included in the space V NΘ of fixed points of NΘ. Moreover, by definition, all of the
characters of S coincide on A′, hence this subtorus acts by a character on imπ. 2

Proof of Proposition 4.2. We first want to prove (i) ⇒ (ii). As the limit cone `Γ of κ(Γ) in a
is convex (see [Ben97, § 4]), there exists a sequence gk in Γ such that, for any weight χ of A
that is non-trivial on AΓ, one has |χω(κ(gk))| −−−→

k→∞
∞. Now, by Chevalley’s theorem [Bor91,

Theorem 5.1], there exists an algebraic representation (V, ρ) of G and a point y0 in P(V ) such
that the stabilizer of y0 in G is equal to H. We may assume that the G-orbit Gy0 spans the
K-vector space V . After extraction, we may assume that, for some λk in K, the sequence λkρ(gk)
has a non-zero limit π in End(V ).
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By assumption there exists a point y on the G-orbit Gy0 such that the orbit closure Γy is a
compact subset of Gy0. As Gy0 spans V and Γ is Zariski dense in G, we can assume y /∈ P(kerπ).
According to Lemma 4.3, the limit hy = limk→∞ gky exists and is invariant by a conjugate of
AΓNΘ. Since this point πy is still on the G-orbit Gy0, this proves that the group AΓNΘ is
contained in a conjugate of H.

The implication (ii) ⇒ (i) follows from the following more precise Proposition 4.5. 2

Remark 4.4. The reader who is only interested in real Lie groups may avoid the next three
sections (§§ 4.3, 4.4 and 4.6) and go directly to § 4.5. Indeed, when K = R, one has Θ = Π and
AΓ = A, so that the whole space YΓ = G/AN is compact and the implication (ii)⇒ (i) is trivial.

4.3 Minimal subsets in YΓ

We will now describe the set of compact Γ-minimal subsets of the homogeneous space YΓ =G/HΓ.
The main point will be to prove that this set is non-empty.

We recall that yΓ is the base point of YΓ, that YΓ is endowed with a left-action of G and a

commuting free right-action of ZΓ, and that the set of NΘ-fixed points Y NΘ
Γ is equal to the fiber

π−1(xΘ) = ZΘyΓ = yΓZΓ of the principal ZΓ-bundle YΓ
π
→ PΘ.

Proposition 4.5. Let K be a local field of characteristic 0, G be the group of K-points of
a connected reductive K-group, Γ be a Zariski-dense subsemigroup of G and Θ = ΘΓ. Let
HΓ = AΓNΘ, YΓ := G/HΓ and y be a point of YΓ whose image π(y) in PΘ is in the limit set ΛΓ:

(i) the orbit closure Γy is compact and Γ-minimal;

(ii) the set My := {z ∈ ZΓ | yz ∈ Γy} is a compact subgroup of ZΓ;

(iii) for any y′ in Γy, one has My′ = My;

(iv) for every z in ZΓ, one has Myz = z−1Myz. When y = yΓ , the group MΓ := My
Γ

is called
the limit group of Γ;

(v) the map F 7→ {z ∈ ZΓ | yΓz ∈ F} is a bijection between the sets

{compact Γ-minimal subset in YΓ}←→MΓ\ZΓ.

In the case K = R, the limit group was introduced by Benoist [Ben05] and Proposition 4.5
was proved by Guivarc’h and Raugi [GR07].

We will need a few lemmas. First, to exhibit compact orbits on non-compact homogeneous
spaces, we will use Lemma 4.6 below, which, in a given linear representation, produces subspaces
where Γ almost acts by similarities.

Lemma 4.6. Let K be a local field of characteristic zero, V = Kd, Γ be a subsemigroup of GL(V )
and r be its proximal dimension. There exists C > 1 such that, for every γ in Γ, π in KΓ with
rank r and v, v′ 6= 0 in W = imπ, one has

‖γv′‖
‖v′‖ 6 C

‖γv‖
‖v‖ . (4.8)

Proof. First, note that, for any ε > 0, there exists α > 0 such that, for any x ∈ P (V ) and π in
KΓ with rank r, if d(x,P (kerπ)) > ε, one has ‖πw‖ > α ‖π‖ ‖w‖. Indeed, if this were not the
case, one could find a sequence of elements of KΓ with rank r but with a non-zero cluster point
of rank less than r.

Using the compactness of the Grassmann varieties, we pick ε > 0 such that, for any U in
Gn−r(V ) and U ′ in Gn−r+1(V ), there exists x in P (U ′) with d(x,P (U)) > ε, and we let α be
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as above. For γ in Γ, W = imπ in ΛrΓ and v 6= 0 in W , we can find w in V such that πw = v
and d(Kw,P (kerπ)) > ε. We get

α ‖π‖ ‖w‖ 6 ‖v‖ 6 ‖π‖ ‖w‖
α ‖γπ‖ ‖w‖ 6 ‖γv‖ 6 ‖γπ‖ ‖w‖

hence,

α
‖γπ‖
‖π‖ 6

‖γv‖
‖v‖ 6

1

α

‖γπ‖
‖π‖ .

Equation (4.8) follows immediately. 2

Now, the following lemma constructs a representation that is adapted to the setting of
Proposition 4.5.

Lemma 4.7. Let K be a local field of characteristic zero, G be the group of K-points of a
connected reductive K-group, Γ be a Zariski-dense subsemigroup of G and H be an algebraic
subgroup containing the group HΓ := AΓNΘ.

(i) Then there exists an algebraic representation V of G and a point x in P(V ) whose
stabilizer in G is equal to H and whose orbit spans V .

(ii) For such a representation V , the group AΓ acts by a character on the space V NΘ .

(iii) There exists C > 1 such that, for every γ in Γ, and v, v′ non-zero in V NΘ , one has

‖γv′‖
‖v′‖ 6 C

‖γv‖
‖v‖ . (4.9)

Proof of Lemma 4.7. (i) This is a special case of Chevalley’s theorem [Bor91, Theorem 5.1].
(ii) We write x = Kv and V =

⊕
i Vi, where each Vi is an irreducible subrepresentation with

highest weight χi. We have V NΘ =
⊕

i V
NΘ
i and, for any i, V NΘ

i is the sum of the weight spaces
Vi,χ′ of Vi associated to characters χ′ of A such that χi − χ′ is a sum of elements of Θc. In

particular, since AΓ ⊂ AΘ, AΓ acts by a character on V NΘ
i . Now, write v =

∑
i vi. Since Gv

spans V , for any i, we have vi 6= 0. As AΓ fixes Kv, AΓ acts by a character on this line, hence
all of the characters χi have the same restriction to AΓ, what should be proved.

(iii) Let us prove that the proximal dimension of ρ(Γ) is the dimension of V NΘ and that, due
to (4.2), V Nθ is the image of an element of Kρ(Γ): this and Lemma 4.6 will imply the result.

Indeed, let gk be a sequence in Γ and assume, for some λk in K, the sequence λkρ(gk)
converges towards a non-zero endomorphism π of V . For any k, let gk = hkzk`k be a Cartan
decomposition of gk with hk, `k in K and zk in Z+. After extracting a subsequence, we may
assume λkρ(zk) converges towards a non-zero endomorphism $ of V and π and $ have the same
rank. Since $ is not zero, we must have

sup
k
|log ‖ρ(zk)‖ − log |λk|| <∞.

Now, since A is cocompact in Z and acts by characters on the weight spaces of V , we have

sup
z∈Z+

| log ‖ρ(z)‖ −max
i
χωi (zω)| <∞.

As, for any k, zωk = κ(gk) and all of the characters χi have the same restriction to AΓ, we get

sup
i,k
|χωi (zωk )− log |λk|| <∞.
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Finally, for any i, we let Xi be the set of characters of A such that χi − χ′ is a sum of elements
of Θc. By the definition of Θ, and still since zωk = κ(gk), we get

sup
i,k

sup
χ′∈Xi

|(χ′)ω(zωk )− log |λk| | <∞.

Hence, we have
⊕

i,χ′∈Xi Vi,χ′ = V NΘ ⊂ im$ and $ has rank at least dimV NΘ . Conversely, since
the limit cone `Γ of κ(Γ) in a is convex (see [Ben97, § 4]), we can chose gk in such a way that,
for any α in Θ, one has αω(κ(gk))→ ∞. Since by (4.2) xΠ belongs to the inverse image of ΛΓ

in P, we can assume gkV
NΘ → V NΘ . Then, we get imπ = im$ = V NΘ and we are done. 2

Proof of Proposition 4.5. We will first prove that the orbit closure ΓyΓ in YΓ is compact. We
pick a representation V of G as in Lemma 4.7 with H = HΓ and we let d = dimV NΘ . We set

R = {(x1, . . . , xd+1) ∈ P(V )d+1 invariant by a conjugate of NΘ

and d by d linearly independent}.

We claim that the G-orbit of any element x = (x1, . . . , xd+1) ∈ R is closed in R. Indeed, we
will check that the stabilizer Gx of such an element x is conjugate to HΓ. We can assume x to
be NΘ-invariant. But then Gx acts trivially on P

(
V Nθ

)
. Since by assumption P

(
V Nθ

)
contains

a point whose stabilizer in G is exactly HΓ, and since HΓ acts trivially on P
(
V Nθ

)
, we get

Gx = HΓ. This proves our claim.
By Lemma 4.7(iii), if (x1, . . . , xd+1) is in R and x1, . . . , xd+1 belong to V NΘ , the Γ-orbit of

(x1, . . . , xd+1) in R has compact closure. Hence, the orbit closure ΓyΓ in YΓ = G/HΓ is compact.
The remaining statements follow from the following Lemma 4.8, applied to the principal

ZΓ-bundle π−1(ΛΓ)
π
→ ΛΓ. 2

Lemma 4.8. Let Γ and Z be locally compact topological groups. Let Y be a locally compact
topological space, equipped with a continuous left-action of Γ and a continuous right-action of Z
that commute to each other, such that the action of Z is proper and cocompact and the action
of Γ on X = Y/Z is minimal. Assume that there exists a point y0 in Y such that the orbit closure
Γy0 is compact. Then, for all y in Y :

(i) the orbit closure Γy is also compact and is Γ-minimal;

(ii) the set My := {z ∈ Z | yz ∈ Γy} is a compact subgroup of Z;

(iii) for any y′ in Γy, one has My′ = My;

(iv) for every z in Z, one has Myz = z−1Myz;

(v) the map F 7→ {z ∈ Z|y0z ∈ F} is a bijection between the sets

{compact Γ-minimal subset in Y }←→My0\Z.

Proof of Lemma 4.8. (i) Since F0 = Γy0 contains a Γ-minimal closed subset, we may assume
that it is Γ-minimal. Since X is Γ-minimal, one has π(F0) = X. Hence, for every y in Y , there
exists z in Z such that y belongs to F0z. Since the actions of Γ and Z commute the set F0z is
Γ-invariant and Γ-minimal and the orbit closure Γy is equal to F0z.

(ii) Since Γy is Γ-minimal, the set My can also be defined as

My = {z ∈ Z | Γy z = Γy}. (4.10)

Hence, My is a compact subgroup of Z.
Parts (iii), (iv) and (v) follow from (4.10). 2
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4.4 Limit group of a Zariski-dense semigroup
In this section we give another definition of the limit group MΓ of a Zariski-dense subgroup that
will be useful for the proof of Theorem 1.10. This definition is similar to that which has been
introduced for real Lie groups in the appendix of [Ben05, Theorem 8.2].

Let K be a local field of characteristic zero, G be the group of K-points of a connected
reductive K-group and Γ be a Zariski-dense subsemigroup of G. We keep the notation

Θ = ΘΓ, ZΘ, NΘ,PΘ, xΘ, ZΓ, YΓ, yΓ , . . .

from § 4.1. Let CΓ be the center of ZΓ. By construction this group CΓ is compact modulo AΘ/AΓ.
Let N−Θ be the A-invariant unipotent subgroup of G opposite to PΘ. According to the Bruhat

decomposition [Bor91, 21.15], the set

UΘ = N−ΘZΘNΘ (4.11)

is a Zariski open subset of G and every element g of UΘ can be written in a unique way as
a product g = n−g zgng with n−g , zg and ng in N−Θ , ZΘ and NΘ respectively. We introduce the
Bruhat projection m as the map

m : UΘ→ ZΓ; g 7→ m(g) := zgAΓ = image of zg in ZΓ. (4.12)

By the definition of Θ = ΘΓ, we can find a semisimple element γ0 of Γ whose action on PΘ

is proximal (see [Ben97, 3.6]). Hence, for a suitable choice of a torus A and Weyl chamber a+

we may assume a stronger condition than (4.2), namely that

there exists γ0 ∈ ZΘ ∩ Γ with xΘ as attractive fixed point. (4.13)

Here are the alternative definition and the main properties of the limit group MΓ.

Proposition 4.9. Let K be a local field of characteristic zero, G be the group of K-points of
a connected reductive K-group, Γ be a Zariski-dense subsemigroup of G. We choose A and a+

satisfying (4.13):

(i) the limit group MΓ is equal to the closure MΓ = m(Γ ∩ UΘ);

(ii) this group MΓ is a Zariski-dense and compact subgroup of ZΓ;

(iii) moreover, if K = R or Qp, the group CΓMΓ is open in ZΓ.

Remark 4.10. By reasoning as in the proof of [Qui05, 1.3], one could also prove that if K = R
or Qp the group MΓ is open in ZΓ.

We need the following lemma.

Lemma 4.11. Let K = R or Qp, G be the group of K-points of a connected semisimple K-group
and H be a compact Zariski-dense subgroup of G. Then H is open in G.

An example of such a group is H = SL(d,Zp) in G = SL(d,Qp).

Proof of Lemma 4.11. Since K = R or Qp, the Lie algebra h of H is a K-subspace of the Lie
algebra g of G. Since H is Zariski dense in G, h is AdG-invariant and, hence, h is an ideal of g.
Let H ′ be the kernel of the adjoint action in g/h. This group H ′ is an algebraic subgroup
of G with Lie algebra h. Since H is compact, and since H ∩H ′ is open in H, the group H ∩H ′
has finite index in H. Since H is Zariski dense in G, H ∩H ′ and also H ′ are Zariski dense in G.
Hence, one has h = g. 2
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Proof of Proposition 4.9. (i) We set M ′Γ = m(Γ ∩ UΘ). We want to prove that MΓ = M ′Γ. We
only have to check

ΓyΓ ∩ Y NΘ
Γ = yΓM

′
Γ. (4.14)

We first prove the inclusion ⊂ in (4.14). Let gk be a sequence in Γ such that the limit
y∞ = limk→∞gkyΓ exists and belongs to the fiber yΓZΓ. We want to prove that y∞ belongs
to the set yΓMΓ. We first note that, for k large, gk belongs to UΘ and we write as in (4.11)
gk = n−gkzgkngk . Since y∞ belongs to the fiber yΓZΓ, we must have limk→∞n

−
gk

= e and the
sequence m(gk) must converge to some m∞ ∈MΓ. But then, one has the equality

y∞ = lim
k→∞

zgkyΓ = lim
k→∞

yΓm(gk) = yΓm∞

and y∞ belongs to yΓM
′
Γ.

Finally, we prove the inverse inclusion ⊃ in (4.14). By construction the image m(γ0) of γ0 in
ZΓ is an elliptic element. In particular, there exists a sequence ki→∞ such that

lim
i→∞

m(γ0)ki = e. (4.15)

Because of (4.13), the Bruhat decomposition (4.11) is related to the element γ0 by the formulas

N−Θ :=

{
g ∈ G

∣∣∣∣ lim
k→∞

γk0gγ
−k
0 = e

}
, (4.16)

ZΘ :=

{
g ∈ G

∣∣∣∣ lim
i→∞

γki0 gγ
−ki
0 = lim

i→∞
γ−ki0 gγki0 = g

}
, (4.17)

NΘ :=

{
g ∈ G

∣∣∣∣ lim
k→∞

γ−k0 gγk0 = e

}
. (4.18)

In particular, for g in Γ ∩ UΘ, one has yΓm(g) = zgyΓ = limi→∞γ
ki
0 gyΓ , hence yΓM

′
Γ ⊂ ΓyΓ.

(ii) By Proposition 4.5, MΓ is a compact subgroup of ZΓ. Since Γ is Zariski dense in G and
m is a rational map, it follows from part (i), that MΓ is Zariski dense in ZΓ.

(iii) Since the quotient group ZΓ/CΓ is a finite index subgroup in the group of K-points of
a semisimple K-group and since the image of MΓ in this quotient is compact and Zariski dense,
our claim follows from Lemma 4.11. 2

This ends the proof of Proposition 4.2.

4.5 Minimal subsets and compact orbits for real groups
In this section one has K = R and we prove Theorem 1.7.

Proof of Theorem 1.7. Since the G-orbits in P(V ) are locally closed, any Γ-minimal closed subset
of P(V ) is contained in a G-orbit and Theorem 1.7 follows from Proposition 4.12 below. 2

Proposition 4.12 strengthens Proposition 4.2 when K = R.

Proposition 4.12. Let G be the group of real points of a connected reductive R-group, Γ be a
Zariski-dense subsemigroup of G, H be an algebraic subgroup of G and X = G/H:

(i) the space X contains a compact Γ-minimal subset if and only if X is compact;

(ii) in this case, there exists a unique Γ-minimal subset in X.
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Proof. (i) If X is compact, it contains a Γ-minimal subset. Conversely, if X contains a compact
Γ-minimal subset, by Proposition 4.2, we can assume AΓNΘΓ

⊂H. Since K = R, one has ΘΓ = Π,
AΓ = A and NΘ = N . As P = ZN is cocompact in G and A is cocompact in Z, AN is cocompact
in G and X is compact.

(ii) If the homogeneous space X = G/H is compact, by Proposition 4.2 applied to Γ = G, the
algebraic group H contains a conjugate of AN . The last statement then follows from Lemma 4.13
below. 2

Lemma 4.13. Let G be the group of real points of a connected reductive R-group, H = AN be a
maximal R-split solvable algebraic subgroup of G and Γ be a Zariski-dense subsemigroup of G.
Then there exists a unique Γ-minimal subset F in G/AN .

This lemma is a special case of a result of Guivarc’h and Raugi in [GR07, Theorem 2] relying
on the appendix of [Ben05].

Remark 4.14. Since A is an R-split torus, the number of connected components of A is 2dimA.
There may exist more than one Γ-minimal subset inG/AeN where Ae is the connected component
of A. For instance, when G = SL(3,R) and Γ preserves a properly convex subset Ω ⊂ P(R3),
there are exactly four Γ-minimal subsets in G/AeN . See [GR07] for more details.

Proof of Lemma 4.13. By Proposition 4.5, this amounts to proving that MΓ = ZΓ = Z/A. Now,
by definition, MΓ is a compact subgroup of ZΓ, so that, by Godement’s theorem, it is Zariski
closed. The result follows since, by Proposition 4.9, it is also Zariski dense. 2

To conclude this section, we will establish bijection (1.6). This will follow from Proposition 4.2
applied to Γ = G and the following lemma.

Lemma 4.15. Let G be the group of real points of a connected reductive R-group, P = MAN
a minimal parabolic subgroup, H an algebraic subgroup containing AN and X = G/H. Then,
the set XAN of fixed points of AN in X is an M -orbit.

This will be a consequence of the following classical lemma.

Lemma 4.16. Let K be a field, G be the group of K-points of a connected reductive K-group
and P be the group of K-points of a minimal parabolic K-subgroup. Then, for any g in G, g
belongs to the subgroup of G spanned by P and gPg−1.

Proof. We let A be the group of K-points of a maximal K-split torus contained in P , Σ be the
set of restricted roots of A in the Lie algebra of G, Σ+ be the set of positive roots associated to
the choice of P , Π be the basis of Σ+ and W = NG(A)/ZG(A) be the Weyl group of A. For w
in W , let us prove by induction on `w = ](Σ+ ∩ w(−Σ+)) that w may be written as a product
of reflections sα associated to elements α of Σ+ ∩ w(−Σ+).

Indeed, if `w = 0, there is nothing to prove. If `w > 0, we have necessarily Π ∩w(−Σ+) 6= ∅.
We pick α ∈ Π ∩ w(−Σ+). For any β ∈ Σ+ r Rα, since sα(β) = β − 2((α, β)/(α, α))α may be
written as linear combination of elements of Π in which either all coefficients are at least zero or
all coefficients are at most zero, we have sα(β) ∈ Σ+. Thus, sα permutes the elements of Σ+rRα
and, if w′ = sαw, we have

sα(Σ+ ∩ w′(−Σ+)) = Σ+ ∩ w(−Σ+) rRα.

The result follows by induction.
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Now, let g be in G and let us prove g belongs to the subgroup Q spanned by P and gPg−1. By
Bruhat decomposition, we can assume g normalizes A. Set w = gZG(A) ∈ W . By construction,
for any α in Σ+ ∩ w(−Σ+), NQ(A)/ZG(A) contains the reflection sα associated to α. Since we
have proved that w may be written as the product of such reflections, we get w ∈ NQ(A)/ZG(A),
hence g ∈ Q. 2

Proof of Lemma 4.15. Let x and x′ = gx be two points of XAN . Still by Bruhat decomposition,
we can assume g normalizes A and hence M . We get P = MAN and g−1Pg = MA(g−1Ng). As
x′ = gx is N -invariant, x is g−1Ng-invariant and Mx = Px = g−1Pgx. Since, by Lemma 4.16,
g belongs to the subgroup spanned by P and g−1Pg, we get gMx = Mx, hence x′ ∈Mx. 2

4.6 Minimal subsets on the flag variety
In this section K = R or Qp for a prime number p. We prove that the flag variety P = G/P
supports only finitely many Γ-minimal subsets. This result is easier to prove when K = R since
in this case there exists only one Γ-minimal subset on the flag variety.

Proposition 4.17 (Finiteness). Let K = R or Qp, G be the group of K-points of a reductive
K-group, Γ be a Zariski-dense subsemigroup in G and P be a minimal parabolic subgroup of G.
Then there exists only finitely many Γ-minimal subsets in the flag variety P = G/P .

Remarks 4.18. (i) When the field K is R, or more generally when the set ΘΓ is the whole set Π
of simple restricted roots, the action on the full flag variety is proximal and there exists only one
Γ-minimal subset in P which is the limit set ΛΓ of Γ in P (see § 4.1).

(ii) When the field K is C, there exists also only one Γ-minimal subset in P. Indeed the
Zariski closure H of Γ in G for the real Zariski topology is a reductive group which contains a
real form of G. Such a group H has only one compact orbit in the flag variety P and this orbit
is a partial flag variety H/Q of H. Hence, our claim follows from the first remark combined with
Proposition 4.12.

(iii) When the field K is Qp, there may exist more than one Γ-minimal subset in P. This is
the case when Γ is a small open compact subgroup of G.

(iv) When the field K is an extension of Qp, there may exist uncountably many Γ-minimal
subsets in P. This is the case, when G = SL(2,K) and Γ = SL(2,Zp) as soon as K is an extension
of Qp of degree d > 4, because, in this example, dimQp P = d > dimQp Γ = 3.

Proof of Proposition 4.17. We set Θ = ΘΓ and we use freely the notation from the previous
sections. We consider the fibrations

YΓ = G/AΓNΘ
π
→ P = G/P

$
→ PΘ = G/PΘ.

Let x be in P = G/P be such Γx is minimal. Then by uniqueness of the Γ-minimal subset in
G/PΘ, we get $(Γx) = ΛΓ and we can assume $(x) = xΘ. Note that the left action of ZΘ on
the fibers $−1(x) and (π$)−1(x) factors as an action of ZΓ. Pick y in YΓ such that π(y) = x.
By Proposition 4.5(v), we have Γy ∩ ZΓy = MΓy, hence Γx ∩ ZΓx contains MΓx. Now, by
Proposition 4.9(iii), the group MΓ has open orbits in $−1(xΘ) which is a compact set. The
result follows. 2

5. Finite stationary measures on homogeneous spaces

In this section we describe the stationary probability measures on projective spaces and prove
Theorems 1.1(ii), 1.5 and 1.10. More precisely we describe exactly which algebraic homogeneous
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spaces support a stationary probability measure. Those are the ones that support a compact
minimal subset and that were described in § 4.

We keep the notation of § 4. Let µ be a Zariski-dense probability measure on G, i.e. a
probability measure such that the semigroup Γ = Γµ is Zariski dense in G. We will shorten the
notation, writing

Θµ = ΘΓµ .

5.1 Stationary measures on homogeneous spaces
Studying µ-ergodic probability measures on projective spaces is equivalent to studying µ-ergodic
probability measures on homogeneous algebraic spaces. Indeed, by Chevalley’s theorem [Bor91,
Theorem 5.1], every algebraic homogeneous space G/H can be realized as an orbit in the
projective space P(V ) of an algebraic representation V of G. Conversely, since the G-orbits
in the projective space P(V ) of an algebraic representation of G are locally closed, any µ-ergodic
probability measure on P(V ) is supported by a G-orbit, i.e. by an algebraic homogeneous space
G/H.

Proof of Theorem 1.5. According to the previous discussion, Theorem 1.5 follows from
Proposition 5.1 below. 2

Proposition 5.1. Let K be a local field of characteristic zero, G be the group of K-points of a
connected reductive K-group, µ be a Zariski-dense probability measure on G, H be an algebraic
subgroup of G and X = G/H.

(i) The following three assertions are equivalent:

(a) there exists a µ-stationary probability measure on X;

(b) there exists a compact Γµ-invariant subset in X;

(c) H contains a conjugate of the group HΓµ = AΓµNΘµ .

(ii) Every µ-ergodic probability measure on G/H has compact support.

(iii) The map ν 7→ supp(ν) is a bijection between the sets

{µ-ergodic probability on X}←→ {Γµ-minimal compact subset of X}.

Remark 5.2. When K = R, one can improve the statement of Proposition 5.1: see Proposition 5.5.

The proof of Proposition 5.1 will occupy the next three sections.

5.2 NΘµ is in the stabilizer
The aim of this section is to prove part of the implication (i) ⇒ (iii) in Proposition 5.1(i). More
precisely, we will check that a conjugate of NΘµ is included in H or equivalently we will prove
the following

Lemma 5.3. Let K be a local field of characteristic zero, G be the group of K-points of a
connected reductive K-group, µ be a Zariski-dense probability measure on G, V = Kd be an
algebraic representation of G and ν be a µ-stationary probability measure on P(V ). Let Y be
the set of points of P(V ) which are invariant by a conjugate of NΘµ . Then we have ν(Y ) = 1.

Proof. We can assume ν to be µ-ergodic and, by induction on the dimension of V , for any proper
subspace W of V , one has ν(P (W )) < 1. Let us prove this implies, for any such W , one has
ν(P (W )) = 0. This is a variation on a classical argument due to Furstenberg.
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Indeed, let r be the smallest integer > 0 such that there exists an r-dimensional subspace W
of V with ν(P (W )) > 0. For any W 6= W ′ in Gr(V ), one has ν(P (W ) ∩ P (W ′)) = 0, hence, if
Wi is a finite or countable family of distinct elements of Gr(V ), one has

ν

(⋃
i

P (Wi)

)
=
∑
i

ν(P (Wi)).

Thus, if, for any subset E of Gr(V ), we set ν ′(E) =
∑

W∈E ν(P (W )), the function ν ′ is a
finite measure defined on all of the subsets of Gr(V ). Moreover, the measure ν ′ is atomic and
µ-stationary. Hence, it may be written as a countable sum of invariant measures carried by finite
orbits of Γµ in Gr(V ). (See, for example, [BL85, Proposition 2.3] or [BQ13].) Since ν is ergodic,
ν ′ is ergodic, hence it is supported on a unique finite Γµ-orbit W ⊂ Gr(V ). Now, as Γµ is Zariski
dense in G, W is also G-invariant, and, as G is Zariski connected, W is a singleton {W}. In
other terms, there exists a G-invariant subspace W ∈ Gr(V ) with ν(P (W )) > 0. By ergodicity
of ν, we get ν(P (W )) = 1, hence by assumption, W = V , that is r = d and we are done.

Let B = GN∗ and β = µ⊗N
∗
. According to a result of Furstenberg and Guivarc’h–Raugi, for

β-almost any b in B, for any α in Θµ, one has α(κ(b1 . . . bn))−−−→
n→∞

∞ (see [BL85, Proposition 3.2]

or [BQ13]). Thus, by Lemma 4.3(ii), for β-almost all b in B, the image P(imπ) of any non-zero
limit point π in End(V ) of a sequence λkb1 . . . bnk with λk in K is contained in Y . Now, according
to another result of Furstenberg and Guivarc’h–Raugi, for β-almost any b in B, the measure
(b1 . . . bn)∗ν converges towards a probability measure νb on P (V ) and ν =

∫
B νb dβ(b) (see [BL85,

Lemma 2.1]). If π is as above, since ν(kerπ) = 0, we get νb(imπ) = 1, hence νb(Y ) = 1. Thus,
ν(Y ) = 1 and we are done. 2

5.3 AΓµ is in the stabilizer
The aim of this section is to prove the second half of the implication (i) ⇒ (iii) in Proposition
5.1(i), namely, that a conjugate of AΓµ is contained in H.

Proof of Proposition 5.1(i). The equivalence (b) ⇔ (c) follows from Proposition 4.2. The
implication (b) ⇒ (a) is clear since any compact Γµ-invariant set supports a µ-stationary
probability measure.

It only remains to prove the implication (i) ⇒ (iii). By Lemma 5.3, we can assume that H
contains NΘµ . Since every algebraic subgroup H of G contains a cocompact algebraic subgroup
which is K-split solvable, we can assume that H is K-split solvable. Since AN is a maximal
K-split solvable subgroup of G, after conjugation, we may assume that H = A′N ′ with N ′ a
unipotent subgroup such that NΘµ ⊂ N ′ ⊂ N and A′ a subtorus of A normalizing N ′. Enlarging
H, we may assume that N ⊂ H.

Now, according to Lemma 5.4 below, the torus A′ contains AΓµ and we are done. 2

In this proof, we used the following lemma.

Lemma 5.4. Let K be a local field of characteristic zero, G be the group of K-points of a
connected reductive K-group, µ be a Zariski-dense probability measure on G. Let A be a maximal
K-split torus of G, N be a maximal unipotent subgroup normalized by A, A′ be a subtorus of
A and H = A′N . If G/H supports a µ-ergodic µ-stationary probability measure ν, then ν has
compact support and the torus A′ contains AΓµ .

Proof of Lemma 5.4. We let a′ = ω(A′) and Z ′ = ω−1(a′), so that A′ is a cocompact subgroup
of Z ′. We consider the action of G on P × a/a′ such that, for any g in G, x in P and t in a/a′,
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one has
g(x, t) = (gx, t+ σ(g, x)),

where σ : G×P → a is the Iwasawa cocycle and σ denotes its composition with the natural map
a→ a/a′.

We claim the stabilizer of (xΠ, 0) for this action is Z ′N and the orbit map G/Z ′N → P×a/a′
is proper. Indeed, if, for some g in G, one has g(xΠ, 0) = (xΠ, 0), then g = zn belongs to P = ZN
and ω(z) = σ(g, xΠ) ∈ a′. Now, if gn is a sequence in G such that gnZ

′N leaves every compact
subset of G/Z ′N , since G/P is compact, we can assume that gn belongs to ZN . Since N is
normal in Z, we can assume gn = zn belongs to Z and zn leaves every compact subset of Z. Now,
since ω is a proper morphism Z → a, the image of ω(zn) in a/a′ leaves every compact subset
and we are done.

We let ν ′ be the image of ν under the maps

G/A′N → G/Z ′N → P × a/a′,

so that ν ′ is a µ-ergodic µ-stationary probability measure on P × a/a′ and we will prove ν ′ has
compact support. Since A′ is cocompact in Z ′ and the orbit map G/Z ′N → P × a/a′ is proper,
this will imply ν has compact support too. The dynamical system

B × (P × a/a′)→ B × (P × a/a′)

(b, (x, t)) 7→ (Tb, b1(x, t)) = (Tb, (b1x, t+ σ(b1, x)))

preserves the probability measure β ⊗ ν ′ and is ergodic. Hence, by Birkhoff ergodic theorem, for
all M > 0, for ν ′-almost all (x, t) in P × a/a′, for β-almost all b in B, one has

lim
n→∞

1

n

n∑
k=1

1{‖t+σ(bk...b1,x)‖6M} = ν(P ×B(0,M)),

where B(0,M) is the ball of radius M and center zero in a/a′.
We will need the following fact which is an intrinsic reformulation of (3.1), and relates the

Iwasawa cocycle and the Cartan projection for a random trajectory (see also [BQ13]): for all
ε > 0, there exists Mε > 0, such that, for all x in P,

β

({
b ∈ B

∣∣∣∣ sup
n>1
‖σ(bn . . . b1, x)− κ(bn . . . b1)‖ 6Mε

})
> 1− ε. (5.1)

Fix ε > 0. One can find M1 > 0 such that, for ν ′-almost all (x, t) in P × a/a′,

lim inf
n→∞

1

n

n∑
k=1

β({b ∈ B | ‖t+ σ(bk . . . b1, x)‖ 6M1}) > 1− ε. (5.2)

Then, using (5.1), one can find M2 > 0 such that,

lim inf
n→∞

1

n

n∑
k=1

β({b ∈ B | ‖κ(bk . . . b1)‖ 6M2}) > 1− 2 ε (5.3)

(where κ denotes the image of the Cartan projection in a/a′). Using again (5.1), one can find
M3 > 0 such that, for all x in P,

lim inf
n→∞

1

n

n∑
k=1

β({b ∈ B | ‖σ(bk . . . b1, x)‖ 6M3}) > 1− 3 ε. (5.4)
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If supp(ν ′) were not compact, the number t in (5.2) could be chosen to be arbitrarily large. This
would contradict (5.4) when ε < 1

4 and t > M1 +M3. Hence, ν ′ has compact support and so does
ν as remarked above.

In particular, Γµ-preserves a compact subset in G/A′N , so that, by Proposition 4.2, AΓµNΘµ

fixes a point in G/A′N . Since, by Bruhat decomposition, the set of fixed points of NΘµ in
P = G/ZN is ZΘµxΠ, we get AΓµ ⊂ A′, what should be proved. 2

5.4 Equicontinuity on homogeneous spaces
In this section we finish the proof of the classification of µ-stationary probability measures on
a homogeneous space G/H by using a compactification of G/H for which the Markov–Feller
operator Pµ is equicontinuous.

Proof of Proposition 5.1(ii) and (iii). By point (i), one can assume that H contains HΓµ . By
Lemma 4.7, the homogeneous space G/H occurs as a G-orbit in a projective space P(V ) where
(ρ, V ) is a representation of G which is the direct sum of strongly irreducible representations
(ρi, Vi) with highest weight χi, such that all of the χi have the same restriction to AΓµ . By
Cartan decomposition, for any i, there exists Ci > 0 such that, for any g in G, one has

1

Ci
‖ρi(g)‖ 6 exp(χωi (κ(g))) 6 Ci ‖ρi(g)‖

(for a better choice of norm see [Qui02, 4.2]). Thus, the assumptions of Corollary 3.4 are satisfied
and hence the Markov–Feller operator Pµ on P(V ) is equicontinuous. Our statement then follows
from Proposition 2.9(i). 2

We end this section by discussing a few properties of stationary measures which are different
over the real numbers and over the non-Archimedean local fields: we conclude the proof of
Theorems 1.1(ii), 1.7 and 1.10.

5.5 Stationary measures for real groups
We strengthen here Proposition 5.1 when K = R.

Proposition 5.5. Let G be the group of real points of a connected reductive R-group, µ be a
Zariski-dense probability measure on G, H be an algebraic subgroup of G and X = G/H.

(i) There exists a µ-stationary probability measure on X if and only if X is compact.

(ii) In this case:

(a) the Markov–Feller operator Pµ on X is equicontinuous;

(b) there exists a unique µ-stationary probability measure on X.

Proof of Proposition 5.5. (i) Since K = R, one knows that Θµ = Π, AΓµ = A and NΘµ = N and
our claims follow from Proposition 5.1 and the compactness of G/AN .

(ii) When the homogeneous space X = G/H is compact, the algebraic group H contains
a conjugate of AN . By Lemma 4.7 and Corollary 3.4, the Markov–Feller operator Pµ on X is
equicontinuous. The last statement then follows from Proposition 2.9(i) and Lemma 4.13. 2

5.6 Eigenvalues of Pµ

In this section one has K = R and we end the proof of Theorem 1.1.

Proof of Theorem 1.1(ii). Our statement will follow from Proposition 2.3(ii) and the following
Lemma 5.6. 2
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Lemma 5.6. Let X = P(Rd) and µ be a probability measure on GL(Rd) such that the action
of Γµ on Rd is strongly irreducible and the Zariski closure of Γµ is semisimple. Then, the only
eigenvalue of modulus one of the averaging operator Pµ in C0(X) is one.

Proof of Lemma 5.6. Let ϕ be a non-zero continuous function on X such that Pµϕ = χϕ with
χ ∈ S1 := {z ∈ C | |z| = 1}. We want to prove that χ = 1. According to Proposition 2.7(ii), there
exists a Γµ-minimal subset of X on which ϕ is non-zero. By Theorem 1.7, this minimal subset is
supported by a compact orbit G/H of the Zariski closure G of Γµ. By Lemma 4.15, H contains
a conjugate of the maximal R-split solvable subgroup AN of G.

We construct in this way a non-zero continuous function ψ on Y = G/AN such that Pµψ =
χψ with χ ∈ S1. We want to prove that χ = 1. This space Y is then an isometric extension of
the flag variety P and this statement is due to Guivarc’h and Raugi in [GR07, Theorem 3]. Here
is a short proof of it.

We assume first that χ is a nth-root of unity. We note that Pµ∗nψ = ψ and, since G is
semisimple, that the probability measure µ∗n is still Zariski dense in G. Hence, by Propositions
2.7(iii) and 4.12, the Pµ∗n-invariant function ψ is constant and χ = 1.

We assume now that χ is not a root of unity. We introduce the probability measure

µ′ := µ⊗ δχ on G′ := G× S1.

Since G is semisimple and since χ is not a root of unity, the probability measure µ′ is Zariski
dense in the real algebraic reductive group G′. We also introduce the continuous function ψ′ on
Y ′ := G′/AN ' Y × S1 given by

ψ′(y, z) = z−1ψ(y) for all y in Y , z in S1.

This function ψ′ is Pµ′-invariant since one has

Pµ′ψ
′ (y, z) =

∫
G
ψ′(gy, χz) dµ(g)

= z−1χ−1 Pµψ(y) = z−1ψ(y) = ψ′(y, z).

Hence, by Propositions 2.7(iii) and 4.12, the Pµ′-invariant function ψ′ is constant. Hence, we
have a contradiction. 2

5.7 Stationary measures on the flag variety
In this section K = R or Qp. We prove Theorem 1.10 which says that the flag variety P = G/P
supports only finitely many µ-stationary measures. This statement is interesting only when K is
non-Archimedean since, when K = R, one knows that there exists only one µ-stationary measure
on the flag variety (see, for instance, Proposition 5.5).

Proof of Theorem 1.10. By Proposition 5.1, the set of µ-ergodic probability measures on X is
in bijection with the set of Γµ-minimal subsets of X. According to Proposition 4.17 this set is
finite. 2
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