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ABSTRACT. Determining the position and stability of the grounding line of a marine ice sheet is a major
challenge for ice-sheet models. Here, we investigate the role of lateral shear and ice-shelf buttressing in
grounding line dynamics by extending an existing boundary layer theory to laterally confined marine ice
sheets. We derive an analytic expression for the ice flux at the grounding line of confined marine ice
sheets that depends on both local bed properties and non-local ice-shelf properties. Application of
these results to a laterally confined version of the MISMIP 1a experiment shows that the boundary con-
dition at the ice-shelf front (i.e. the calving law) is a major control on the location and stability of the
grounding line in the presence of buttressing, allowing for both stable and unstable grounding line posi-
tions on downwards sloping beds. These results corroborate the findings of existing numerical studies
that the stability of confined marine ice sheets is influenced by ice-shelf properties, in contrast to uncon-
fined configurations where grounding line stability is solely determined by the local slope of the bed.
Consequently, the marine ice-sheet instability hypothesis may not apply to buttressed marine ice sheets.
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1. INTRODUCTION
Satellite observations of surface elevation and velocity changes
of the ice sheets show widespread dynamic thinning of outlet
glaciers and ice streams in Greenland and West Antarctica
(e.g. Pritchard and others, 2009; Shepherd and others, 2012).
Many of these changes are attributed to the acceleration of
the flow of grounded ice, increased ice discharge through
the grounding line and subsequent grounding line retreat
(e.g. Mouginot and others, 2014; Rignot and others, 2014).

In a steady state, the ice discharge through the grounding
line balances the mass accumulated at the surface upstream
of the grounding line. The position of the grounding line
depends on several factors, including the accumulation
rate, bed elevation and basal shear stress (Schoof, 2007a;
Tsai and others, 2015). Establishing conditions that deter-
mine whether a grounding line position is stable (i.e. under
small perturbations it returns to its original location) or
unstable (i.e. small perturbations lead to its unstoppable
advance or retreat) is a longstanding problem in glaciology
(Hughes, 1973; Mercer, 1978).

The bed slope has been identified as the main control on
the stability of grounding lines of unconfined marine ice
sheets, i.e. ice sheets which rest on the bed below sea
level. Weertman (1974) and Thomas and Bentley (1978)
were the first to hypothesise that grounding lines of marine
ice sheets on beds that deepen towards the interior of ice
sheets (‘retrograde’ beds) are unstable. While their arguments
were based on simplified representations of the ice flow
through the transition from the grounded ice sheet to the
floating ice shelf, they correctly deduced that the stability
of the grounding line is determined by the gradient of the
flux at the grounding line, which in turn is determined by
the bed slope at the grounding line.

In a stable steady state, the downstream flux gradient at
the grounding line must exceed the accumulation rate. In

this case, a downstream perturbation of the grounding line
from the steady-state position leads to a negative net mass
balance, forcing the grounding line to retreat back to its ori-
ginal position. Similarly, perturbing the grounding line in the
upstream direction leads to a positive net mass balance,
causing the grounding line to advance back to the steady
state. Conversely, if the downstream gradient of the steady-
state ice flux is less than the accumulation rate, then an
advance will lead to a positive mass balance and runaway
advance. These heuristic mass-balance arguments have
been confirmed by linear stability analyses (Wilchinsky,
2009; Schoof, 2012). Thus, the ice flux at the grounding
line allows us to determine the grounding line steady-state
position and its stability.

Early numerical studies of the grounding line behaviour in
configurations with retrograde slopes found both stable and
unstable behaviour (Hindmarsh, 1993, 1996; Dupont and
Alley, 2005; Hindmarsh, 2006). The ambiguity of these
results is partly due to the need for stable numerical algo-
rithms and high spatial resolutions in the vicinity of the
grounding line to ensure consistent results (Vieli and
Payne, 2005; Durand and others, 2009b; Gladstone and
others, 2012; Pattyn and others, 2012) and partly due to
inconsistent mathematical formulations of the grounding
line boundary conditions. By using matched asymptotic
expansions to determine the ice flux through the grounding
line of an unconfined marine ice sheet, Schoof (2007a) elimi-
nated this ambiguity. The results of his analysis confirm the
original results by Weertman (1974). Schoof (2007a) found
that the ice flux at the grounding line depends on local ice
and bed properties and on the grounding line ice thickness.
The latter is solely determined by the bed elevation as a
result of Archimedes’ principle. Therefore, both the ground-
ing line position and its stability can be determined from
the local bed elevation and its slope. Schoof (2007b) illu-
strated that this dependence on local bed properties can
lead to hysteresis behaviour of grounding lines on beds
with overdeepenings similar to those in the West Antarctic.

* Present address: Department of Earth Sciences, University of
Oxford, Oxford, UK.

Journal of Glaciology (2018), 64(245) 417–431 doi: 10.1017/jog.2018.30
© The Author(s) 2018. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/jog.2018.30 Published online by Cambridge University Press

mailto:marianne.haseloff@earth.ox.ac.uk
https://doi.org/10.1017/jog.2018.30


Many existing studies investigating grounding line dy-
namics focus on laterally unconfined marine ice sheets
that transition into freely floating ice shelves (e.g. Nowicki
and Wingham, 2008; Durand others, 2009a; Tsai and
others, 2015). In this case, the ice-shelf extent and configur-
ation do not affect the grounded ice sheet and its dynamics
can be modelled independently of the ice shelf (MacAyeal
and Barcilon, 1988). This is, however, a significant simpli-
fication, and observations suggest that ice-shelf mass loss
has the potential to trigger grounding line retreat (e.g.
Rignot and others, 2004; Scambos and others, 2004;
Shepherd and others, 2004; Shepherd and Wingham, 2007;
Jacobs and other, 2011; Pritchard and others, 2012).

Recent numerical studies of laterally confined marine ice
sheets confirm that confined ice shelves can affect grounding
line behaviour by reducing the stress at the grounding line
(e.g. MacAyeal and others, 1996; Goldberg and others,
2009; Gagliardini and others, 2010; Katz and Worster,
2010; Jamieson and others, 2012). In laterally confined ice
shelves, lateral shear stresses provide resistance to the
grounded ice flow through the so-called buttressing effect –
a reduction of the net stress at the grounding line (Paterson,
1994). Numerical studies found that in the presence of but-
tressing, stable grounding lines on upwards sloping beds
are possible (Dupont and Alley, 2005; Gudmundsson and
others, 2012; Gudmundsson, 2013). Similar to laterally
unconfined configurations, numerical simulations of con-
fined marine ice-sheet geometries are challenging.
Solutions are highly sensitive to the grid resolution at the
grounding line, and to the numerical schemes used to track
grounding line migration.

To date, analytic studies of confined marine ice sheets
have mainly focused on the ice shelf, in particular on identi-
fying the boundary layer structure of confined ice shelves
and/or on deriving solutions of the ice velocity in the down-
stream parts of the ice shelf (e.g. Hindmarsh, 2012; Pegler
and others, 2013; Wearing and others, 2015; Pegler, 2016).
This has led to the development of models that parameterise
the effect of buttressing in laterally integrated ‘flow-line’
models (Dupont and Alley, 2005; Hindmarsh, 2012;
Pegler, 2016). Here, we build on these analytic approaches
to derive an explicit expression for the backstress at the
grounding line of buttressed marine ice sheets. By combining
these new results with the boundary layer solution devel-
oped in Schoof (2007a), we then extend the results by
Schoof (2007a) to account for buttressing and derive an
expression for the ice flux at the grounding line for laterally
confined ice-stream/ice-shelf systems. We compare our
analytic results with numerical simulations of a laterally
confined version of the MISMIP 1a experiment (Pattyn and
others, 2012). Finally, we investigate the dependence of
grounding line dynamics on conditions at the calving
front and on geometric parameters such as ice-shelf width
and length.

This paper is organised as follows: Section 2 describes the
model. The derivation of steady-state solutions for the ice-
shelf component of the model is presented in Section 3.
These solutions provide the backstress at the grounding
line, and can be used to determine an expression for the
flux through the grounding line (Section 4). These analytic
results are confirmed by comparison with numerical simula-
tions in Section 5. We discuss our results in Section 6.
Readers not interested in the details of the derivation of the
ice flux expression can skip Sections 3 and 4.

2. THE MODEL

2.1 Ice flow
We consider a steady-state marine ice sheet flowing in the x-
direction in a channel of constant width W (Fig. 1). At the
grounding line, x= xg, the ice sheet starts to float, forming an
ice shelf of length Ls which terminates at the calving front
x= xc. We use a vertically and laterally integrated flow
model of an ice-stream/ice-shelf system. This model has
been widely used in the glaciological literature, e.g. Morland
(1987); MacAyeal (1989); Dupont and Alley (2005); Pattyn
and others (2006); Nick and others (2009); Hindmarsh
(2012); Pegler (2016):
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u(x) is the ice velocity, h(x) is the ice thickness, b(x) is the bed
elevation (negative below sea level and positive above sea
level), A−1/n is the temperature-dependent part of the viscosity,
here taken to be constant, ρ and ρw are the densities of ice and
water, respectively, g is the acceleration due to gravity, C and
m are basal sliding parameters, and Λ and p ∈ ð0; 1Þ are
lateral drag parameters.

A number of different formulations have been proposed to
parameterise lateral drag:

Λ ¼

2ðnþ 1Þ1=n
A1=nW1=nþ1

with p ¼ 1
n

ðHindmarsh;2012Þ;
2 1þ n=2ð Þ1=n
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with p ¼ 1
n

ðPegler; 2016Þ;
cl
W

with p ¼ 1
ðSergienko and others, 2013Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ
Hindmarsh (2012) derived his expression for the centre-line
velocity u(x) assuming that the lateral shear stress increases
linearly from the ice-shelf centre to its margin. Using

a b

Fig. 1. Geometry of the model. (a) Plan view and (b) cross-section.
We consider a marine ice sheet of constant width W flowing in
the positive x-direction. An ice shelf forms at the grounding line
xg, the calving front is located at xc= xg+ Ls, with Ls the length of
the ice shelf.
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similar assumptions Pegler (2016) obtained a qualitatively
similar expression, but for u(x) the width-integrated velocity.
Sergienko and others (2013), in contrast, use p= 1 and Λ∼
W−1 to account for the possibility of sliding along the ice-
shelf side walls. We do not choose a specific expression for
Λ and p at this point, but leave them in their general form
for now. Where we explicitly give values, we use
Hindmarsh’s formula (2)1 to calculate Λ.

The steady-state form of mass conservation is

∂ðuhÞ
∂x

¼ _a if 0 � x � xg
_m if xg < x � xc;

�
ð3Þ

where _a is the net surface and basal mass balance of the ice
sheet (positive for accumulation), and _m the net surface and
basal mass balance of the ice shelf (positive for accumula-
tion/freeze-on). For simplicity, we assume _m to be constant.
However, all derivations can be straightforwardly extended
to spatially variable _a and _m.

Boundary conditions are specified at the ice divide at x= 0
and at the calving front x= xc

∂ðhþ bÞ
∂x

¼ u ¼ 0; at x ¼ 0; ð4aÞ
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b; at x ¼ xg; ð4bÞ
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Additionally, we require the ice thickness, velocity and exten-
sional stress to be continuous across the grounding line at xg.
Note that this model is only well-posed if the calving front pos-
ition is directly or indirectly specified, for example through an
extra condition on the ice-shelf length or ice thickness at the
calving front. Since we are interested in steady-state ice
shelves, the calving front position is constant in either scenario.

In the analysis described below, we first consider the
dynamics of the ice shelf separately from the grounded ice
sheet. We then use these results together with the continuity
conditions on stress and ice thickness at the ice-stream/ice-
shelf junction – the grounding line – to determine the
steady-state behaviour of a confined ice-stream/ice-shelf
system. This approach allows us to explicitly determine the
backstress and ice flux at the grounding line, and to investi-
gate grounding line stability for different geometric config-
urations and lateral-shear conditions.

3. ICE-SHELF SOLUTIONS
In this Section, we investigate the behaviour of the ice shelf
and determine the stress at the grounding line τg, defined as

τg ¼ 2A�1=nh
∂u
∂x

����
����
1=n�1∂u

∂x
at x ¼ xg: ð5Þ

First, we non-dimensionalise the governing equations for an
ice shelf in steady state (Section 3.1). This provides us with
two non-dimensional groups that determine the ice-shelf
state: the ratio between extensional stress and driving stress
scales (η) and a non-dimensional buttressing strength (β),
the ratio between lateral shear stress and driving stress
scales. For a linearised version of the buttressing term (p=

1 and β>0, (2)3), it is possible to obtain an exact solution
for τg and hence qg. We summarise these results in Section
3.2 to illustrate our approach. In the limit of strongly but-
tressed ice shelves (β≫ η), it is possible to obtain an approxi-
mate solution for τg for general values of the buttressing term
with matched asymptotic expansions. We derive this solu-
tion in Section 3.3.

3.1 Non-dimensionalisation of the ice shelf
By non-dimensionalising (1a)–(4c), we aim to simplify these
equations as much as possible and reduce the number of
free parameters to a minimum. We choose as characteristic
length scale [x]s the ice-shelf length Ls= xc− xg and set x=
[x]sx*+ xg. This leads to non-dimensional ice-shelf domain
reaching from x*= 0 (the grounding line) to x*= 1 (the
calving front). Moreover, we consider the ice thickness hg
and the ice flux qg at the grounding line as given scales
and identify [h]s= hg and [u]s[h]s= qg with ug= qg/hg the
velocity at the grounding line. We set x= [x]sx*+ xg, u=
[u]su*, h= [h]sh*, as well as _m� ¼ _mLs=qg. This leads to
two non-dimensional parameters

η ¼ 4A�1=nhgu
1=n
g L�1=n

s

ρgð1� ρ=ρwÞh2g
; β ¼ 2

Λhgu
p
gLs

ρgð1� ρ=ρwÞh2g
ð6Þ

which describe the entire dynamics of the system. The par-
ameter η is the ratio between the scale of the extensional
stress at the grounding line and the scale of the driving stress
at the grounding line and β is the ratio between the scale of
the lateral shear stress at the grounding line and the scale of
the driving stress at the grounding line. Characteristic values
of these parameters for Petermann glacier (North-West
Greenland), with Ls= 65 km, W= 15 km, hg= 500 m, ug=
1000 m/year, and the parameters listed in table 1, are η≈
0.8 and β≈ 3.6. For Pine Island (West Antarctica), with Ls=
55 km, W= 40 km, hg= 750 m and ug= 1500 m/year, they
are η≈ β≈ 0.6. It is important to note that this non-dimensio-
nalisation does not change the dynamics of the ice-shelf
system (see, e.g. Holmes, 2009; Fowler, 2011), it merely refor-
mulates the mathematical problem in a way that is convenient
for a solution with matched asymptotic expansions.

The non-dimensional versions of the ice-shelf stress
balance (1b) and the mass balance (3) are (with the asterisks
discarded)

∂
∂x

ηh
∂u
∂x

����
����
1=n�1 ∂u
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 !
� βhjujp�1u� 2h

∂h
∂x

¼ 0; ð7aÞ

∂ðuhÞ
∂x

¼ _m: ð7bÞ

Table 1. List of parameters with their value, where applicable

A Viscosity parameter 4.6416 × 10−24 Pa–3 s–1

C Sliding parameter 7.624 × 106 Pa m–1/3 s1/3

g Gravitational constant 9.8 m s–2

Λ Lateral drag parameter ≥ 0 see Eqn (2)
m Sliding parameter 1/3
n Rheology parameter 3
p Lateral drag parameter 1/3
ρ Density of ice 900 kg m–3

ρw Density of water 1000 kg m–3
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The boundary conditions (4b) and (4c) are

h ¼ 1 and u ¼ 1 at x ¼ 0; ð8aÞ

ηh
∂u
∂x

����
����
1=n�1∂u

∂x
¼ h2 at x ¼ 1: ð8bÞ

With these boundary conditions, (7b) can be easily inte-
grated:

uh ¼ 1þ _mx: ð9Þ

One advantage of the scaling introduced here is a consider-
able simplification of the boundary conditions and dimen-
sions of the domain. All information about the ice-shelf
length, thickness and flux at the grounding line is now con-
tained in the non-dimensional parameters β and η. The ratio
β/η equals the ratio between the scales of the lateral shear
stress and the extensional stress (6), so η≪ β corresponds
to the parameter regime where we expect lateral shear stres-
ses to balance most of the driving stress. Therefore, we refer
to this parameter regime (η≪ β) as the limit of strong
buttressing.

3.2. Exact solution
To illustrate the general idea underlying the derivations in
this paper, we start by considering the linear parameterisa-
tion of the lateral shear term with p= 1 and (2)3. In this
case, it is possible to obtain an expression for the stress at
the grounding line by integrating (7a) with (9) (Pegler,
2016)

τ0 ¼ 1� β

Z1
0

hudx ¼ 1� β 1þ _m
2

� �
for p ¼ 1: ð10Þ

This expression is valid for �1 � _m � 2=β � 2. The lower
bound arises from the requirement that the ice flux is
non-negative. The upper bound on _m (or alternatively β)
is a requirement that the backstress at the grounding line
has to be non-negative as well.

In dimensional form, the stress (10) can be written as

τg ¼ τg;0 × Θ; ð11Þ

with

τg;0 ¼ 1
2
ρg 1� ρ

ρw

� �
h2g ð12Þ

the grounding line stress of unbuttressed marine ice sheets and

Θ ¼ τ0 ¼ 1� 2ΛLsðqg þ 1=2 _mLsÞ
ρgð1� ρ=ρwÞh2g

: ð13Þ

Schoof (2007b) states that if buttressing changes the unbut-
tressed stress at the grounding line by a factor of Θ< 1, i.e.
τg= τg,0 ×Θ, then this changes the flux at the grounding line
by a factor of Θn/(m+1), i.e.

qg ¼ qg;0 × Θn=ðmþ1Þ ð14Þ

where

qg;0 ¼ AðρgÞnþ1ð1� ρ=ρwÞ
4nC

 !1=ðmþ1Þ
hð3þmþnÞ=ðmþ1Þ
g ð15Þ

is the ice flux of unconfined and hence unbuttressed marine
ice sheets (Schoof, 2007a). For the linear case considered
here, this means that the ice flux at the grounding line can
be written as

qg ¼ AðρgÞnþ1ð1� ρ=ρwÞ
4nC

 !1=ðmþ1Þ
hð3þmþnÞ=ðmþ1Þ
g

× 1� 2ΛLsðqg þ 1=2 _mLsÞ
ρgð1� ρ=ρwÞh2g

 !n=ðmþ1Þ
:

ð16Þ

There are several important things we can learn from this
simple solution. First, Θ≤ 1, so buttressing always reduces
the ice flux through the grounding line. Secondly, the
amount by which the ice flux is reduced depends itself on
the ice flux through the grounding line, and finally, the ice
flux also depends on the ice-shelf geometry through the ice-
shelf length Ls and width W (hidden in Λ (2)). We discuss
these properties in detail in Section 5.

For p= 1/n< 1, it is not straightforward to integrate
h|u|1/n−1u. To derive Θ, we therefore construct an ap-
proximate solution using matched asymptotic expansions
(Hinch, 1991; Holmes, 2013) based on the assumption
that η≪ β. This corresponds to the limit of strong buttres-
sing where the extensional stresses are small compared to
the lateral shear stresses in the ice shelf (see (6)).

3.3. Asymptotic solutions
In this section, we construct solutions for the velocity field in
strongly buttressed ice shelves by using matched asymptotic
expansions (see for example chapter 5 of Hinch (1991) or
chapter 2 of Holmes (2013)). In this approach, we assume
the perturbation parameter η to be small (for a discussion of
this assumption see Section 3.4). If η≪ 1, then the solutions
u and h can be expanded in terms of η, e.g. u= u(0)+ ηu(1)+
O(η2). This allows us to neglect terms ofO(η) in the main part
of the ice shelf, termed the ‘outer’ region, and we can derive
a simplified ‘outer’ solution in this part of the ice shelf.
However, this outer solution cannot satisfy the boundary
conditions at the grounding line, where the extensional
stress becomes non-negligible. To satisfy these boundary
conditions, we introduce a boundary layer at the grounding
line in which we rescale the ice-shelf equations. Solution
of these rescaled boundary layer equations leads to the so-
called ‘inner’ solution. Finally, by matching the inner and
outer solution, we can then construct an approximate solu-
tion (called a ‘composite solution’ in the literature on
matched asymptotic expansions) valid in the entire shelf.
We can use this composite solution to determine the stress
at the grounding line τg. The remainder of this section
describes the construction of the composite velocity solution
for ice shelves that exhibit a boundary layer structure.
Readers not interested in technical details of the derivation
can proceed to Section 3.4 where the main results are
summarised.
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We start by deriving the outer solution (h(0) and u(0)),
obtained by neglecting terms of O(η) in the momentum
balance (7a) and assuming that η≪ β∼ 1:

� βhð0Þjuð0Þjp�1uð0Þ � 2hð0Þ
∂hð0Þ

∂x
¼ 0 ð17aÞ

with the boundary conditions

hð0Þ ¼ 1 and uð0Þ ¼ 1 at x ¼ 0; ð17bÞ

hð0Þ ¼ 0 at x ¼ 1: ð17cÞ

Keeping in mind that uh ¼ 1þ _mx, (17a) is really just a first-
order equation in either u(0) or h(0), and we proceed by
solving for the velocity u(0). Note that we have two boundary
conditions for u(0) (h(0)= 0 is the same as requiring u(0)→∞),
but (17a) is only a first-order differential equation. Therefore,
we can only expect to satisfy one of the boundary conditions.

The velocity and flux should be non-negative
(uð0Þ � 0; 1þ _mx � 0Þ, so that (17a) can be integrated to
obtain (Pegler, 2016)

uð0ÞðxÞ¼ 1þ _mx

hpþ1
1;buttþβ=ð2 _mÞ ð1þ _mÞpþ1�ð1þ _mxÞpþ1

h i� �1=ðpþ1Þ ;

ð18Þ

which satisfies the calving front boundary condition (17c) if
h1,butt= 0. This leads to an infinite leading order velocity at
the calving front at x= 1. However, this excludes the possibility
of later investigating the effect of ice-thickness-based calving
laws (e.g. Nick and others, 2009). One way to include a non-
zero ice thickness at the calving front is to follow Pegler
(2016), who determines h1,butt by applying the boundary condi-
tion (8b) instead of (17c). This leads to (Pegler, 2016)

h1;butt¼ ηn
β

2
ð1þ _mÞpþ1

� 	1=ð2þnþpÞ
: ð19Þ

As discussed in Pegler (2016), this matches the ice thickness
at the calving front obtained by numerical solution of (7a)
and (8b) to an error of< 2%, and leads to a better match
between numerically calculated velocity fields in the
main part of the ice shelf and (18). We show in the
Supplementary material (Section S1) that this approach is
consistent with the introduction of a boundary layer at the
calving front.

The outer solution (18) does not satisfy the boundary con-
ditions (8a) at x= 0, which requires us to introduce a bound-
ary layer by rescaling of the downstream coordinate with x=
ηnX (e.g. Holmes, 2013). To distinguish the ice thickness and
velocity in the boundary layer from the outer variables we
denote these with H and U, respectively. With these defini-
tions, we obtain from (7) and (8) the boundary layer equations
(neglecting terms of O(ηn) as we again assume that a series
expansion of u and h in terms of η is possible):

∂
∂X

H
∂U
∂X

����
����
1=n�1 ∂U

∂X

 !
� 2H

∂H
∂X

¼ 0; ð20aÞ

UH ¼ 1 ð20bÞ

with the boundary conditions

U ¼ H ¼ 1 at X ¼ 0; ð20cÞ

and the matching conditions

U∼uð0Þ

H∼hð0Þ



as X ! ∞; x ! 0: ð20dÞ

We can integrate (20a) to obtain

τ0 �H
∂U
∂X

����
����
1=n�1∂U

∂X
¼ 1�H2; ð21Þ

where τ0 is the non-dimensional version of the extensional
stress at the grounding line τg:

τ0 ¼ H
∂U
∂X

����
����
1=n�1∂U

∂X
¼ ηh

∂u
∂x

����
����
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at X ¼ x ¼ 0; ð22Þ

which we aim to determine here. Using H= 1/U (20b), we
can rewrite (21) as

∂U
∂X

����
����
1=n�1∂U

∂X
¼ 1

U
�Uð1� τ0Þ: ð23Þ

This leads to the integral equation

ZX
0

dX0 ¼
ZU
1

VndV
½1� ð1� τ0ÞV2�n ; ð24Þ

which determines the boundary layer velocity U implicitly.
For n> 0, the solution of (24) can be written as

X ¼ 1
ðnþ 1Þ U1þn

2F1 n;
nþ 1
2

;
nþ 3
2

; ð1� τ0ÞU2
� �� 	U

1
;

ð25Þ

where 2 F1(a, b;c;x) is the hypergeometric function, and
the subscript and superscript denote the lower and upper
integration limits. There is no closed form expression
for the inverse of the hypergeometric function for an arbi-
trary value of n, which would allow us to explicitly give
U= f−1(X). However, for the typically assumed value of
n= 3, we can write U= f−1(X) as (Abramowitz and
Stegun, 1964)

U ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� τ0

p 1þ Y
Y

� �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ Y

r !" #1=2
ð26Þ

with Y ¼ 4ð1� τ0Þ2X þ ð1� 2τ0Þ=τ20.
The extensional stress at the grounding line (τ0) must

be determined by matching the solutions for the boundary
layer velocity U and the outer solution u(0) (18), i.e. from the
condition U∼ u(0) for X→∞, x→ 0, (20d)1 (Holmes, 2013).
For n= 3, we can use (26) to determine U∼ (1− τ0)

−1/2 for
X→∞. For an arbitrary n, we can exploit the fact that the
right-hand side of (24) has a pole at U= (1− τ0)

−1/2, which
determines the limiting behaviour for X→∞ (a vertical
pole in the inverse function turns into a horizontal pole in
the forward function). Thus,
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U ! ð1� τ0Þ�1=2 as X ! ∞;

which has to match the asymptotic behaviour of the outer
solution u(0) (18) as x→ 0:

uð0Þ ! hpþ1
1;butt þ

β

2 _m
½ð1þ _mÞpþ1 � 1�

� ��1=ðpþ1Þ
as x ! 0:

Hence, the matching condition (20d)1 becomes

ð1� τ0Þ�1=2∼ hpþ1
1;butt þ

β

2 _m
½ð1þ _mÞpþ1 � 1�

� ��1=ðpþ1Þ

as X ! ∞; x ! 0;

ð27Þ

which provides us with an expression for the stress at the
grounding line τ0

τ0 ¼ 1� hpþ1
1;butt þ

β

2 _m
½ð1þ _mÞ pþ1 � 1�

� �2=ðpþ1Þ
ð28Þ

with h1,butt given by (19). At this point, we have all the informa-
tion we need to determine the ice flux at the grounding line.

Finally, it is possible to obtain the composite velocity field
through the superposition of the inner solutionU (25) and the
outer solution u(0) (18) minus the overlap term (1− τ0)

−1/2

shared by both solutions (e.g. Holmes, 2013):

u ¼ uð0Þ þU� ð1� τ0Þ�1=2: ð29Þ

For n= 3, this yields

u ¼ ð1þ _mxÞ
hpþ1
1;butt þ β=ð2 _mÞ ð1þ _mÞpþ1 � ð1þ _mxÞ pþ1

h i� �1=ðpþ1Þ

þ 1
1� τ0

1þ Y
Y

� �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ Y

r !" #1=2

� 1

ð1� τ0Þ1=2
ð30Þ

with Y ¼ 4η�3ð1� τ0Þ2xþ ð1� 2τ0Þ=τ20: In Fig. 2, we
compare the composite solution (30) with numerical solu-
tions obtained by solving the unsimplified non-dimensional
ice-shelf equations (7a) and (8b) for either different values
of η and β fixed, or η fixed and β varying. In both cases, the
match between the composite and numerical solutions
improves as the ratio β/η increases. This is not surprising
since β/η≫ 1 is the limit for which the solutions derived
here are valid. As η is reduced, the boundary layer at the
grounding line becomes more pronounced (see inset a1).
Conversely, increasing β leads to steeper velocity gradients
towards the calving front (see panel (b)).

3.4 Analysis of the ice-shelf solution
In the last section, we have exploited the boundary layer
structure of strongly buttressed ice shelves to derive solutions
for the velocity (30) and the stress at the grounding line (28)
for a non-linear lateral shear stress term (p< 1 in (2)). The
flow in the main part of the ice shelf can be described by a
leading order balance between the lateral shear stress and
driving stress (Hindmarsh, 2012), and its solution (18) has
previously been derived in Pegler (2016). The main differ-
ence between our ice-shelf solution and the solutions consid-
ered in Pegler (2016) and Hindmarsh (2012) is that we
explicitly introduce a boundary layer at the grounding line
which ensures that the boundary conditions at the grounding
line are satisfied. The existence of this boundary layer is
noted in Pegler (2016), who also discusses its properties.
Solution of the leading order equations in this boundary
layer allows us to determine the backstress at the grounding
line τ0 by using matched asymptotic expansions (Hinch,
1991; Holmes, 2013), which provides us with an avenue to
determine the ice flux at the grounding line through (14).

The boundary layer treatment of the ice-shelf equations at
the grounding line and the derivation of the backstress τ0
relies on the assumption that η is small and that terms of O
(η) can be neglected in the main part of the ice shelf. The
size of η is determined by the ice-shelf properties (see (6))
and it is not guaranteed that η≪ 1. We therefore validate
our equation for the grounding line stress (28) by comparing
it with numerical solutions of the unsimplified non-
dimensional ice-shelf equations (7a) to (8b) obtained with

a b

Fig. 2. Velocity profiles in the ice shelf. Panel (a) shows a comparison of numerical solutions and composite solutions u (30) in the ice shelf for
different η as indicated, and n ¼ 1=p ¼ 3; _m ¼ 0; β ¼ 1. The grounding line is located at x= 0, the calving front is located at x= 1. Note that
the boundary layer at the grounding line becomes more pronounced as η decreases and that the match between numerical and composite
solution improves as η decreases (see inset panel a1). Panel (b) shows a comparison of numerical solutions and composite solutions in the ice
shelf for different β as indicated, and n ¼ 1=p ¼ 3; _m ¼ 0; η ¼ 10�2. Numerical solutions are obtained by direct solution of the unsimplified
equations (7a) and (8b) with Matlab ODE solvers and a shooting method.
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Matlab ODE solvers together with a shooting method to
determine the correct grounding line stress τ0. Figure 3
shows numerical and asymptotic solutions of the grounding
line stress τ0 (28) for different values of the non-dimensional
viscosity η (panel a) and accumulation rate _m (panel (b)).
There is good agreement between the asymptotic and the
numerical solutions for η≤ 10−2. Note that there is a viscos-
ity-dependence of τ0 which decreases for η→ 0, i.e. τ0 con-
verges to a viscosity-independent value as η→ 0, the limit
where lateral shear stresses balance most of the driving
stress. Note also that the asymptotic solutions appear to
remain valid all the way up to β= 0.

The asymptotic solution captures this viscosity depend-
ence via the expression for the ice thickness at the calving
front h1,butt (19). This is qualitatively different from the line-
arised case for p= 1, where the exact formula (10) predicts
that the stress τ0 is independent of the viscosity and the ice
thickness at the calving front. However, this also implies that
the boundary layer solution (28) agrees with the exact solution
for p= 1 (10) in the limit of η→ 0 (where h1,butt→ 0) only.

We have explicitly included the term h1,butt (19) in our
expression of the grounding line stress (28) in order to later
test calving laws that are based on the ice thickness at the
calving front. However, we expect h1,butt (19) to provide a
valid approximation for the ice thickness at the calving
front for η≪ β∼ 1 only, as this is the limit in which the
outer solution was derived. This is confirmed by a compari-
son of (19) with numerical solutions of (7) and (8) for constant
η but different values of β and either _m ¼ 0 or _m ¼ 1 in Fig. 4
(for _m ¼ �1 the ice thickness at the calving front is zero:
hc= hc,butt= 0). Figure 4 illustrates that h1,butt and the numer-
ical solution of the ice thickness at the calving front only
agree for β=η≈>1. For β=η≈<1;h1;butt decreases with decreasing
β, while the numerical solution converges towards the value
for the calving front ice thickness of unbuttressed ice shelves
(Van der Veen, 1983, referenced as (32) below).

This deviation does not affect the prediction of the backs-
tress at the grounding line and the flux at the grounding line
unless the ice thickness at the grounding line is explicitly set
by a calving law. In this case, we approximate the ice thick-
ness at the calving front with

h2þnþp
1 ¼ h2þnþp

1;butt erf
β

η

� �
þ h2þnþp

1;unbutterfc
β

η

� �
; ð31Þ

where h1,butt is given by (19) and h1,unbutt is given by (Van der
Veen, 1983)

h1;unbutt ¼ ð1þ _mÞ
ð1þ 1=ðηn _mÞ½ð1þ _mÞnþ1 � 1�Þ1=ðnþ1Þ : ð32Þ

Note that (31) is an approximation which is chosen purely
heuristically because of its simplicity and because it correctly
reproduces the asymptotic behaviour for β/η≫ 1 and β/η≪ 1.
Therefore, we cannot expect to correctly match the transition
between these two asymptotic limits, which is apparent for
the solutions plotted in Fig. 4. However, as we will see in
Section 5, h1 is a useful tool for interpreting grounding line
positions. In the Supplementary material, we compare (31)
with an exact solution for the special case of n= p= 1 and
_m ¼ 0, which is derived in Pegler (2016).

Fig. 3. Comparison of asymptotic solutions and numerical solutions of the stress at the grounding line. Markers are numerical solutions
obtained by solving the unsimplified non-dimensional problem (7a) to (8b) with Matlab ODE solvers and a shooting method, lines are the
asymptotic solution (28). (a) Non-dimensional backstress τ0 vs the buttressing parameter β for _m ¼ 0 and different values of η, as indicated
in the legend. Note that ½ð1þ _mÞpþ1 � 1�= _m ¼ pþ 1 at _m ¼ 0. (b) Non-dimensional backstress τ0 vs the buttressing parameter β, for
different accumulation rates and η= 10−2. p= 1/n= 1/3 for all calculations.

Fig. 4. Comparison of the different solutions for the non-
dimensional ice thickness at the calving front, plotted against the
buttressing strength β/η for non-dimensional accumulation _m ¼ 0
and _m ¼ 1. h1,butt is the asymptotic solution for buttressed ice
shelves (19), h1,unbutt is the exact solution for unconfined ice
shelves (32), h1 is the approximate solution (31), and numerical
results are obtained by solving the unsimplified non-dimensional
ice shelf Eqns (7a) to (8b). η= 10−2, n= 1/p= 3.
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Requiring the stress at the grounding line (28) to be posi-
tive constraints β:

η≪β � 1� hpþ1
1

� � 2 _m

ð1þ _mÞpþ1 � 1
: ð33Þ

Two other conditions – a positive ice-shelf length, and a
positive ice thickness at the calving front, which should
also be less than the ice thickness at the grounding line
(0≤ h1< 1) – provide constraints on the maximum net
mass loss over the ice shelf � _mLs. This mass loss must be
equal or less than the ice flux at the grounding line:

� _mLs � qg if _m< 0 and Ls > 0:

The dimensional forms of the derived expressions are the fol-
lowing: the extensional stress τg is

τg ¼ τg;0 × Θgeneral ð34aÞ

with τg,0 given by (12) and

Θgeneral ¼ 1� hpþ1
c;butt

hpþ1
g

þ Λ
ðqg þ _mLsÞpþ1 � qpþ1

g

ρgð1� ρ=ρwÞ _mhpþ1
g

" #2=ðpþ1Þ0
@

1
A

ð34bÞ

(note that for _m ¼ 0 we have ½ðqg þ _mLsÞpþ1 � qpþ1
g �=

_m ¼ ðpþ 1Þqp
gLs). In contrast to the unbuttressed case,

where the grounding line stress τg,0 (12) depends only on
the ice thickness at the grounding line hg and local ice and
bed properties, the buttressed stress also depends on the
length of the ice shelf Ls, the ice flux at the grounding line
qg, the accumulation/melt rate on the shelf _m and the
width of the ice shelf W through Λ (Eqn (2)). Additionally,
the grounding line stress depends on hc,butt, given by (19)

hc;butt ¼ Λ
ð4A�1=nÞn

ðð1� ρ=ρwÞρgÞnþ1 ðqg þ _mLsÞpþ1

" #1=ð2þnþpÞ
:

ð35Þ

In the limit of strong buttressing, hc,butt corresponds to the ice
thickness at the calving front hc (Pegler, 2016), which we
approximate by (31)

hc ¼ h2þnþp
c;butt erf

1
2
Λup�1=n

g L1þ1=n
s A1=n

� ��

þ h2þnþp
c;unbutterfc

1
2
Λup�1=n

g L1þ1=n
s A1=n

� �	1=ð2þnþpÞ
;

ð36Þ

with hc,unbutt the calving front ice thickness of an unconfined
ice shelf from (32):

hc;unbutt ¼ qg þ _mLs
� 

×
�

qg

hg

� �nþ1

þA
ρg
4

1� ρ

ρw

� �� �n

×
1
_m

ðqg þ _mLsÞnþ1 � qnþ1
g

� �	�1=ðnþ1Þ
:

ð37Þ
Note that the ice thickness at the calving front hc,butt (35) dir-
ectly depends on the flux at the grounding line. If the net
accumulation over the shelf is zero ð _m ¼ 0Þ the calving

front ice thickness and the flux at the grounding line

appear to be explicitly linked: hc;butt∼qð1þpÞ=ð2þnþpÞ
g . We

will discuss the implications of this in Section 5.
As outlined in Section 3.2, we can now use (34b) to deter-

mine the ice flux at the grounding line from (14), i.e.

qg ¼ qq;0 × Θn=ðmþ1Þ
general ð38Þ

without having to solve the grounding line problem consid-
ered in (Schoof, 2007a). This accomplishes the goal of this
section, even though the resulting expression for qg is rela-
tively complicated (we explicitly write it out in (44)).

4. THE ICE FLUX AT THE GROUNDING LINE IN THE
LIMIT OF STRONG BUTTRESSING
In this section, we consider steady-state solutions for the
grounded ice-stream part of the marine-based ice-stream/
ice-shelf system in order to derive a simplified ice-flux
expression. This is possible in the limit of strong buttressing.
In this limit, it is not necessary to solve the boundary layer
problem considered in Schoof (2007a) because the leading
order problem is well posed.

The derived expression for the backstress at the grounding
line (34) allows us to focus on the momentum- and mass
balance of the laterally confined ice stream using the stress
as a boundary condition at the grounding line. Following
Schoof (2007a), we non-dimensionalise the momentum-
and mass-balance equations and corresponding boundary
conditions (1a), (3), (4a) and (4b), and (34) and (35) with
the scales [x]= L0, C[u]m= ρg[h]2/[x], and [u][h]/[x]= [a],
and put x ¼ ½x�~x;h ¼ ½h�~h;b ¼ ½h�~b; u ¼ ½u�~u. This leads to
two non-dimensional groups

ε ¼ A�1=n½u�1=n
2ρg½h�½x�1=n

; and λ ¼ Λ
½u�p½x�
ρg½h� : ð39Þ

Additionally, we introduce δ= 1− ρ/ρw. (34) was derived
under the assumption η≪ β, where η and β are the two
non-dimensional groups defined in (6). ɛ and Λ are directly
related to η and β through:

ε ¼ η
δ~hg~L

1=n
s

8ð~ugÞ1=n
; λ ¼ β

δ

2
δ~hg
~upg~Ls

: ð40Þ

The condition η< β therefore corresponds to

ε≪
~L
1þ1=n
s

~u1=n�p
g

λ ð41Þ

implying either a very narrow (λ∼Λ∼W−(1/n+1) large) or a
very long ice shelf (Ls large), or a fast sliding glacier with
thin ice at the grounding line (ɛ→ 0).

With the non-dimensional groups (39) and assuming ɛ≪
λ∼ 1, we obtain a simplified ice-sheet model from (1a),
(3)–(4b) and (34) by neglecting terms of O(ɛ)

�j~ujm�1~u� λ~hj~ujp�1~u� ~h
∂ð~hþ ~bÞ

∂~x
¼ 0

∂ð~u~hÞ
∂~x

¼ _a

~h � �~bð~xÞ
1� δ

9>>>>>>>=
>>>>>>>;
~x ∈ ð0;~xgÞ:

ð42aÞ
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The boundary conditions at the ice divide are

∂ð~hþ ~bÞ
∂~x

¼0; and ~u¼0 at~x¼0; ð42bÞ

and the boundary conditions at the grounding line are

~h¼�~bð~xÞ
1�δ ;

~h
pþ1¼ λ

δ

ð~qþ _m~LsÞpþ1� ~qpþ1

_m

9>>=
>>; at~x¼~xg; ð42cÞ

where we neglected terms of O(ɛn(p+1)/(2+n+p)), which
includes the scaled version of hc,butt (35) in the stress condi-
tion at the grounding line (34). We also defined ~q¼ ~u~h.

In the limit ɛ≪ λ∼ 1 we are interested in here, equation
(42c) shows that we can now obtain a relationship
between the ice thickness at the grounding line ~hð~xgÞ and
the ice flux ~qð~xgÞ at the grounding line without recourse to
a boundary layer problem. Physically, this is the limit
where the leading order stress balance at the grounding
line is between the driving stress and the lateral shear
stress. By solving (42c) for ~qðxgÞ, we have now obtained an
expression for the ice flux at the grounding line valid in the
limit of strong buttressing.

Note that for λ= 0, (42a)–(42c) are the same equations as
those considered in Schoof (2007a). Condition (42c)2 then
becomes ~h ! 0, and we have two conditions for the ice
thickness at the grounding line, while the ice flux at the
grounding line is undetermined. Therefore, we are missing
a flux boundary condition to solve (42a)–(42c). Schoof
(2007a) determines this flux condition by introducing a
boundary layer at the grounding line, which in our case
yields (38) with Θgeneral given by (34b).

5. GROUNDING LINE DYNAMICS IN THE
PRESENCE OF BUTTRESSING

5.1 Simplified marine ice-sheet model
Using the results of the previous sections, a simplified model
for steady-state marine ice sheets can be considered in lieu of
the full problem (1)–(4c). The momentum balance (1a) and
mass balance (3) of the grounded ice sheet are simplified
per (42a) (see also Schoof, 2007a)

�Cjujm�1u�Λhjujp�1u�ρgh
∂ðhþbÞ

∂x
¼0

∂ðuhÞ
∂x

¼ _a

h��ρw
ρ
b

9>>>>>=
>>>>>;
x∈ ð0;xgÞ

ð43aÞ

with the boundary conditions at ice divide and grounding
line from (42b)and (42c):

∂ðhþbÞ
∂x

¼q¼0 at x¼0; ð43bÞ

h¼hg¼�ρw
ρ
b and q¼qg at x¼ xg: ð43cÞ

The effect of an ice shelf is captured by the implicit expres-
sion for the ice flux at the grounding line qg (38) with (34b):

qg¼ AðρgÞnþ1 1�ρ=ρwð Þn
4nC

 !1=ðmþ1Þ
hð3þmþnÞ=ðmþ1Þ
g

× 1� hpþ1
c;butt

hpþ1
g

þΛ
ðqgþ _mLsÞpþ1�qpþ1

g

ρg 1�ρ=ρwð Þ _mhpþ1
g

" #2=ðpþ1Þ0
@

1
A

n=ðmþ1Þ

ð44Þ
qg now depends not only on the ice thickness at the ground-
ing line, but also on the length of the ice shelf Ls, the widthW
of the ice shelf through Λ in (2), and hc,butt (35).

For strongly buttressed ice shelves, we can replace (44)
with the dimensional version of (42c):

ðqg þ _mLsÞ pþ1 � qpþ1
g

_m
¼ ρgð1� ρ=ρwÞ

Λ
hpþ1
g : ð45Þ

There are two noteworthy special cases of (45): if there is zero
net accumulation, we get

qg ¼ ρgð1� ρ=ρwÞ
ðpþ 1ÞΛLs

� �1=p

h1þ1=p
g ; if _m ¼ 0 ð46aÞ

as ½ðqg þ _mLsÞpþ1 � qpþ1
g �= _m ¼ ðpþ 1Þqp

gLs at _m ¼ 0.
Alternatively, if all the mass of the ice shelf is lost through
melting, that is in the absence of calving, we have Ls ¼
qg=ð� _mÞ and obtain

qg ¼ ρg 1� ρ

ρw

� �� _m
Λ

� 	1=ðpþ1Þ
hg; if

_m< 0;

Ls ¼
qg

ð� _mÞ :

8<
: ð46bÞ

We write (46a) and (46b) out here as these explicit expres-
sions for the ice flux are easier to understand than their
more complicated implicit counterparts. In particular, we
can see from (46a) and (46b) that in the limit of strong buttres-
sing, the ice flux at the grounding line is again a function of
the ice thickness at the grounding line, and that the exponent
on the ice thickness strongly depends on the mechanism
through which the ice shelf loses its mass (i.e. qg∝ h1+1/p

for calving only, qg∝ hg for melting only). In contrast to the
unbuttressed case (compare (15)), qg is independent of
the properties of the ice sheet, which are represented by
the sliding parameters C and m in the unbuttressed flux
(15). Instead, the strongly buttressed flux (46) depends only
on the ice-shelf width W (which is somewhat hidden in the
expression of Λ), the ice-shelf length Ls and/or net accumula-
tion term _m. This is also true for the more general case of
mixed ice-shelf calving and melting, see (45). We therefore
expect the dynamics of strongly buttressed marine ice
sheets to be governed by the ice-shelf properties, as also sug-
gested from the analysis of laboratory studies in Pegler and
others (2013) and Kowal and others (2016).

In the next section, we use (43)–(45) to confirm these
initial observations and to investigate how buttressing
affects the position of the grounding line. As a test case, we
choose a laterally confined version of the MISMIP experi-
ment 1a (Pattyn and others, 2012) with the ice-stream/ice-
shelf system flowing in a channel of constant width W and
the bed elevation given by

bðxÞ ¼ 720� 778:5 ×
x

750 km

� �
m:
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In the case of a constant accumulation rate _a, we can solve
(43a)2 to obtain

qg ¼ _axg: ð47Þ

Together with the flux expressions (44) or (45), this allows us
to directly determine the grounding line position xg.
Additionally, we assume that the rate of mass gain of the
ice shelf ð _mÞ equals the rate of mass gain of the ice sheet
ð _m ¼ _aÞ. All other parameters are listed in table 1.

With the flux expressions (44) and (45), we now have
three different methods to determine steady-state grounding
line positions of buttressed marine ice sheets:

(i) semi-analytically by use of (44) in (47),
(ii) semi-analytically by use of (45) in (47), and
(iii) numerically by solution of the unsimplified system

(1)–(4c).

For the numerical solution, we use the finite element solver
Comsol at a resolution that is sufficiently high such that
further refinement of the numerical grid does not change
the numerical results. To obtain the semi-analytical solutions
with (44) or (45), we have to solve the algebraic Eqn (47).
While this is significantly faster than solving the system of dif-
ferential Eqns (1)–(4c), a numerical algorithm is still neces-
sary to solve these non-linear equations. We use a Newton
method to determine xg up to a relative accuracy of 10−8.

5.2 The effect of calving on the grounding line
position
In the unbuttressed MISMIP experiments, it is not necessary
to prescribe a calving law as the ice shelf can be excluded
from the momentum balance in accordance with (15). In
the buttressed case, however, computing the grounding
line flux qg from (44) or (45) requires a condition on either
Ls (length of the ice shelf), xc (position of the calving front),
or hc (ice thickness at the calving front), and prescription of
the lateral drag term Λ. Here, we determine Λ from the

ice-shelf width W with the formula provided by Hindmarsh
(2012), Eqn (3)1.

Figures 5–7 illustrate how different calving laws affect
steady-state grounding line position as the ice-shelf width is
reduced and buttressing increases. Figure 5 shows steady-
state grounding line positions for different ice-shelf widths
with a prescribed ice-shelf length Ls= 750 km. Figure 6
shows results with a prescribed calving front xc= 3000 km,
i.e. we use Ls= xc− xg in (44) and (45). Figure 7 shows
results with a prescribed calving front thickness hc= 250 m.

For an infinitely wide marine ice sheet (W→∞) the solu-
tions of the asymptotic model (44) with a fixed ice-shelf
length (Fig. 5a) and with a fixed calving front position
(Fig. 6a) converge to the solution for unbuttressed marine ice
sheets by Schoof (2007a). Decreasing the width leads to
grounding line advance, which continues indefinitely for the
case of a fixed ice-shelf length. Conversely, the fixed calving
front position leads to the grounding line asymptotically
approaching the calving front position as the ice-shelf width
decreases. Comparison of the full asymptotic solutions (44)
with numerical solutions of the unsimplified model (1a)–(4c)
obtained with the finite-element solver Comsol shows< 2%
difference of grounding line positions at any computed point
(yellow dashed lines in Figs 5a, 6a, respectively).

For these two cases (xc= const. and Ls= const., Figs 5, 6,
respectively), the grounding line positions predicted by the
simplified asymptotic model (45) qualitatively follow the
results of the full asymptotic model, but deviate significantly
towards the unbuttressed limit (for W→∞). Results with the
simplified flux converge to the full asymptotic solution and
the numerical solution for W≈<50 km, which is consistent
with the limit of strong buttressing, the limit for which we
derived the simplified flux expression. As (45) only
depends on ice-shelf properties, these results confirm that
in the limit of strong buttressing, the position of the grounding
line is determined by the ice-shelf dynamics only.

Use of a calving model that prescribes calving when the
ice thickness at the calving front is below a certain threshold
requires us to solve (47) with (44) and (36), as we apply the

Fig. 5. Comparison of asymptotic and numerical results for MISMIP experiment 1a (Pattyn and others, 2012) with additional buttressing. Panel
(a) shows ice-shelf widthW vs grounding line position xg for a fixed ice-shelf length of Ls= 750 km, and panels (b) and (d) show corresponding
ice-sheet profiles. Numerical results are obtained by solving the unsimplified model (1)–(4c) numerically with Comsol. The asymptotic
grounding line positions are obtained by solving _axg ¼ qg (47) with qg given by (44) and (45), respectively. The asymptotic profiles are
calculated by additionally integrating (43a)–(43c). Note that the ice shelf is only plotted for the numerical solutions, as it can be excluded
from the asymptotics.
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boundary condition by prescribing hc. With (2)1, (36) can be
written as

hc ¼ h2þnþp
c;unbutterfc ðnþ 1Þ1=nL1þ1=n

s =W1þ1=n
� �h

þ h2þnþp
c;butt erf ðnþ 1Þ1=nL1þ1=n

s =W1þ1=n
� �i1=ð2þnþpÞ

;

ð48Þ

which converges to hc,unbutt (37) forW→∞ and to hc,butt (35)
for W≪ Ls.

Equation (44) with (47) and (48) implicitly provides the ice
flux at the grounding line. In the limit of strong buttressing,
we can again obtain an explicit equation for the grounding
line flux by combining (45) with (35):

qg ¼ ρgð1� ρ=ρwÞ
Λ

� �1=ðpþ1Þ

×
ρg
4

1� ρ

ρw

� �� �n

Ah2þnþp
c;butt � _mhpþ1

g

� 	1=ðpþ1Þ ð49Þ

and applying the boundary condition directly to hc,butt, i.e.
hc,butt = 250 m. As we discuss in Section 3.4, hc,butt (35) is
the ice thickness at the calving front of strongly buttressed
ice shelves. To obtain physically plausible solutions from
(49), we also require that the ice thickness at the ground-
ing line is greater or equal to the ice thickness at the
calving front (hg ≥ hc) and that the ice-shelf length
remains non-negative (Ls≥ 0). In writing (49), we have

Fig. 6. Same as Fig. 5 but for a fixed calving front position at xc= 3000 km: panel a shows ice-shelf widthW vs grounding line position xg, and
panels (b) and (d) show corresponding ice-sheet profiles. Numerical results are obtained by solving the unsimplified model (1)–(4c)
numerically with Comsol. The asymptotic grounding line positions are obtained by solving _axg ¼ qg (47) with qg given by (44) and (45),
respectively. The asymptotic profiles are calculated by additionally integrating (43a)–(43c). Note that the ice shelf is only plotted for the
numerical solutions, as it can be excluded from the asymptotics.

Fig. 7. Same as Fig. 5 but with calving if ice thickness at the calving front hc is below 250m. Panel a shows ice-shelf widthW vs grounding line
position xg, and panels (b)–(d) show corresponding ice-sheet profiles. Numerical results are obtained by solving the unsimplified model (1)–
(4c) numerically with Comsol. The asymptotic grounding line positions are obtained by solving _axg ¼ qg (47) with qg given by (44) and (49),
respectively. The asymptotic profiles are calculated by additionally integrating (43a)–(43c). Note that the ice shelf is only plotted for the
numerical solutions, as it can be excluded from the asymptotics, and that no numerical solution exists for the profile with a grounding line
at xg≈ 2100 km, as this solution is unstable (see Fig. 8).
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eliminated the ice-shelf length, but it can be calculated
from (45).

Note that (49) predicts that the ice flux at the grounding
line decreases with increasing ice thickness at the grounding
line if there is net accumulation on the ice shelf ð _m> 0Þ, the
case we consider here, and we discuss the implications of
this for the stability of grounding line positions below.
Conversely, for net melting on the ice shelf ð _m< 0Þ, (49) pre-
dicts that the ice flux at the grounding line increases with
increasing ice thickness. This suggests that melting can dir-
ectly alter the stability of grounding lines, at least when a
thickness-based calving law is used. We will explore these
dynamics in future publications.

In the case of a prescribed ice thickness at the calving front
(hc= 250 m), the grounding line positions predicted by the
asymptotic solutions (44) and (48) are qualitatively different
from the two examples discussed above. We now find two
branches, which connect at a minimum width Wmin below
which no steady-state positions are possible. On one of
these branches, grounding line positions converge to the pos-
ition of an unbuttressed marine ice sheet by Schoof (2007a)
for W→∞, and grounding line positions slightly advance
downstream for decreasing ice-shelf widths. On the second
branch, grounding line positions retreat for decreasing ice-
shelf widths. The simplified asymptotic model (49) only
reproduces the behaviour of the second branch.
Conversely, numerically we only find steady-state positions
along the first branch on which grounding lines advance
for decreasing ice-shelf widths. If we decrease W beyond
Wmin in the numerical model, the grounding line advances
to the end of the computational domain, which confirms
that no solutions exist for W<Wmin.

To capture both branches in Fig. 7a, we have to rely on the
ice thickness approximation (48), which we have given in an
ad hoc manner in Section 3.4. In the Supplementary material
(Section S2), we therefore consider the special case of
m ¼ n ¼ p ¼ 1; _m ¼ 0. In this limit, an exact solution for
the ice thickness at the calving front exists (Pegler, 2016),
and we can use this exact expression for hc to confirm the
robustness of the results observed here. Note that we were
able to capture the dynamics of the other two calving laws

considered above with our derived expression for the ice
flux alone even in the limit of W→∞. These two cases con-
verge to the unbuttressed limit by Schoof (2007a) because
Λ∝W−(1+1/n) appears in both terms that reduce the unbut-
tressed flux through the grounding line in (44) (hc,butt∝Λ,
see (35)). Consequently, these terms vanish for W→∞.
However, if we directly set the calving front ice thickness
through hc,butt, then we retain a non-zero flux reduction at
the grounding line, which prevents us from reproducing the
unbuttressed limit. This is also the reason why the simplified
flux expression (49) only predicts grounding line positions
along one of the branches in Fig. 7.

The fact that the numerical model only confirms the exist-
ence of grounding line positions on one of the branches in
Fig. 7 motivates us to consider the stability of the solutions
in Fig. 7 next. Steady states are possible where the ice flux
qg matches the integrated accumulation _ax (47) and this con-
dition is satisfied by all solutions plotted in Figs 5–7. If we do
not impose this condition, then we can plot the grounding
line flux qg for all potential steady-state positions xg. The sta-
bility of a steady state can then be inferred from comparison
of the flux gradient with the accumulation rate (Schoof,
2012):

if
∂qg

∂x
> _a : stable steady state

if
∂qg

∂x
< _a : unstable steady state:

ð50Þ

At a stable steady state, the flux increases more than the net
accumulation in the downstream direction. Therefore a
downstream perturbation of the grounding line position
leads to a net mass deficit. This causes the ice sheet to thin
and the grounding line to retreat back to its original position.
Conversely, at an unstable steady state, the net accumulation
increases in a downstream direction while the flux decreases
so that a downstream perturbation from this steady state leads
to a mass surplus and a runaway advance.

For W= 150 km (the width of the steady states marked
with (c) and (d) in Fig. 7a), two intersections of the integrated
flux (yellow dashed line in Fig. 8) with the boundary layer
solution (black line) exist; these are marked with yellow
circles. According to (50), the state at xg≈ 1100 km is
stable, while the state at xg≈ 2100 km is unstable. This is con-
firmed by our numerical results, which only find the stable
steady state. If we initialise time-dependent calculations
from the unstable branch, grounding lines either advance
to the end of the computational domain or retreat to the
stable branch. The existence of two branches in Fig. 7a,
one stable and one unstable, is typical for a saddle-node
bifurcation (Strogatz, 2014).

Comparison of Fig. 7d with Figs 5c, 6c illustrates that in
the presence of buttressing, different calving laws lead to
very different grounding line dynamics. Each of these
panels shows ice-sheet profiles at an ice-shelf width of
W= 150 km, with stable grounding line positions located
at xg≈ 1000, xg≈ 2000, and xg≈ 2800 km, and an unstable
grounding line position located at xg≈ 2100 km.

6. DISCUSSION AND CONCLUSIONS
The objective of this study is to derive an expression for the
ice flux at the grounding line of buttressed marine ice
sheets. To this end, we derive an asymptotic solution for

Fig. 8. Ice flux at the grounding line flux qg vs downstream position x
for W= 150 km and a fixed calving front thickness of hc= 250 m.
Plotted are the ice flux predicted by the full flux expression (45)
(black line) and the integrated accumulation _axg (dash-dotted
yellow line). Possible steady states are at the intersection of the
integrated accumulation _ax and the grounding line flux (yellow
dots). The steady state at x≈ 1100 km is stable, the steady state at
x≈ 2100 km is unstable (compare Eqn (50)).
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the extensional stress at the grounding line (34) of buttressed
marine ice shelves in Section 3. This allows us to determine
the implicit expression (44) for the ice flux at the grounding
line by combining previous results obtained by Schoof
(2007a) with ice-shelf solutions from Hindmarsh (2012)
and Pegler (2016) via a boundary layer treatment. The impli-
cit ice-flux expression (44) can be simplified to the explicit
formulae (46a), (46b) and (49) for strongly buttressed ice
shelves.

One of the advantages of the ice-flux solutions derived
here is that they allow us to determine the position and stabil-
ity of grounding lines from a system of algebraic equations.
The model thereby provides an efficient tool to investigate
the effects of buttressing, calving laws and changes in exter-
nal (e.g. atmospheric and oceanic) forcings on grounding line
stability. Comparison of the grounding line positions pre-
dicted by the flux expression (44) with numerically calcu-
lated grounding line positions shows a close agreement
between the two approaches (Section 5). The results for dif-
ferent calving laws suggest that steady-state configurations
of laterally confined marine ice-stream/ice-shelf systems are
markedly different from those of unconfined marine ice
sheets (e.g. Schoof, 2007a).

Buttressing reduces the ice flux through the grounding
line, leading to steady-state grounding line positions down-
stream of the unbuttressed case. We find that the calving
front boundary condition (the calving law) strongly controls
the location and stability of the grounding line. In the
MISMIP 1a test case, a configuration with a fixed ice-shelf
length leads to an advance of the grounding line as the
width of the ice-stream/ice-shelf system is reduced. For a
configuration with a fixed calving front position, the ground-
ing line asymptotically approaches the calving front position
as the width of the ice-stream/ice-shelf is reduced.
Alternatively, for a MISMIP 1a configuration with the fixed
ice thickness at the calving front, we find a saddle-node bifur-
cation in the grounding line position as a function of the ice
stream width. In this case, if the width of the marine ice sheet
is larger than a critical width Wmin, both stable and unstable
grounding line positions exist. For this calving law, steady-
state grounding line positions obtained with time-dependent
numerical models will therefore depend on the assumed initial
conditions: either the grounding line achieves a stable steady-
state position, or it advances indefinitely. However, if the width
of the marine ice sheet is less than the critical width Wmin, no
steady-state grounding line position exists.

These results illustrate that buttressing forges a link
between calving front dynamics and grounding line dynam-
ics. In contrast to the ice flux at the grounding line of uncon-
fined marine ice sheets, which is a purely local function of
the bed elevation at the grounding line (Schoof, 2007a),
the ice flux at the grounding line of confined marine ice
sheets is also a function of non-local ice-shelf properties.
Consequently, knowledge of the bed slope alone is not suffi-
cient to predict the stability of grounding lines of confined
marine ice sheets. The example of a fixed ice thickness at
the calving front illustrates that confined marine ice sheets
are not necessarily unconditionally stable on downwards
sloping beds. Conversely, confined marine ice sheets are
not necessarily unstable on upward sloping beds. This has
also been found by numerical studies (Gudmundsson,
2013), and suggests that the concept of marine ice-sheet
instability may not be applicable to confined marine ice
sheets. We will investigate this further in a separate study.

Given the strong influence the calving law exerts on
grounding line dynamics, it is possible that the results of
past numerical studies of marine ice-sheet dynamics have
depended on the assumed calving law used in these
studies, and future studies should investigate this sensitivity.
In the absence of a unifying calving law, choosing realistic
calving-front boundary conditions is challenging, and many
different formulations have been suggested in the literature.
We have considered conditions that are determined by geo-
metric parameters – a prescribed calving front position, a pre-
scribed ice-shelf length, and a prescribed ice thickness at the
calving front. These boundary conditions are widely used in
numerical studies. For example, Dupont and Alley (2005)
and Gudmundsson and others (2012) use a prescribed
calving front position, Gagliardini and others (2010) use a
constant ice-shelf length, and Van der Veen (1996) and
Vieli and others (2001) use a prescribed ice thickness at the
calving front. The latter condition is also used in studies
relying on a crevasse-depth condition and in calving laws
based on extensional stresses at the calving front (Benn and
others, 2007; Alley and others, 2008; Nick and others,
2010), albeit indirectly through the stress balance condition
at the calving front (4c).

In the process of deriving (44) and (45), we have made
several simplifying assumptions: we use a width- and
depth-integrated model which parameterises some stress
components in the momentum-balance equation and
neglects others altogether (Morland, 1987; MacAyeal,
1989; Hindmarsh, 2012; Pegler, 2016). While analytical
and numerical studies show that taking higher-order stresses
into account does not qualitatively alter the behaviour of
unconfined marine ice sheets (Nowicki and Wingham,
2008; Durand and others, 2009a; Schoof, 2011), it is not
clear whether the same conclusions can be extended to but-
tressed marine ice sheets. In particular, numerical studies
suggest that across-flow variations of topography cannot
be resolved in sufficient detail by flow-band models
(Sergienko, 2012). Moreover, ice rises are known to stabil-
ise the flow of grounded ice (Goldberg and others, 2009;
Favier and others, 2012), but it is unclear whether their
effects can be included in flow-line models. Hence, future
studies should verify whether the conclusions drawn here
for flow-line models with parameterised buttressing also
hold in models that explicitly resolve the across-flow
direction.

Our approximation of the ice thickness at the calving front
(48) is based on an ad hoc superposition of the two asymp-
totic limits of strong buttressing and no buttressing. While
this superposition allows us to understand numerical results
obtained with the unsimplified underlying model and quali-
tatively matches those results, it must inevitably fail in the
transition between the two asymptotic limits it connects. A
better representation of hc which can be used instead of
(48) is clearly desirable, and should be addressed in future
work.

The strongest assumption that we have made is that the
marine ice sheet is in a steady state. Neither present-day
nor paleo ice sheets have ever achieved a steady state, and
observations show that ice shelves and grounding lines
evolve on a variety of timescales (e.g. Rignot and Jacobs,
2002; Jenkins and others, 2010; Shepherd and others,
2010; Paolo and others, 2015). These dynamics, their time-
scales, and possible trajectories of ice-sheet evolution
remain topics of future research.
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