CMS
}ZSMC

http://dx.doi.org/10.4153/CJM-2018-019-7

Canad. J. Math. Vol. 71 (5), 2019 pp. 1127-1161
© Canadian Mathematical Society 2019 ]

Poles of the Standard £-function of G, and
the Rallis=Schiffmann Lift

Nadya Gurevich and Avner Segal

Abstract. We characterize the cuspidal representations of G, whose standard £-function admits a
pole at s = 2 as the image of the Rallis-Schiffmann lift for the commuting pair (SLy,Gs) in §f)14.
The image consists of non-tempered representations. The main tool is the recent construction, by
the second author, of a family of Rankin-Selberg integrals representing the standard £ -function.

1 Introduction

Let G be a reductive algebraic group defined over a number field F. In the theory
of automorphic forms, for any automorphic irreducible representation 7 = ®, 7,
of G(A) and a finite-dimensional complex representation p of the Langlands dual
complex group LG, one can associate a partial £-function £°(s, 7, p), where S is a
finite set of places of the number field F outside of which 7, is unramified. It is defined
by
&5 mp) = T(det(I = pltn,)a,))
Vi

where t,, is a representative of the Satake conjugacy class associated with 7, and ¢,
is the order of the residue field of F,. Conjecturally, all such £-functions admit mero-
morphic continuation. The poles of the £-functions are of special interest, since im-
ages of functorial lifts can often be characterized in terms of these poles.

Precisely, given an algebraic reductive group H, a map of dual groups r: ' H — LG,
and an irreducible automorphic representation ¢ = ®, 0, of H(A), we say that an
automorphic representation 7 of G(A) is a weak lift of o with respect to r if for almost
all places, r(t,,) is conjugate to t,,. We can now formulate the main result of our

paper.

Let G be the split exceptional group G,. In particular, its Langlands dual group
is G2(C). Let st denote the standard seven-dimensional representation of G,(C).
Consider the map r: SL,(C) xSL,(C) — G»(C), where the map restricted to the first
(resp. second) copy of SL, (C) corresponds to the unipotent conjugacy class generated
by a long (resp. short) root of G,.
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Theorem 1.1 (Main Theorem) For a cuspidal irreducible representation 7 of G,(A),
the following are equivalent.

(i) There exists an irreducible square-integrable automorphic representation T of
SO(2,1)(A)

such that 7 is a weak lift of the representation T ®1 of SO(2,1) x SO(2,1) with respect
to the map r.

(ii) The partial L-function L5 (s, m,st) has a pole at s = 2.

The pole of the L-function is simple unless v is a weak lift of 1R 1, in which case the pole
is of order two.

The direction (i) = (ii) is easy. This is the content of the following lemma.

Lemma 1.2 Let m be an irreducible representation of G,(A) that is a weak lift of a
square-integrable automorphic representation T ® 1 of SO(2,1) x SO(2,1). Then the
following hold.

(i) £5(s, 7, 5t) has a pole at s = 2.
(ii) The pole is simple unless T = 1, in which case the pole is of order 2.

Proof We identify the algebraic groups SO(2,1) and PGL,. The representation 7 is
either cuspidal or of the form y o det for a quadratic automorphic character y.
In the first case

L5 (s,m,5t) = (s =1) L5(s =1/2,7)5(s) L5 (s +1/2, 1) S (s +1).

The factor {5(s — 1) contributes a simple pole at s = 2, whereas the other £-functions
are non-zero at s = 2.
In the second case

Ls(s,n,st) = (S(s -1) Ls(s -1y) Ls(s, X)Z(S(s) Ls(s +1, X)(s(s +1),

and hence has a simple pole at s = 2 for y # 1 and a pole of order 2 for y = 1. ]

The proof of (ii) = (i) requires both some information on the poles of the £-
function and a proof of the existence of the weak functorial lift. We use our recent
result on a Rankin-Selberg integral representation for £° (s, 7, 5t) to achieve the in-
formation about its poles.

1.1 The Standard £-function of G,

The meromorphic continuation of £° (s, 77, 5t) has been proved [Segl7,Seg16] by con-
structing a family of new-way Rankin-Selberg integrals for £° (s, 7, st). The integrals
in the family are parameterized by étale cubic algebras E over F. Precisely, for any
étale cubic algebra E there is an associated simply-connected quasi-split group Hg of
type D4 with Heisenberg maximal parabolic subgroup P. Let £5(f, s, h) denote the
normalized Eisenstein series associated with the normalized induced representation
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Ind5* 85 Consider a family of integrals

1) 260009 [ 0(@)Es(f5.9)dg.
G2(F)\G2(A)

where ¢ belongs to the space of a cuspidal representation 7 of G (A).

For each cuspidal representation 7, the integral Zg (-, -,s) either represents the
standard £-function or is identically zero, depending on whether or not 7 supports
the Fourier coefficient corresponding to the étale algebra E along the Heisenberg
unipotent subgroup. See Section 2 for details on Fourier coefficients. Wee Teck Gan
[Gan05, Theorem 3.1] showed that any cuspidal representation supports such a coef-
ficient for at least one étale cubic algebra E. For such E one has [Segl7, Theorem 3.1]

(12) 25(, fs) = £L5(55 +1/2, 7, 5)ds (f, ¢, 5)

and for any given point sy € C, the data ¢ and f can be chosen so that ds(f, ¢,s)
is holomorphic and non-zero in a neighborhood of so. In this case, we say that the
integral Zg (g, f, s) represents the L-function £° (5s +1/2, 7, 5t).

If Z£ (@, f,s) represents £° (55 +1/2, 7, 5t), then Zg (¢, f,s) can be used to study
the special values of £° (s, 7z, 5t). In particular, for any s, the order of £° (s, 71, 5t) at s,
is bounded by the order of £} (f, s, g) at £ (so— 3 ). In the right half-plane, the poles of
&3(f,s, g) coincide with the poles of the unnormalized Eisenstein series Ep(f, s, £).
The poles of these Eisenstein series for Re(s) > 0 were studied in [Segl8].

The possible poles of Ep(f,s,g) in the right half-plane can occur at s = 1/10,
s = 3/10 or s = 1/2. Thus for any cuspidal representation 7, possible poles of the
L-function £3(s, 7, 5t) areat s = 1, s = 2 or s = 3. The possibility s = 3 does not occur,
since the residue of Ep(f,s, g) at s = 1/2 is a constant function for any E, and hence
the residue of Zg (¢, f, s) is zero. Hence, £° (s, 1, 5t) is always holomorphic at s = 3.

In this paper we describe the cuspidal representations m whose £-function
£5(s, m,5t) admits a pole at s = 2. The order of £5(s, 7,5t) at s = 2 is bounded
by the order of Ep(f,s, g) at s = 3/10. The pole of Ep(f,s,g) at s = 3/10 has been
studied for E = F x F x F [GGJ02] and for general E [Segl8, Segl6].

Theorem 1.3 ([Segl6,GGJ02]) Let Ep(f,s, g) be an Eisenstein series associated with
the representation Indj* &5,

(i) Let E be a cubic field extension. Then Ep(f,s, g) is holomorphic at s = 3/10.

(ii) Let E = F x K, where K is a quadratic field extension. Then Ep(f,s, g) has at
most a simple pole at s = 3/10. This pole is attained by the spherical section (as defined in
item (14) of Section 3.1). The residual representation at this point is not square integrable.

(ili) Let E = F x F x F. Then Ep(f,s, ) has a pole of order at most 2 at s = 3/10.
This pole is attained by the spherical section. The leading term of the Laurent expansion
generates the minimal representation of the group Hg.

The integrals Zg( -, -,s) can also be used to characterize functorial lifts in terms
of poles and special values of the standard £-function.

Let us give an example. The dual pair S3x G, — Sping % S3 has been studied both lo-
cally [HMS98] and globally [GGJ02]. The automorphic minimal representation ITp,ipn
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of the split group H = Hrxpxr = Sping is generated by functions of the form
[(s—3/10)28P(f,s,g)]|5=3/10, f eIndf (s).

and it can be extended to a representation of Sping % S3. Let us denote by © the theta
correspondence for this dual pair. It was shown [GGJ02] that, whenever () # 0,
one has, for almost all v,
r(diag(q)”, ,'"%), diag(q/*, ;%)) ~ t,.
Here ~ indicates that the elements are conjugate in G, (C).
An immediate corollary of [GS15, Theorem 1.1] and Lemma 1.2 is the following.

Theorem 1.4  Let 7 be a cuspidal representation of G (A). The following statements
are equivalent.

(i) The partial L-function £° (s, 7, 5t) admits a double pole at s = 2.
(ii) The theta lift ®(7) is not zero.
(iii) 7 is a weak lift of 1 ® 1 with respect to r.

The explicit construction of the weak lift from any 7 ® 1 with respect to r is fully
realized using the Rallis-Schiffmann lift that will be described below.

Remark 1.5 The pole of E5(f, s, g) ats = 1/10 is simple for all E and the residue of
E3(f,s, g) is described in [Sega]. The description of the cuspidal representations 7

of G, whose L-function £5 (s, 7, 5t) has a pole at s = 1 is a work in progress.
1.2 The Rallis—Schiffmann Lift
1.2.1 Construction

A remarkable construction of a class of cuspidal non-tempered representations of
the exceptional group G, was obtained by Rallis and Schiffmann [RS89]. The pair
(SL,, G,) is not a dual pair, but merely a commuting pair inside §f>1 4. Indeed, the
centralizer of a certain embedding of SL, in :9}51 , is the group SO(V7) x {1}, where
V7 is a seven-dimensional split quadratic space. The group G, is naturally embedded
into the split special orthogonal group SO(V7).

Lety = ® v, be a fixed additive complex character of F\A. For any cuspidal repre-
sentation ¢ of the metaplectic cover SLy, its theta lift 6, (') to SO(V7) is a non-zero
and non-cuspidal automorphic representation. However, the restriction of functions
in 0 (o) to the subgroup G,(A) of SO(V7)(A) defines a square-integrable automor-
phic representation of G,(A). This representation of G, (A) is cuspidal whenever the
theta lift of o to SO(2,1) with respect to y is zero. This lift is denoted by RS, (o). It is
not difficult to extend the definition of the lift from the cuspidal spectrum to all the
summands of the discrete spectrum of SL, [GGO06, §12.7].

The lift RSy (o) is not necessarily irreducible. The question of reducibility was
studied in [GGO06] by a complete determination of the local lift. The local lift is used
in order to define certain non-tempered A-packets on G,, and the global lift is used
to prove Arthur’s multiplicity formula for these packets in most cases.
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The construction has proved to be functorial. Although the group SL, is not al-
gebraic, the Satake parameters of an irreducible automorphic representation ¢ of
SL,(A) are defined via the Waldspurger map Wd,, which associates, with every ir-
reducible square-integrable automorphic representation o of SL,(A ), an irreducible
square integrable representation 7 = Wd, (0) of SO(2,1)(A). The map is finite-to-
one.

Thus, whenever o, is spherical, the Satake parameter t,, 4, € SL,(C) is defined to
be the Satake parameter of Wd,, (0,). Note the dependence on the character y.

Proposition 1.6 ( [RS89, §5, Theorem 1]) Let 0 = ®, 0, be a cuspidal representation
of SL2(A). Let m = ®, m, be an irreducible summand of RS, (c). For all v such that
oy, Ty are unramified, denote by t,,, , the Satake parameter of 0, and by t, the Satake
parameter of m,, which is a representative of a semisimple conjugacy class in G,(C).

Then r(ty, .o, diag(qyz, q;l/z)) ~ t,,. Here ~ indicates that the elements are conjugate

in Gz(C)

In particular, 7 is a weak functorial lift, with respect to the map r, of the automor-
phic representation Wd, (o) ®10f SO(2,1) x SO(2,1).

The lift in the opposite direction is naturally defined. For a cuspidal representation
7 of G5 (A), its lift to a representation RSy (1) of SL,(A) is the span of the functions

RS, (0:0)@)= [ 0,($)(gme(h)dh,
G2(F)\G2(A)

where ¢ € 71, ¢ is a Schwartz function on V7 (A), and 6, (¢) is an automorphic theta

function on 37)1 , testricted to SL, x G,. Computing the constant term of RS, (1)
using the Schrodinger model, it is easy to see that RS, () is necessarily a cuspidal

representation of SL, (A).

1.2.2 Exhaustion

In this subsection, we show how the results of [GG06] imply the following.

Proposition 1.7  Let i be an irreducible cuspidal representation of Gy(A). The fol-
lowing statements are equivalent.

(i) RS,(7)#0.

(ii) There exists an irreducible square-integrable automorphic representation T of
SO(2,1)(A) such that 7 is a weak lift of T ® 1 with respect to r.

Proof We first recall the structure of the space A, (SL,) that is the sum of all irre-
ducible representations contained in the space of square integrable genuine automor-
phic forms of SL,. Recall [Wal91, Wal80] the decomposition of the space A, (SL;):

Az(SLy) = (@A) @ (G)?Ax)’

where 7 runs over the cuspidal representations of SO(2,1), and y runs over the set of
quadratic Hecke characters of F*\A*.
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For each cuspidal representation 7 of SO(2,1), the space A, is a sum of nearly
equivalent representations o of SL, such that Wd, (o) = 7. All summands appear in
A with multiplicity one and form a full near-equivalence class.

For each quadratic character y, the space A, is a sum of irreducible summands
of the Weil representation w, associated with the one-dimensional orthogonal space,
whose discriminant defines the quadratic character y via class field theory. Again, all
the summands appear in A, with multiplicity one and form a full near-equivalence
class. For each irreducible representation ¢ in A, one has Wd, (o) = y o det, consid-
ered as an automorphic representation of SO(2,1) ~ PGL,.

Denote by V, and V; the Rallis-Schiffman lift of the spaces A, and A, respec-
tively.

Theorem 1.8 ([GGO06, Theorem 16.1])  Let 7w be an irreducible cuspidal representation
Of G2 (A)

(i) If mis a weak lift of (y o det) ® 1 for some quadratic Hecke character , then 7 is
contained in V.

(ii) If mis a weak lift of T ® 1 for some cuspidal representation T of SO(2,1), then 7
is not orthogonal to V.

In both cases RS, () # 0.

Conversely, if o is contained in RS (), then 7 is isomorphic to an irreducible
summand of RS, (o) and hence is a weak lift of Wd,, (o) =1 with respect to r. The
proposition follows. ]

Now to prove Theorem 1.1, it remains to show that if £°(s, 77, st) hasa pole at s = 2,
then RS, () # 0. This will be proved in Theorem 5.1.

2 Wave Front

The Fourier coefficients of an automorphic form on G, along the Heisenberg unipo-
tent subgroup are parameterized by cubic algebras over F [Segl7, §2]. In this section,
we prove that if o (s, 7, 5t) has a pole at s = 2, then 7 admits a Fourier coefficient of
type F x K, where K is an étale quadratic algebra over F. This allows us to relate the
analytic properties of £° (s, 7, st) to those of Zpxx (-, -»$).

2.1 Fourier Coefficients of SL,

Let B = T - N denote the Borel subgroup of SL,. We denote by « the unique positive
root of SL, and denote by x,: G, — N the associated one-parametric subgroup. The
torus T'(F) acts on the set of non-trivial characters of N(A) that are trivial on N(F),
and the orbits are parameterized by quadratic étale algebras. Fix a non-trivial unitary
character y: F\A — C*. For any square class a and its associated quadratic algebra
K, define the character Yx: N(A) — C given by Wk (x4 (7)) = y(ar).

Let SL,(A) denote the metaplectic cover of SL,(A). The groups N(A) and T(F)
split in SL,(A).
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For any automorphic form ¢ on SL, define

= [ elng)¥x(n)dn.
N(F)\N(A)

The wave front of an automorphic representation o of SL,(A) is defined by

Fw(a):{K\ EIgoEa:goN’\PthO}.

Proposition 2.1 ( [GGO06, §12.3]) Let o be an irreducible summand ofAz(Siz). If
ﬁw(a) = {K}, then o is a summand of A, where the quadratic character y is associated
with the algebra K by class field theory.

2.2 Fourier Coefficients of G = G,

We shall start with an overview of G = G, as a Chevalley group defined over Z. We fix
a maximal split torus T and a Borel subgroup Bg = T - Ng. This determines the root
datum of the group. Denote by « and f the short and long simple roots, respectively.
There are six positive roots: ®* = {a, 8, + ,2a + 8,3a + f3,3a + 23}. With any
positive root y we associate a one-parametric subgroup x,: G, - Ng [GGJ02, GS15,
Jia98, Segl7], and denote its image by U,

We denote by P, = M; - Uy and P, = M, - U,, the maximal standard parabolic
subgroups such that U, c U and Ug c U,. By [GGS02], the choice of one-parametric
subgroups induces an isomorphism between U,/ [U,, U,] and the space of binary
cubic forms.

The Levi factor M, (F) acts on the set of unitary characters on U, (A) that are trivial
on U, (F), and the orbits are indexed by cubic algebras over F. The generic orbits
correspond to étale cubic algebras. For any cubic algebra E, choose a representative
Y of the associated orbit.

For any automorphic form ¢ on G, and étale cubic algebra E, denote

e = [ pug)e(u)du.
U2(F)\U2(A)

For any automorphic representation 7 of G,(A), define the wave front of 7 with re-
spect to U, by

Fy(m) = {E étale | Jp e r: @U»¥E 2 0}.
We shall write down explicitly a character Wryx on U,(A) that is a representative of
the generic orbit corresponding to the étale cubic algebra F x K, where K is a quadratic
étale algebra. Let a be the square class in F* associated with K. Then

Weri (X8 (1) Xasp(72) X201 (73) X308 (14) X3a425(15)) = W(—ar +r3).

A family of reductive periods is closely related to the family of Fourier coeffi-
cients corresponding to the algebras of type F x K. The group G acts on the seven-
dimensional space V7, preserving the split quadratic form. The stabilizer of a vector
in this space, whose norm is a square class in F* corresponding to the algebra K, is
isomorphic to the special unitary group SUX. In particular, when K = F x F, the
stabilizer is isomorphic to SL;.
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For an irreducible cuspidal representation 7 of G,(A) define

ﬁ(n):{K‘Hgoeﬂ: / q)(g)dgqto}.

SUS(F)\SUS(A)

Proposition 2.2 Let ©t be an irreducible cuspidal representation of G,(A). Then
RSy(m) # 0 ifand only if F(7) # @.

Proof The proof is essentially contained in [RS89, §3, Lemma 2]. We repeat it here
for the convenience of the reader. Let a € F* be a representative of a square class asso-
ciated with the algebra K. We use the Schrédinger model of the Weil representation,
realized on the space of Schwartz functions §( V7 (A)).

Computing the Yx Whittaker coefficient of RS, (¢, ¢) for ¢ € §(V7(A)) and ¢ €
7, we obtain

RSy (9,9)(nh) ¥ (n) dn
N(F)\N(A)

- [ [ [ (2 el ehe$(®)¥en)dn]g(g) dg

G (F\G2 () N(F)\N(a) SV(F)

- [ (T el noe®)ee) ds
£V’ (F),
G(F)\G(A) (£ E)=a
The group G, (F) acts transitively on the set O, (F) = {& € V7(F), (&, &) = a} and the
stabilizer of each point is SUX (F). Let &, be a representative of the orbit O, (F). The
integral above equals

> @) (hy2)e(E)) e(2)dg

Go(F)\Gy(n)  YeSUS(FI\G2(F)

- [ W [ elegds)ds

SUS (A)\G2(4) SUK(F)\SUX (4)

In particular, if RS, () # 0, then there exists K € F(7).
Conversely, assume that K € F(7). Thus there exists ¢ € 7 such that

Ix(¢) = f ¢(g1)dg #0.
SUK(F)\SUK(A)

For & =g'¢, € 0,(A), the function Ix(9) (&) = Ix(g-¢) is a continuous function on

0q(A). Similarly, wy (g)¢(&s) = ¢(g7"a) = ¢(&) is the restriction of ¢ to O, (A).
Since O, (A) is closed in V7 (A), there exists a Schwartz function ¢ on V7 (A) whose
restriction to O, (A) is a non-negative Schwartz function and has sufficiently small

support to ensure that [OE(A) d(OIk(p)(&)dE+0.
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Hence, for some functions ¢ € S(V7(A)) and ¢ € 7, the function RS, (¢, ¢) has
a non-zero Wx-Whittaker coefficient and hence is non-zero. It follows that RS, (7) is
not zero. |

2.3 Fourier—Jacobi Coefficients

Let P, = MU, be a non-Heisenberg maximal parabolic subgroup of G,. The unipo-
tent radical Uj is the three-step unipotent subgroup. One has U; 2 Z > Z;, where
Z = [Uy, U] and Z; is the center of U;. The group U;/Z; is a Heisenberg group
whose center is Z/Z; ~ G,. We regard y as a character of Z/Z;. The Weil representa-
tion wj, of Uy (A)/Z1(A) is realized on the space of Schwartz functions 8(U, ) and is
extended to the group M’;(A)-[U;(A)/Z(A)], where M! ~ SL, is the derived group
of Ml.

The representation wﬁ, has an automorphic realization in the space of Jacobi forms
by

0y(8)(8) = ). wy(g)o(x), geSLa(A)-[Ui(A)/Zi(A)].
xeUq(F)
For an automorphic form ¢ of G,, its Fourier-Jacobi coefficient is defined by

o= [ eu
Z(F)\Z(A)

which is a Jacobi form on SL,(A) - [U;1(A)/Z;(A)]. The space generated by all such
coefficients is denoted by 7 . This is a representation of the Jacobi group.

The automorphic representation FJ,, (1) of SL,(A) is defined as the span of all the
functions

Fl, (9, 6) () = f %Y (uh)8, ($)(uh) du, heSLo(A),gem¢ewl.
Ui(F)\Ui(A)
By the result of Tkeda [Ike94], one has the following isomorphism of
SL,(A) - [U;(A)/Z1(A)] -representations:
7z, = FJ, (7)®w),.

An easy computation, contained in the proof of [Gan05][Lemma 3.10], shows the
following.

Proposition 2.3  Let m be an automorphic representation of G, and K be a quadratic
étale algebra over F. Then K € Fy(F], (1)) < F x K € Fy ().

2.4 The Pole of the £-function and Fourier Coefficients

The next theorem gives information on the Fourier coefficients supported by an ir-
reducible cuspidal representation 7 of G,(A), whose standard £-function admits a
pole ats =2.

Theorem 2.4  Let 7 be an irreducible cuspidal representation of G, (A) such that the
partial L-function £5(s, 7, st) admits a pole at s = 2. Then the following hold.
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(i) The representation 7 is not nearly equivalent to a generic cuspidal representation.
(ii) There exists a quadratic algebra K such that F x K € Fy ().
(iii) IfEy(n) = {F x F x F}, then RSy () # 0.

Proof (i) D. Ginzburg [Gin93] constructed a Rankin-Selberg integral for the stan-
dard £-function of generic cuspidal representations of G,. The construction used
an Eisenstein series on SL,. In particular, it was shown that in the right half-plane
{s € C|Re(s) > 0} the partial L-function of a generic cuspidal representation can
have a pole only at s = 1.

(ii) Recall from [Gan05, Theorem 3.1] that any cusp form of G,(A) supports some
generic coefficient along U,. No field E belongs to F(7) by Theorem 1.3. Hence, there
exists F x K € l?u,(n), where K is an étale quadratic algebra over F. Note that K may
be split.

(iii) The proof is essentially contained in the proof of [GG06, Theorem 16.1] We
repeat it for the convenience of the reader.

The proof uses a global theta lift 6, for the exceptional dual pair (G, PGL3) in
the adjoint group of type E¢ [GJ01, GRS97b].

Claim  Let 7 be an irreducible cuspidal representation of G2 (A).
(i) If the Shalika functional 8 on 7 defined by

Bor- [ [ epw@dzdg
SLa(F)\SLa(A) Z(F)\Z(A)

does not vanish, then 0, () # 0 [GJ01, Theorem 1.1].

(ii) If Og, () is a cuspidal representation of PGL3(A), then 7 is isomorphic to a
generic representation [GJ01, Theorem 3.1].

(iii) If O, (7) is non-cuspidal, then w admits a non-zero SL3-period [GRS97b, The-
orem A, Theorem 4.1(5)].

Assume that Fy, (1) = {F x F x F}. Then by Proposition 2.3 Fa(F]w(ﬂ)) ={FxF},
so that FJ, (1) c A y,» where xq is the trivial character.

In particular, 717,y ~ FJ, (7)8wy, ¢ A, 8wy, and hence the Shalika functional j
does not vanish on 7. It follows, by part (i) of the claim that O (7) # 0. Combining
Theorem 2.4 (i) and part (ii) of the claim, we derive that 8, (7) is not cuspidal. Hence,
by part (iii) of the claim the representation 7 admits a non-zero SL; period. It follows
by Proposition 2.2 that RS, (1) # 0. [ |

3 The Eisenstein Series and the Siegel-Weil Identity

The proof of Theorem 1.1 involves an identity between the leading terms of two Eisen-
stein series on the group H = Hpykx. More precisely, we consider two degenerate
principal series representations: one induced from the maximal parabolic subgroup
P and the other induced from another parabolic subgroup Q and also the degenerate
Eisenstein series associated with them. We prove a Siegel-Weil type identity relating
the leading terms of the two series at certain points.
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In fact, in the proof of Theorem 1.1 we shall use the identity only when K is a field.
However, in this section we formulate and prove the identity for any étale quadratic
algebra K.

3.1 Notations and Preliminaries

Let F be a local or global field, and K be a quadratic étale algebra over F.
We begin with the notations on the algebraic groups involved in this paper.

(1) Let H = Hpxx be a quasi-split simply-connected group over F of type D, as-
sociated with the cubic algebra F x K.

(2) Let By = Ny - Ty be a Borel subgroup of H with the unipotent radical Ny and
maximal torus Ty. Let Ts € Ty be a maximal split torus.

(3) The simple roots in the absolute root system of H are denoted by «;,i =1...4.
The Dynkin diagram has the form

o3

o 0422

421

Figure I: The Dynkin diagram of type D,

(4) Let ®(G, Ts) be arelative root system of H, ®* be the set of positive roots and
A be the set of simple roots. For any root a € ®(G, Ts), we denote by F, the field of
definition of a. In the split case K = F x F, the positive roots of H with respect to
Ty = Ts are denoted by

o = {[1,0,0,0] ,[0,1,0,0],[0,0,1,0],[0,0,0,1], [1,1,1,1],[1,2,1,1],
[1,1,0,0],[0,1,1,0],[0,1,0,1],[1,1,1,0],[1,1,0,1], [0, 1,1, 1]}.

In the case where K is a field, the relative root system of H with respect to T is of type
Bs and the positive roots are denoted by

o = {[1,0,0] ,[0,1,0],[0,0,1],[1,1,0],
[0,1,1],[0,1,2],[1,1,1],[1,2,1],[L 2, 2]}

The roots defined over K are [0,0,1], [0,1,1], and [1,1,1].

(5) For any root « € ®*, we fix a pinning, that is, a collection of maps

¢a: SLy(Fa) - H(F).
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Define the unipotent subgroups

and
Wa :‘Prx((—oltl) )
The relative Weyl group Wy of H is generated by the images of the elements w,
for the simple roots a. By w[iy -+ ix ] we denote the Weyl word wq, - wq, .

(6) We parameterize Ty using coroots.
(f, tas b3, t4) = o) (1) oy (t2) a3 (£3) ety (ta), for t; € Gy,
if K=F xF,
(it t3) = &) () &y (t2), a3 (t3), for ty, t5 € Gy, t3 € Resgyp G,
ifK+FxF.

THBtZ

In particular, for a local field F, the modular character is given by

|t1t2t3t4|i~ ifK:FXF,
|t1t2|§;~|t3|§< if K+ FxF.

8BH(t) = {

(7) Let X*(Ty) denote the the lattice of F-rational characters of Ty and let af. =
X*(Tu) ® C. Also, let C* denote the positive Weyl chamber in ag.

For alocal non-archimedean field F, the space af. can be identified with the group
of unramified characters of Ty (F) via the map s — A; given by

Af(t): |t1?|t2|?|t3|?|t4|? ifK:FXF,
* Bl E ifK#FxF.
(8) Let P = M - U be the Heisenberg parabolic group of H. Its Levi subgroup is
isomorphic to
M =~ (GL;y x Resg/p GLg)det ={(g1,£2) € GL, x Resg/p GLg | det(g1) = det(g2)}»
where
Reor g0 | ((&58) € GLxGLy | det(g) = det(g")} i K =FxF,
K/E=52 {geResK/FGL2|det(g)eGm} ifK#FxF.

Under this isomorphism it holds that
8p(g1,82) = |det(g1)]* Vg1 €GLy, g2 € Resg/p GLJ .

(9) Let Q = L-V be the maximal parabolic subgroup generated by By, X_4,, X_a;,
and X_,, if K = F x F and by By, X_,,, and X_,, if K is a field.
The Levi subgroup L fits into a short exact sequence

1— GL; — L — SO(V§) — 1,

where V¢ is a quadratic space of dimension 6 and discriminant K. Its modular char-
acter 0 restricted to the torus of H satisfies 8¢ (t) = |#[°.

(10) We denote by Wy, and Wy, the Weyl groups of M and L, respectively.
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(11) The group H is the group of isometries of the quadratic space V& of dimen-
sion eight and discriminant K. It is a group of type Dy and there is an isogeny p of
algebraic groups 1 —» py, -~ H L H - 1. The associated map p: H(F) — H(F) is
not necessarily surjective but for a local field F the image has finite index. There is a
bl)ectlon between the parabolic groups of H and of H. We write V¢ = V¢ & H, where

= Span{ey, ej } is a hyperbolic plane. The parabolic subgroup Q = L - V is the
subgroup stabilizing Span{eo }. The Levi subgroup L is isomorphic to GL; x SO(Vg),
and we have 85 (g1, &) = |@1|® for all g; € GLy, gz € SO(VE).

We continue with generalities on induced representations associated with para-
bolic subgroups By, P, Q. Below, F will denote a global field and F, a local field.

(12) For every place v fix a maximal compact subgroup X, of H(F, ) that is special
for every finite place v. Let X = IT,, X,, be a maximal compact subgroup of H(A).

(13) For any place v and A € a¢ denote by Ig, (1) the normalized smooth in-
H(Fy)
BH(FV)
v and is a smooth admissible Frechet representation for infinite v. Thus, I, (1) =

®, Ip,,(A) is an H(A)-module.

(14) Consider a section f) € I, (1).
e fiis Standard if f) is independent of A when restricted to X.

duction Ind A. This is a smooth admissible representation of H(F,) for finite

* fi is Spherical if it is standard and X invariant. We further call such a section
normalized if f)(1) = 1. Since the space of spherical vectors in Ig, (1) is one-
dimensional the normalized spherical vector is unique.

s f) is Holomorphic if f)(g) is a holomorphic function of A for any g € H(A).

(15) We fix a set of representatives Wy in H(F) of Wy so that w € X for any
W € Wy. Asin [Ste68, §6, S11], for & € A, let Wy = x4 (1)x_q(1)x4(1). For a reduced
wordw = wy, -+ W, ,letw = wq, -~ Wy, . Foranyw € Wy, we consider the standard
global intertwining operator M,,(1): Ip, (1) — Ip, (w™ - 1) given by

My (D)(f1)() = / fi(fng) dn,

Nu(A)NnwINg(A)W\Ng(A)

where f) is a standard section of I5(1). Note that this integral is independent of the
choice of the representative . This integral converges absolutely for Re(1) in some
positive cone and extends to a meromorphic function on ag. The main properties of
these operators are the following.

« Foranyw,w’ € W, the intertwining operators satisfy the following cocycle equa-
tion M,/ (1) = My (w™' - 1) 0 M,, (1).

« The global intertwining operator M,, (1) decomposes as a product ® M, , (1) of
local intertwining operators M,, , (A): Ig,, (A1) — Ip,, (w™'-1) given for Re(1) > 0,
by

Mo (D)) () = / fring) dn.

Ny (Fy)NnW !Ny (F,)Ww\Nu(F,)
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+ (Gindikin-Karpelevich formula). The local intertwining operator M,, , (1) de-
pends on the choice of representative w. However, since w € K,, for the normalized
spherical vector ff » € I,y (1), it holds that

(3.1) Moy (V) (L) = Jo (W, A) fiig 00
where

Lo (ha))
Mo = I 2 ey

wla<0
We denote by (_(s) a complete zeta function of F, normalized such that {y (s) =
{r, (1 =s). Moreover we denote Rg, = lim_(s —1){f,(s). The global Gindikin-
Karpelevich factor J(w, 1) = I1, ], (w, 1) is a ratio of products of complete zeta func-
tions.

o The induced representations Ip (s) = Indg((;”)) 0% and Ig,(s) = Indgg:; 8%

(smooth normalized induction) will play a central role in this paper. We define
Ip(s) = ®Ip,(5),  Io(s) = ®lo,(s)-

Their normalized spherical sections will be denoted f2 € Ip(s) and f° € Io(s). By
induction in stages, we observe that Ip(s) and Io(s) are subrepresentations of the
following principal series: Ip(s) < I, (xp,s) and Iq(s) = Ip,(xq,s), where

Xp.s = 6;+1/281;1/2’ XQus = 88—1/26;1/2.

The representation I5(s) of H(A) is defined similarly to I (s).

We shall make use of the following lemma.

Lemma 3.1 The map p: H(F,) — H(F,) induces the map p*: I (s) = Iq,(s).

(i) p*: I (s) = Iq,(s) is an isomorphism of vector spaces and

he(p*(F)=p"(p(h) - f) VheH(R),f eIg (s).
(ii) Ifthe representation 1o, (s) is generated by the normalized spherical section f°,

—0
then Iy (s) is generated by the normalized spherical section f . If v | 00, then the con-
verse is also true.

(iii) If the representation Iq,(s) is irreducible, then I (s) is irreducible. If v | oo,
then the converse is also true.

Proof Part (i) follows from the fact that H(F,) = Q(F,) - p(H(F,)). If I, (s) is
irreducible (or generated by a spherical section), then obviously the same is true for
16., (S ) .

Let us show the converse statements for v|co. They rely on the following decom-
positions,, that hold for archimedean local fields:

(3.2) H(F,) = p(H(F,))X,,
(3.3) H(F,) = Q(F,)p(X,).
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The first decomposition holds, since the group p(H(F,)) is the topological identity
component of H(F, ) and X, meets every connected component of H(F, ). Similarly,
the second decomposition holds, since the group p(X,) is the topological identity
component of K, and Q(F, ) meets every component of H(F, ).

Assume that Iy (s) is generated by the spherical vector f°, and let IT be the sub-
representation of I, (s) generated by f°. Then (p*)~(II) is a p(H(F,))-subrep-
resentation of 5 (s) containing fO. 1t follows from (3.2) that (p*)~(I1) = I (s)
and hence IT = I, (s).

Assume that the representation I (s) is irreducible as a representation of H(F,).
The restriction of Iav(s) to p(H(F,)) is a direct sum of irreducible representa-
tions. By (3.2) the projection of f° to each summand is non-trivial. Hence, every
summand has a non-zero p(X,)-invariant vector. However, by (3.3) it follows that
dim(Iav(s)P(x”)) = 1. Hence the restriction of I (s) to p(H(Fy)) is irreducible
and so Iq, (s) is irreducible, as required. [ |

3.2 Induced Representations

We begin with the study of the reducibility of the induced representations Ip(3/10)
and I (1/6). Consider the following element of the Weyl group Wpg:

(3.4) w=

w[2342] ifK, =F, xF,,
w[232] ifK, # F, x F,.

The following properties are checked directly using the Gindikin-Karpelevich for-
mula (3.1).

Lemma 3.2 (i) Forw as in (3.4), it holds that W_I(XP)3/10) = XQ.1/6-
(ii) For any place v, the factor J,(w, xp 310) is finite and non-zero.
(iii) The factor J(w, xp,s) admits a simple pole at s = 3/10 and

Rrlr(2) ;
o Goam  TK=ExE

35 ], lim (5s=3/2)J(w. xp.c) = ) |
GOGoGE JK*FxE.

Theorem 3.3  Let v be any local place of F.

(i) The representation Ip,(3/10) has a unique irreducible quotient and that quotient
is spherical.

(ii) The representations Iq,(1/6) and Iy (1/6) have a unique irreducible quotient
and that quotient is spherical. Both representations are irreducible when K, is a field.

(iil) The restriction of M., v(xp,3/10) to Ip,(3/10) defines a surjective map onto
Io,(1/6).

Proof (i) The representation Ip,(3/10) is a quotient of Ip, (5;1/ 58)13/ %) which, by
induction in stages, can be written as a standard module Indg: [8}2/3 Indﬁ:m Ba, Xol-
Here R, is a standard parabolic subgroup of H, whose Levi subgroup A, is generated

by Th,y, and X.q,,., Yo denotes the trivial character. By Langlands’s classification
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theorem, it admits a unique irreducible quotient T1% that is the image of the oper-
ator MW,V((S;/ 56}3/ %), where  is the shortest representative of the longest coset in
W4\ Wy. Since MW,V(él_,l/ > 8};/ %)f° % 0, it follows that this quotient, I1%, is a spherical
representation. Thus Ip, (3/10) also admits IT9 as its unique irreducible quotient.

(ii) The special feature of Q and Q is that they have Abelian unipotent radical
and are conjugate to their opposite. The degenerate principal series associated with
maximal parabolic subgroups with these properties were studied by Sahi for local
Archimedean fields using X-types and by Weissman for non-Archimedean fields us-
ing the Fourier-Jacobi functor.

First assume that F, is non-Archimedean local field. M. Weissman proved the
statement for I, (1/6) in case K, = F, x F,, [Wei03, §5.1]. The case where K, is a field
will be dealt with in AppendixA, where we adapt his approach to the quasi-split case.
By Lemma 3.1, the claims follow for I5 (1/6).

Now assume that F, is Archimedean. Sahi [Sah95]studied the reducibility of I; (s);
the details are given in Appendix B. Lemma 3.1 implies the result for I, (1/6).

(iii) This follows directly from Lemma 3.2 (i), (ii), and the fact that f)?m o

(resp. f)?Q,]/s) generates Ip, (3/10) (resp. 1o, (1/6)). [ |
3.3 Eisenstein Series

The Eisenstein series £p,, (-, -, 1) associated with an induced representation I, (1) is
an operator that maps every standard section f € I, (1) to an automorphic function

e (V)= Y filye)

yeBu(F)\H(F)

The series converges for A in a positive cone and admits a meromorphic continuation
for all A. This is a classical result for K-finite sections, and for smooth sections it
follows from [Lap08]. The constant term of €5, (f, g, A) along Ny is given by

€y (-8 M)Ne = Y, My(A)(f1)(g)-

weWy

The Eisenstein series Ep(f,g,5)(g), €q(f> & 5)(g), and E5(f, g ) associated
with Ip(s), Iq(s), and I(s), respectively are defined similarly. For example, when
Re(s) is large, one has Ep(f, g,5) = X)ep(rn\u(r) fs(¥8),  fs € In(s).

By a standard computation [GRS97a], the constant term of Ep(f, g, s) along Ny
is computed as

Ep(freIve = 2, Mu(xpo)(f)(8)

weW(M,T)

where W(M, T) = {w e Wy | w-a; > 0,forall i # 2} is the set of the shortest
representatives of cosets in W\ Wy. Similarly

Eo(fsgsInu = 2 Mu(xas)(f)(8)

weW(L,T)

where W(L,T) = {w € Wy | w™' - a; > 0,forall i # 1} is the set of the shortest
representatives of cosets in W\ Wy.
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Note also that

Yo = /\(—1,5s+§,—1,—1) if K =F xF,
" Meussezoy K #FxF,

Yo = A6s+2,-1,-1,-1) if K=FxF,
Qs /1(6$+2,—1,—1) lfK + F xF.

Lemma 3.4 For ageneral s € C, it holds that
Eny(f18xp5) = Ep(f1,8:5) Enu(f* 8 Kas) = Ea(f'58:9):

Proof Consider the constant term along the unipotent radical Ny of the Borel sub-
group By: €, (f° & A) Ny = Zwew Jw(A) £, (g)- Let A = xp ;. We shall show that
for Re(s) > 0, the term J,, (xp,s) is holomorphic and vanishes unless w € W(M, T').
Indeed, recall that J(w, xp.s) = [Tas0,w-1a<0 Ja (xP,s)> Wwhere

Cr, ({xp,s» "))
Cp, ((xp,soa¥) +1)

Fora e @,leta’ =3 .5 ny(a)y”. For Re(s) > 0 it holds that

](x(XP,s) =

<XP 0(V> _J- ZyeAM ny(“) ifnvtz(‘x) =0,
o has real part bigger than1 if n,, («) # 0.

In particular, for Re(s) > 0, the term J(xp,s) is holomorphic for every a € ®*
and is zero if and only if (yp s, a) = -1, i.e., for @ € A\{az}. Asaresult J,,(xp,;s) is
holomorphic (for Re(s) > 0) and does not vanish if and only if w™' - a € ®* for any
a € A~ {a,}. This exactly means that w € W (M, T). Hence, &g, (f°, g, xp.s)Ny =
Ep(f°, g, s)n, for Re(s) > 0. By meromorphic continuation, the equality holds for
alls e C.

In addition, the cuspidal components of both &g, (f°, g, xp.s) and Ep(f°, g,s)
are zero along any standard parabolic subgroup strictly containing the Borel sub-
group By. Hence, by [MW95, Proposition 1.3.4], there is an equality of the auto-
morphic forms, i.e., Ep, (f°, g xp,s) = Ep(f°, g, 5). The equality €5, (f°, g, xq.s) =
€o(f°, g, s) is proven similarly. [

A. Segal [Segl8] studied the poles of Ep(f, g, s) for Re(s) > 0 and in particular at
s = 3/10. The result is quoted in Theorem 1.3.
Our goal is to study the behavior of £q(f, g, s) at s =1/6 for various K.

Proposition 3.5 (i) Let K be a field. For any standard section f; € Io(s), the
Eisenstein series Eq(fs, g, s) is holomorphic at s = 1/6.

(ii) Let K = F x F. For any standard section f; € Iq(s), the Eisenstein series
Eq(fs»g>s) has at most a simple pole at s = 1/6. The pole is attained by a spherical
function.
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weW(L,T) J(w, xq.s) Orderat1/6 | w*- Xa.1 (1)
1 1 0 \rz‘\t;\liwx
wi1] el 0 QT
w[12] feley 0 mAT
w [123] ?ﬁggii?) (Z'Eé?ﬂ) 1 m
) R e e o B iR
wizsan] | ey e i 0 e

Table 1

Proof The proof is standard. The order of a pole of degenerate Eisenstein series at
any point coincides with the order of a pole of its constant term along Ny. Since
I(3/10) is generated by a spherical vector for any K, it is enough to check that
€q(f° g,5)N, is holomorphic when K is a field, and admits a simple pole when
K=FxF.

(i) Let K be a field. Table 1 describes the Gindikin-Karpelevich factor associated
with each w € W(L, T) and the exponents w™" - xq,1/-

Simple poles are attained for J(w [123], xq,s) and J(w [1232], xq,s) at s = 1/6.

(Mw[1232](XQ,s) + MW[IB](XQ»S))(st)
_ ((Se(6s =)y o 0
= J(w[123], XQ.s) ( ( T (65) )fw[123]_1')(Q,3 + w[1232]*‘<xq,s) :

(E?;;;) = —1, the expression above is

Since w[2] fixes w[123]™" - xq,1/6 and lim;_,;/6
holomorphic at s = 1/6.

(ii) Now assume that K = Fx F. Table 2 describes the Gindikin-Karpelevich factors
associated with each w € W(L, T) and the relevant exponent w™ - yq .

A pole of order 2 at s = 1/6 is attained by M,y[1234] and M,,[12342]. Reasoning as

above,
(My12342](XQ.s) + Myw[1234] (XQ,S))(f)?Q)S)
(p(6s-1)
-1 10 (SE5) s, )

has at most a simple pole at s = 1/6. The pole is attained for f, since M, 123)(xq.s) f{
contributes a simple pole that cannot be cancelled by other terms. Indeed, the expo-

nent w [123] - Xq.1/6 is not equal to w™" - yq,1/6 for any other w e W(L, T). [ |
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we W(L,T) J(w, xq.s) Order of poleat1/6 | w™*- Xa.L (1)

1 1 0 Itlzttls‘sul

Wil frier) 0 Hard
w[i2] S 0 o
w[123] S 1 rian

w [124] s 1 P

w [1234] % 2 iioEl
wlia3az] | et 2 ot
wli23a21] | frledlel®d). 1 T

Table 2

Corollary 3.6  Forhe H(A), f ¢ I5(s), and for Re(s) >> 0 one has

Eq(p*(f): 1) = Eq(f> p(h),5).

In particular, the Eisenstein series E5(f, g,s) on H(A) is holomorphic at s = 1/6 when
K isa field. When K = F x F, it has at most a simple pole that is attained by the spherical
section f°.

3.4 Siegel-Weil Identity

Let A(H) denote the space of automorphic forms on H. Define
Aq(1/6): Io(1/6) — A(H), Ap(3/10): Ip(3/10) — A(H)
by
lim,_,;/6(6s-1)& ,e,s) ifK=FxF,
o(f>g.1/6) ifK#FxF,

limg_,3/10(5s —3/2)*Ep(f,g,s) ifK=FxF,

RO - {hmsﬁsm(Ss S3DEN(figs) K< FxE.

These operators are H(A)-equivariant. Denote by I1g and ITp their images in the

space A(H) of automorphic forms. The map Az (1/6): Io(1/6) —~ A(H) and the
representation Il are defined similarly to Aq(1/6) and I1q.
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Lemma 3.7  The restriction of the global intertwining operator M,,(xp,s) to Ip(s)
admits a simple pole at s = 3/10 that is attained by the spherical section. The operator

Xy = lgn/lo(Ss =3/2)My(xp.s): Ip(3/10) — Iq(1/6),

where w is given as in (3.4), is H(A)-equivariant, surjective, and satisfies
0 _ 0
Xy (fXP,3/1()) =Jw- fXQ,l/e >
where ], is defined in (3.5).

Proof For a section f; € Iz, (xp,s), let S denote a finite set of places of F such that
fow = f2, forall v ¢ S. By the Gindikin-Karpelevich formula, we have

M(w, xp,s)fs = (%Mw,V(XP,S)fs,V) ® (% Jv(w, XP:S)fs?v)
= ](W’ XP,S)( @S ]v(W’ )‘P,S)_IMW,V(/\)JCA,V) ® ( %fWO_I'XP,s,V}'

The term J(w, xp,s) has a simple pole at s = 3/10. The partially normalized inter-
twining operators

1
M v > s
Masom racolron (g ar) e (0e) ()
are entire due to [Win78] for v 4 co and [Sha80] for v | co. The term

Ha>0,w*1tx<0(Fa,v(<XP,5’ “v> + 1)

is holomorphic for s = 3/10. Thus, the terms J,(w, yp,s) M, ,(xp,s)(fs) are holo-

morphic at s = 3/10. In particular, the operator M,, (xp,s) has at most a simple pole

on I, (xp,s). Its restriction to Ip(s) admits a simple pole on the normalized spherical
section and hence the residue operator is H(A)-equivariant.

The claim now follows from Lemma 3.2 (iii), Section 3.1 (15), and Theorem 3.3 (ii).

|

Our goal is to prove the following.
Theorem 3.8
(i) (Siegel-Weil identity) There is an equality of operators
Ap(3/10) = Ag(1/6) 0 X,,: Ip(3/10) — A(H).

(ii) There is an equality of automorphic representations Ilp = I1g,.

Proof Since the spherical vector f° generates the representation Ip(3/10), it is suf-
ficient to show the equality for f°. Using Lemma 3.7, it remains to show that

AP(3/10)(f30/10) =Jw- AQ(1/6)(]?;(}6)
holds. The proof is similar to the proof of [Ike92, Proposition 1.8] and relies on the
properties of the normalized spherical Eisenstein series

(3.6) &k, (Lg) = [mgll)+ e (A a”) + DL a’) + (N a”) = D] €, (A, £ ),

where f} is the normalized spherical section in I, (1).
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Proposition 3.9  The normalized Eisenstein series (A, g) is entire and Wy-invar-
iant in the sense that for any w € Wy it holds that Eb(w - A, g) = EL(A, g).

This result is considered standard and is mentioned without proof in several pa-
pers, e.g., [Ike92]. For the sake of completeness of presentation, we prove it in Appen-
dix C.

Since w™ (xp,3/10) = Xq.1/6> for w as in (3.4), it follows that

€k, (Xp310-8) = €k, (X6 8)-
Let us prove Theorem 3.8 in the case of K = F x F. The case where K is a field
follows similarly.
One has xp 3/10 = A(-1,3,-1,-1) Substituting the formula for the normalizing factor
and using Lemma 3.4, one checks that
8%H(XP,3/10’g) = slim lim 8%,,(/1?) g)

23 51,583,541

2s —
- 23R L) () G (02 lim(s - 37 (£ 7).
Similarly, one has xq,1/6 = A(3,-1,-1,-1) and

et (xau/e-g) =lim lim &% (A5 g)

513 52,583,541

= 23R (p(2)* (r(3) r(4) lim(s = 3) - E( o & 72)
Dividing both sides by —2'23*R3{r(2)(r(3)*(#(4)* and making a linear change of
variables, we obtain

Rr(r(2) 20
Ap(3/10)(fino) = iAo (1/6 ,
as required.
The second part follows immediately, since X,, is surjective. ]

Remark 3.10 When K = F x F, the representation IIp = Il is the minimal
representation and is contained in the space of square integrable automorphic func-
tions. This was proved in [GGJ02], but it also follows from Table 2 by Jacquet’s crite-
rion [MW95, p. 74]. When K is a field, the image IIp = I, is a special value of an
Eisenstein series and is not contained in the space of square-integrable automorphic
functions.

4 Global Theta Lift

The goal of this section is to show that I1 is a regularized theta lift of a certain non-
cuspidal representation for the dual pair SL,(A) x H(A).

4.1 Notations and Setup

We recall the notations and the setup for the theta lift.
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(1) Let B =T - N be the Borel subgroup of SL, and let yx be a quadratic automor-
phic character of T(A) associated with the quadratic algebra K by class field theory.
Let X, = [1, X3, denote the standard maximal compact subgroup of SL,(A).

(2) Let Ig(yk,s) denote the smooth normalized induction IndZL(Zf)A ) XK 0. series
Es(xx> +» &> s) isholomorphic when K is a field and has at most a simple pole at s = 1/2
when K = Fx F. In the latter case the pole is attained by the standard spherical section

/ O(-,s) € Ind;L(zf)A ) Xk 93 and the residual representation is the trivial representation.

(3) Denoteby Ap(xk,1/2): Ip(xx,1/2) — A(SL,) the operator that is the leading
term of the Laurent expansion of the Eisenstein series Eg(yk, -, g, s) ats = 1/2. Let
15 (xk-1/2) denote the image of Ag(yx,1/2).

(4) The pair (SLy, H) is a dual pair inside Spis. There is a splitting SLy(A) x
H(A) — Sp,s(A) that depends on the form gx on H(A)). We denote the pullback of
the Weil representation wy, to SLy(A) x H(A) by @y, 4.

(5) The representation wy, 4, acts by way of the Schrédinger model on the space of
Schwartz functions 8 (Vg (A)). The representation wy, 4, is realized automorphically
via

Oy,qc: S(VR(A)) — A(SL, xH)
Opac (D) (& h) = D, wyq (g h)(v).

veVE(F)

(6) The space (V£, qx) admits a decomposition (V¢, qx) = (V7,q) & (Vi, q%)s
where (V§, gk ) is a one-dimensional quadratic space of discriminant K, and (V7, q”)
is the split quadratic space of dimension 7 and discriminant 1. The associated Weil
representations of SL, x SO(V4) and SL, x SO(V7), realized on (Vi) and 8(V7),
respectively, are denoted by w,, ;1 and wy,q7. The space wy, g7 ® wy, o1 is a dense sub-
space in wy, 4, and one has

(4.1) Oyax (1 ® $2) (g (h1, h2)) = Oy,q7 (¢1)(8> 1) 0y, g1 ($2)(8> h2)

for any (h1, hy) € SO(V7) x SO(V3), g € SLs, ¢1 € @y, 7, and ¢ € @y gt -
(7) For an automorphic form ¢ € A(SL,) and a Schwartz function ¢ € S(VE(A)),
the global theta lift 0, 4, (¢, ¢) is defined by

v.ax

(42) b (8.9) = [ () Mo(e) dg,
SL,(F)\SL2(A)

whenever it converges. This defines an automorphic form on H(A).

In the following discussion we shall omit subscripts and write w and 6 instead of
Wy,q, and 0y 5, when there is no confusion.

4.2 Regularization of the Theta Lift

For arbitrary f € ITg(yx,1/2) the integral in (4.2) does not converge, so a regulariza-
tion of the integral is required.
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When K = F x F, in which case IIg( yx,1/2) is trivial, the regularization was de-
tailed in [GGO6]. Although the idea of regularization is the same for the case where
K is a field, we repeat the construction for the convenience of the reader.

As afirst step, we define an SL, (A ) x H(A)-submodule w° of w such that for ¢ € w°
the function 6(¢)(g, h) is rapidly decreasing as a function of g € SL,(F)\ SL(A).

The function 6(¢)(g) is rapidly decreasing whenever w(g)¢(0) = 0 for all g €
SL,(A). Fixing an Archimedean place vy, define a map

T: wy, — Ip,, (1x:3/2),  T($)(g) = w(g)$(0)

and put 09, = Ker(T). This allows us to define 0’ = w9 ® (®yy, @,). That is
obviously an SL, (A) x H(A)-module. Hence, the map 6: w® ® Iz(yx,s) - A(H),
given by

06.NM = [ 8O ME (1. fg:5) g,
SLy(F)\SLy(A)
is well defined.

Recall that the center Z,, (sl,) of the universal enveloping algebra U,, (sl) is iso-
morphicto C [A], where A is the Casimir operator. The element Aactson I, (xx,,»S)
by the constant s? — 1/4. The element z = A - 2 € Z,,(sl,) annihilates the representa-
tions Ip, (Xk,,>+3/2) and acts by a non-zero constant s> - 9/4 on any Ip, (xx,,>s)
with s # £3/2.

Clearly, z defines an SL,(A) x H(A)-equivariant map from w to itself. Moreover,
the image is contained in ° since z commutes with T and annihilates I5(x,, > 3/2)-
This allows us to extend the map 6 from w° ® I3(yx, ) to @ ® Ig(xk,s),s # £3/2 by

o260 = 557 0(:9) (8 WEn (k. ) .

SL,(F)\SL,(A)

The extension is unique for all s # +3/2. Otherwise, having two possible extensions
0, and 9, of 8, we notice that 6; — 0, vanishes on v’ ® Ig(xx>s) and hence defines
an SL; (Fy, )-invariant functional on I (xx,,>3/2) ® Is(xk,,»$) that must be zero.

4.3 The Regularized Theta Lift of IT5(yx,1/2)

For an automorphic representation IT c A(SL,), we define the automorphic repre-
sentation 678 (IT) of H(A) to be generated by 08(¢, f) as ¢ € wy, 4, and f € I1.

Theorem 4.1  6"°¥(I1p(xx,1/2)) = 5.
Proof Let K = F x F. Then IIg(0,1/2) is trivial, and the result follows from
[GRS97a, Theorem 6.8].

Let K be a field. The proof of the theorem in this case will occupy the rest of this
section. We start by considering 08 (¢, Eg(xk, f> g s)) for Re(s) > 0.

Proposition 4.2  Let Re(s) > 0. For any ¢ € w° and f € Iz(xx,s), one has
0(¢, € (xx> f>59))(h) = EG(F (¢, £ ), by s/3)s
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where F(¢, f,s)(h) = fN(A)\SLZ(A) w(g, h)p(eo)f(g,s)dg, where eq is a non-zero

isotropic vector in Vg (F) such that Q(F) stabilizes Span{eo}; it is defined in Sec-
tion 3.1 (11).

Remark 4.3 For astandard section f(-,s) € Ig(xx. ), the section F(¢, f, s) is not
standard, but holomorphic.

This follows by the standard unfolding technique:

0'°(¢) (g, h)Ep(xk- f>g-5) dg
SL,(F)\SL,(A)

= [T alemeMmr(gs)dg

B(F)\SLy(A) v€Vk(F)

- [T w(@memf(gs)dg.
T(F)N(A)\SLa(A) V(ngg]
qx(v)=

The group H(F) acts on the set {v € VE(F) | qx(v) = 0}. The only non-zero orbit
is open. Let us choose the vector ey as its representative. The contribution of the zero
orbit vanishes since ¢ € w°. The stabilizer of e, satisfies

StabH(F)(eO) = SO(V§)(F)- V(F) c Q(F),
GL](F) . Stabg(F) (60) = a(F)
Thus the integral above equals

> > w(ghyh)$(eo)f(gs)dg

T(F)N(A)\SLy(A) YQ(F)\H(F) heGLi(F)

) f 2 > w(t'g,yh)¢(eo)f(g5)dg

T(F)N(A)\SLy(A) Y€QUF)\H(F) t<T(F)
= X f w(g yh)$(e0)f(g>5) dg
YeQ(F)\H(F)N(A)\ SLy(A)

= Y F (e frs)(yh),

yeQ(F)\H(F)

as required. ~
It remains to check that (¢, f, s) belongs to I5(s/3). Indeed, for (t,m) € L(A) =
GL1(A) x SO(VE)(A) it holds that

TG L) ((mh) = [ wlg (tm)h)(e)f(g) dg

N(A)\SL2(A)

_ f w(g, h)p(t " eo)f(g) dg.
N(A)\SLy(A)
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By the formulas of the Schrodinger model, one has

¢t e0) = 0t )|ty (1) B(eo)s  Fgs) = xc(DI*> £ ('),
dg =1d(t '),
and hence
(g, f.5)((1.m)g) = [t T (g, f.5)(g) = 82 ()F (. £,5)(g).
as required.

Remark 4.4 TForRe(s) > 0,¢=Q,¢, € ', and f = ®, f, € Ip(xx,s), there is a
factorization F(¢, f,s)(h) = IT, F,(¢v, fv.s)(h,), where

T fud) = [ @@ h)eeo)fulg:s)dg.

N(F,)\SL2(Fy)

Our goal is to define F(¢, f,s) at s = 1/2 using analytic continuation. In order to
do this, we consider the behaviour of F, (¢, f,,s)(h,).

Proposition 4.5 (i) For any place v, the map F, admits a holomorphic continu-
ation and is non-zero for Re(s) > -3/2.

(ii) Let K, be either F, x F, or the unramified quadratic extension of F,. We fix the
normalized spherical vectors ¢° € w, and fg L€ Is(xxk,»s). Then

(g0 L0 5) = G2+ 3)F g

—0
where f, _ is the normalized spherical section of I5 ().
(iii) For any place v, the map F,: w, ® I »(xx,,1/2) > I3, (1/6) is surjective.
(iv) Forv = vy, the map F,: @) ® Ipy, (xk,,»1/2) = Iavo (1/6) is surjective.

Proof (i) Recall that the section f; , is standard, so that its restriction f, to X, , does
not depend on s. Using the Iwasawa decomposition, SL,(F,) = N(F,) - T(F,) - K,
we can write I, (¢y, fo,5) =[5, L(wy(k)¢y,s) f, (k) dk, where

L) = [ a0 (00035 (0 de= [ 11724 (te0) d*.
T(Fy) FS

Obviously, the operator L( -, s) is holomorphic for Re(s) > -3/2 and does not
vanish for any v. Thus, the operator F, is also holomorphic for Re(s) > -3/2.
We now show that &, is non-zero for Re(s) > —3/2. Note that for any

beB(F,)nX,,

holds L(w,(b)¢y,s) = xx,(b)L(¢y,s). For s with Re(s) > —3/2, we choose ¢, such
that L(¢y,,s) # 0. We can choose f,, whose support modulo B, (F,) nX,,, is small
enough, so that F,(¢,, f,,s) # 0.
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(ii) If Ip, (xx,» ) is an unramified representation with f° the normalized spher-
Zv,s

ical vector, then J, (¢°, fo s)is spherical One checks that L(¢%,s) = {,(2s +3) and

hence F, (¢° fv ,$) =, (2s + 3)fv e

(iii) If K, = F, x F,, then the representation I, ( xx,,1/2) = Ip,(x0,1/2), where
Xo is the trivial character, is generated by the spherical vector and the image of the
spherical data is not zero. The fact that I (1/ 6) is generated by the spherical vector

implies surjectivity. If K, is a field, then I (1 /6) is irreducible, as shown in Theorem
3.3, and hence the non-vanishing of F,, 1mphes its surjectivity.

(iv) The map Fy,: wy, ® Ip, (xx,,.1/2) = Iavo (1/6) is surjective and SL, xH-
equivariant. If U = F,, (w9, ®1p, (xx,1/2)) is a proper subrepresentation of I5(1/6),
then the map J,, factors to a non-zero SL,-equivariant map

Is,, (xx,,>3/2) ® In,, (xx,,»1/2) = Ig, (1/6)/U #0,

which is impossible. Hence, F,, when restricted to w9, ®1 B,, (XK., »1/2), is surjective.
|

We define the holomorphic continuation of the operator F( -, -, s) for Re(s) > -1
Let ¢ = ® ¢, € 0’ f = ® f, € Ip(xk.s) be factorizable data and let S be a finite set
of places of F such that K,, ¢,, and f, are unramified outside of S. Then the equality

F(¢, fr5)(h) = (25 + 3)[%73,5 x vel'lsfﬂ(</>v,fw5)(hv)]

holds for Re(s) > 0 which allows us to define F(¢, f,1/2). Moreover, the operator
F(-, -, 1/2): 0° @ Ip(yk,1/2) > I5(1/6) is surjective.
Theorem 4.1 follows since, for ¢ € @° and f € Iz(yx,1/2), one has

0(¢, Es(xx> f>1/2)) = EG(F (¢, £,1/2),-,1/6). u
5 Proof of Theorem 1.1

In this section we prove the remaining direction of Theorem 1.1.

Theorem 5.1 Let 7 be an irreducible cuspidal representation of G,(A) such that
L5 (s, m,5t) has a pole at s = 2. Then RSy, () # 0.

Proof Since £°(s,7,st) has a pole at s = 2, it follows from Theorem 2.4 (ii) that
either F, () = {F x F x F} or there exists a quadratic field extension K of F so that
FxKeFy(n).

In the first case, RS, () # 0 by Theorem 2.4 (iii).

In the second case put H = Hpxx and H = SO(VE). We conclude from equations
(1.1) and (1.2) that there exist ¢ € mand 5 € I1p = 1, an automorphic form on H(A),
such that [ ¢(h)n(h)dh # 0.

The embedding of G, into H factors through H. Hence, by Corollary 3.6, there
exists 7] € [T such that [, ¢(h)7(h)dh # 0.
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Since the map Ag(1/6) o F(-, -,1/2): w® ® Ip(yx,1/2) —~ I is surjective, it
follows that there exist ¢ € 0, f € I( yx,1/2) such that

90(’1)( f Oy.qx (6) (8 h)Es (XK f>851/2) dg)dh 0.
G2(F)\G2(A) SLy(F)\SL2(A)

Since ¢ is rapidly decreasing on G, and 0y, 4, (¢) is rapidly decreasing on SL,,
the integral converges absolutely and it is possible to change the order of integration.
Hence

([ o(m)0yac(@)g ) dh) En(xx f.2:1/2) dg 0

SL2(F)\SL2(A) G2(F)\G2(A)
for some choice of data. In particular, the inner integral does not vanish.

By (4.1), there exist ¢ € 71, ¢1 € wy,q7, and ¢, € w, ;1 such that for some g € SL,

9()0y. 7 (91)(g:h) dh -0y o ($2)(g) # 0
G2(F)\G2(A)

and hence RS () # 0, as required. [ |

Remark 5.2 The argument above can be visualized by the following see-saw dia-

gram.
i >< i
ASL, G, x SO(V})

Remark 5.3  Assume that £°(s,7,st) has a simple pole at s = 2 and F x K €
F\w(rt). We can distinguish whether 7 is a weak lift from 7 ® 1 for cuspidal or for
one-dimensional 7 by studying the twisted £-function £°(s, 7 ® y, st®st), whose
meromorphic continuation was also studied in [Segl7, Theorem 3.1]. Specifically,
£5(s,m ® yk,st®st) has a simple pole at s = 2 if and only if 7 is a weak lift of
(xx o det) ® 1. If it is holomorphic, then 7 is a weak lift of 7 ® 1 for a cuspidal 7.

A Irreducibility of 1o(1/6) When K is a Non-Archimedean Field

We fix a finite place v of F such that K, is a field and drop v from all notations. For
any group G, we write just G for G(F).

In [Wei03], the main object was a degenerate principal series associated with a par-
abolic subgroup with an Abelian unipotent radical of a split simply-connected simply-
laced group. One uses the Fourier-Jacobi functor to determine its reducibility. In
particular, for K = F x F, the result of [Wei03], applied to I (s), shows that I (1/6)
is of length 2 and its unique irreducible quotient is spherical. For a field K, the group
Hpyx is not split and the restricted root system is not simply-laced and hence the re-
sults of [Wei03] cannot be applied directly. In this section, we prove that I(1/6) is
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irreducible using a variation of the arguments in [Wei03]. When the statements and
their proofs can be repeated verbatim, we refer the reader to [Wei03].

A.1 The Fourier-Jacobi Functor

This functor takes smooth representations of H to the smooth representations of SL,.
The unipotent radical U of P is a Heisenberg group with center Z and the polar-
ization U = A- A’ - Z, where

Z ={xpa(r) |reF},
A= {x[l,l,o](”l)x[l,l,l](rz)x[l,l,z](”3) |ri,r3 € F, ry € K},
A" = {x70,1,0)(r1)%70,1,1] (12)X[0,1,2(3) | 11, 73 € F, 15 € K}.
By the Stone-von Neumann theory, for any additive character y of Z ~ G, there is

unique irreducible representation w,, of U with central character y. It can be realized

asind}, v, where v is extended trivially on A. By restriction this space is isomorphic
to the space of Schwartz functions S(A’). The Weil representation can be extended to
a representation wy, of Sp(U/Z) - U.

Proposition A.1  Fix an embedding ¢,,: SL, = M' = Sp(U/Z), where M’ is the
derived group of the Levi factor M of P. Then the image splitsin Sp(U[Z). In particular,
the Weil representation wy, of U can be extended to a representation of SL, -U.

Once this proposition is proved we can define

Definition A.2 The Fourier-Jacobi functor of a smooth representation 7 of H is
defined by FJ,, (7) = Homy (wy, 77,y ), which is a smooth representation of SL,.

Note that the functor is exact as a composition of two exact functors.

Proof of Proposition A.1 The splitting is provided by S. Kudla [Kud94], but to apply
his result we need to fix certain isomorphisms.

Consider the four-dimensional quadratic space V = F @ K & F equipped with a
quadratic form

qr(7) =nrs + TrK/p(rg), F=(r,ryr3)eV; r,rseF,rpek.

Let H = X @ Y be a two-dimensional symplectic space with the standard isotropic
polarization. In particular, we have Sp(H) ~ SL,.

The space W = V®H is equipped with the natural symplectic form and the follow-
ing polarization W=V o@H =V ® X ® V® Y. We denote by H(W) the Heisenberg
group associated with the space W and we identify

U~xH(W), U/Z=W, A~VeX, A ~VeY.

Under this identification, the subgroup ¢4, (SLy) of Sp(U/Z) is identified with
Sp(H) = Sp(W). N

The dual pair Sp(H) x O(V) splits in Sp(W) and the splitting Sy g is given by
[Kud94]. By pullback, wy, is a representation of Sp(H) - H(W) = SL, -U. [ |
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We note that, according to [Wei03, Proposition 3.1], F],, is independent of y ,hence
we denote it by FJ.

Proposition A.3  Let o be an irreducible representation of H. Then FJ(o) = 0 if and
only if o is trivial.

Proof If ¢ is trivial, then 0, = 0 and hence FJ, (0) = 0. Conversely, if FJ(c) = 0,
then 0z, = 0 for any non-trivial character y of Z, i.e., Z acts trivally on 0. The sub-
group generated by the conjugates of Z is a normal subgroup of H. Since H modulo
its finite center is simple, we deduce that o is trivial on H. ]

A.2 The Effect of the Fourier-Jacobi Functor on the Principal Series

Let B denote the Borel subgroup of SL, and let §5 denote its modular character. The
group B acts by conjugation on U normalizing AZ and commuting with Z. Hence ev-
ery b € B defines an endomorphism Ad(b) of ind}, y by (Ad(b)¢)(u) = ¢(bub™).
Any b € Bhasaform b = t(a)-n, where t(a) = a) (a), and n belongs to the unipotent
radical of B.

Proposition A.4  FJ(Iq(s)) = Ig(xk, 3s).
Proof The proofis computational. We begin with the following lemma

Lemma A.5 (i) Forany b = t(a)n € B, the endomorphism Ad(b) o wy(b) of
indY,, v is the scalar yx(a)|al* = XK(a)((?gZS;l/z)(t(a)).
(ii) There is an SL, -U-equivariant isomorphism

J: s (xx:35) ® wy = ind3 3 [ 65 (84°05"%) @ v,
defined by J(f ® ¢)(mu) = f(m)wy (m)g(mum™).

Proof (i) Similarly to [Wei03, Proposition 2.6], one shows that Ad(b) o wy () acts

onindY, ¥ by a character and hence is trivial on the unipotent radical of the Borel. To
determine the character on the torus T of B, we use the Schrodinger module S(V®Y)
of wy. The formula of the action of t(a) in this model appears in [Pra98, SL.1].

Ad(t(a))wy (1(a))p(v) = wy(t(a))p(a™'v) = yx(a)laPe(v)
= xx(a)(8978,%) (t(a))g(v).

(ii) It follows from part (i) that J(¢ ® f) belongs to ind%]fj\'ZU[(Sf;‘((ng 81;1/2) ® ] for

any f € Ig(xk,3s) and ¢ € wy. The bijectivity of the map J follows similarly to that
in [Wei03, Theorem 4.3.1]. |

By [Wei03, Propositions 3.2, 4.2.3] we have an SL,-equivariant isomorphism
FJ(Iq(s)) ® wy 2 Ig(s)z,y = 15 (s)z,y, where wy = w[2132132] is the shortest rep-
resentative of the coset containing the longest element in W(M, T') = P\H/Bp and
Iy'(s) = {f € Iq(s) [ Supp(f) € QwoP}.
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There is a chain of SL, -U-equivariant isomorphisms:
18(5)z,y = indy 3 [(31a(34°8,")) @ ]
= ind} 27 [65 (80705"") ® v] 2 I5(xx. 35) ® wy.

12

The first isomorphism is realized via the map sending f € I1}’ (s) z,y to
F(g) = f f(wogz)y(z)dz, VgeSL,-U.
z

The integral is convergent, since for any fixed g the function f(wpgz) is compactly
supported as a function of z. The second isomorphism follows from the fact that

dq(t(a)) =al® = 85(t(a))*,
and the third isomorphism is part (ii) of the lemma. Hence, FJ(Io(s)) ® wy =
Ig(xx»3s) ® wy and so FJ(Iq(s)) = Is(xk,3s), as required. ]

Finally, we can prove the irreducibility of I (1/6). Inspecting the Jacquet module
Iq(1/6), it is easy to see that I(1/6) does not contain trivial constituents. Hence,
by the exactness of FJ and Proposition A.3, the length of I5(1/6) equals the length of
FJ(Iq(1/6)) = Ip(xx,1/2), which is an irreducible representation of SL;.

B Structure of I;(1/6) at Archimedean Places

In this section, v is an Archimedean place, real or complex. We drop v from all nota-
tions. We consider the structure of the representation I5(1/6).

Proposition B.1 (i) If F = Cand K = C x C, then I5(1/6) has length two and
admits a unique irreducible quotient that is spherical.

(i) If F = Rand K = R x R, then I5(1/6) has length three and admits a unique
irreducible quotient that is spherical.

(i) IfF =R and K = C, then I5(1/6) is spherical and irreducible.

Proof We use the results of [Sah95] to establish the composition series of the repre-
sentation 16(1/ 6). It is essential to present the relevant notations.

o Leth = Lie(H(F)), = Lie(X), [ = Lie(L(F)), and fix a Cartan subalgebra t of
£ orthogonal to €N [. Also, let @ be the Cartan involution of H(F) associated with K
and denote by p the (-1)-eigenspace of @ in h We fix a basis y;, y, of the dual space
to t* as in [Sah95, §0].

« The symmetric space K/X n L(F) is of rank two and its root system is of type
D, for F = R and of type C, when F = C.

o The half-sum of positive roots of the root system of ¢ relative to t is given by
p=ryrt+rys.

« We consider the degenerate principal series (71¢, 5o (1)) as an (b, XK)-module.

Since it is admissible, its structure is the same as of an H(F)-module. The represen-
tation 5o (1/6) is denoted in [Sah95] by I(1) for F = R and I(2) for F = C. Since

the parabolic subgroups Q" and Q are conjugate, one has Ta(l/6) ~ I'er(1/6), and
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so the composition series of the latter determines the composition series of I5(1/6).
The reducibility of the representation I(t) is given in terms of the numbers r; above.

« As a representation of X, I(t) is isomorphic to L?(3/X n L(F), which is, by
[Hel84, Theorem V.4.3], a multiplicity-free sum of highest weight representations,
called K-types. For each K-type, Sahi defined its rank and proved [Sah95, Theorem
3B] that two K-types belong to the same irreducible constituent of I(t) if and only if
they have the same rank.

Now we list the relevant numbers for the cases of interest and cite the relevant
theorems from [Sah95].

Casel: F = C,K = CxC. The group is SO(8, C). The root system of the symmetric
space is of type C,. One has r; = 5/2 and r, = 1/2. Theorem 3C implies that I(2) has
exactly two irreducible constituents, one of rank 1 that is the minimal representation
denoted by IT;, and another of rank 2 denoted by II,. Moreover, IT; is a spherical
subrepresentation of I(2).

Case2: F =R, K = RxR. The group is SO(4, 4). The root system of the symmetric
space is of type D,. One has r; = 1,7, = 0. Theorem 3C implies that the representation
I(1) has exactly three irreducible constituents of rank 1, 2* and 27, respectively, all of
them unitarizable. The constituents of rank 2* are quotients.

Case 3: F = R,K = C. The group is SO(5, 3). The root system of the symmetric
space is of type D,. One has r; = 1and r, = 1/2. The Theorem 3A implies that I(1) is
irreducible.

It remains to show that I(2) in Case 1 and I(1) in Case 2 are not direct sums of
their constituents, viz. they have a unique irreducible subrepresentation.

Let us do that for Case 1. Case 2 is proven similarly.

The XK types are the highest weight representations Vianaz) = Vapi+ary, Where
ay > ay > 0. Let V(4 a,) = Va,y,+a,y, denote the highest weight vector in Vg, 4,).

The roots +y;, +y, are the extreme t-weights of p and hence their weight-space,
Piy, and p_,,, are one-dimensional. We fix non-zero elements Xj, X, X;, and X; of
Pyis Py> Py and p_,, respectively.

For any highest weight y, 7¢(X;) is a X-orthogonal projection from V, to
Vy+y, sending v, to ¢;(y,t)v,.,,. Hence, V., occurs in m,(h)V, if and only if
Ci(Ps t)Vysy, 0.

Similarly, 7r,(X;) is a K-orthogonal projection from V., to V, sending v, to
di(y,t)v,. Hence, V) occurs in 71,(h) V,,, if and only if d; (y, t) vy, # 0.

Since V(y,9) is of rank one [Sah95, p. 10], it is a constituent of IT;. On the other
hand, V1) has rank two and hence it is a constituent of IT,. Furthermore, m(X3)
isa ?—orthogonal projection from Vi 1y to V{y,g) that sends v(y 1y to da (1, é)V(l,o)-
From [Sah95, Theorem 1] it follows that d,(y;, %) (denoted d,(y1,2) there) is non-
zero and hence V{y,9y occurs in 73/6(h) Vy+y,. We conclude that IT, generates I(2)
and hence cannot be a submodule.

Taking the contragredient, we conclude that II, is a subrepresentation and T, is
the unique irreducible quotient of I5(1/6). In particular, I(1/6) is generated by its
spherical vector. ]
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C The Normalized Eisenstein Series

Assume that G is a quasi-split, simply-connected and simple group defined over F. Let
Bbe a Borel subgroup of G with maximal torus T containing a maximal split torus Ts.
Let @ denote the relative root system of G with respect to (B, Ts) with relative Weyl
group W = W(G, Ts). Let ®* denote the associated set of positive roots of G with
the set of simple roots A. The Weyl group W is generated by the simple reflections
we with @ € A. For any a € ®*, we denote by F, the field of definition of the root
«. Finally, the space ai = X*(T) ® C can be identified with the space of totally
unramified automorphic characters of T(A).

Let A € af:. We consider the Eisenstein series E5(A, f}, g) corresponding to the

normalized spherical section f} € Ind$ A (normalized induction). As in equation
(3.6), let

eb(tg) =[ TT L ((ha) + DIEAL W] Es (L A9,

where I (1) = (A, a¥) £ 1.
Proposition C.1 ~ The normalized Eisenstein series £ (1, g) is entire and W -invariant.

Proof We start by proving that €4 (1, g) is indeed W-invariant. It suffices to prove
it for a simple reflection wg for some f3 € A, since W is generated by these reflections.
Indeed, applying the functional equation [MW95, IV.1.10]

es(A fi>8) = Ep(wp - A, M(wg, 1) fy, 8)s
the fact that
T lg(wp -Vl (wg-2) = T IV (A),
aed+ aed+

o (<)) .
(x£11>+ (r,((wp- A a )+1)_W“5’+ Cr, ((A,a”) +1),

and the functional equation (r_(s) = (g (1~ s) for all & € @7, yields

Eh(p-1,9)= [ 1 o, ((wp- o) + DI (w1 (- V)] a1, 15,10 9)

{ry ({1, BY) +1
W[ 1 4e, ({4 o) + DI ()]
Fp s aed*

x Ep(L, M(wp, wg - 1) .00 8)
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Cry (=(A, B¥) +1
) W[ al:[lﬁ- (Fm((k’(xv> +1)Z;()L)l;(l)]

Cr, ({1 BY)) 0
G gy

=[ s Ce ((Aa”) + DI (NI M) ] €5 (N £ 8) = €5 (L 8).-

We now turn to prove that €&(A, g) is entire. It follows from the general theory
of Eisenstein series that £} (A, g) is entire if and only if its constant term along B is
entire. We recall that

F /\"xv
EB(A,f,{’,t)NZ;V( I M

wlagdt

)fu(z_l-)t(t)'

We write
F(A,t) = &5 (A, fi, t)n = L(A) Z;VFW(A)J[»S-LAU)’

where L(A) = [Tgeq+ I (1)1 (1) and
FEM)=( T ¢aha)+))( TT e (ha)).

acdt acdt
wlaedt wlagdt

While L(A) is entire, F,, (A,t) can possibly have simple poles along the hyper-
planes H, = {1 € af | (A, a") = €}, « € ®*,e = —1,0,1. To prove that the sum is
holomorphic, we shall show the cancellation of all the poles, either by studying the
contribution of different terms or by using the zeroes of L(1). Let

xX= U (HSnHS), Y= |J HE.

e,e’e{-1,0,1} ee{-1,0,1}
a,a’'edt axa’ acd+

The set X is a closed subset of af. of codimension 2. We first prove that F(A, t) is
holomorphic on ag \ X.

Forany w € W and a € @™, the poles of F,, (1) along H! \ X cancel by the zeroes
of L(\) along these hyper-planes. Since F(A,t) = ¥,cw L(A)Fy(1) f2-1, (£), the
function F(A, t) is holomorphic on Ugep+ HE' \ X.

By W-invariance, it is enough to show that F(A, t) is holomorphic along H% \ X
for any simple root « since any root is W-conjugate to a simple root. Let us fix such a.

The function F,,(1) admits a simple pole along H> \ X for any w € W. We shall
show that F,,_,, (1) + F,, (1) is holomorphic along H) \ X for any w € W.

Introduce a partition of the set of positive roots as ®*(w) u @~ (w), where

O (w)={B:B>0,w"-B>0}, D (w)={B:B>0,w"-B<0}.
Without loss of generality, assume that I (w,w) > I(w), where [ is the length func-
tion on W. Hence, one has

DT (waw) = wo(P"(w) N {a}), O (waw) = wa(®™(w)) u{a}.

Claim  Forany A ¢ Y it holds that F,, ,,(1) = F,,(w;' - 1).
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Indeed, using the relations above we obtain

Fowg )= TT C(awa-B)+1)( TT ¢r(awa-B))

Bed+(w) Be®=(w)

=(T1 G (ABY+D) e (—(ha)+1)

Bed* (waw)

(O TT G (W B) (Cr (1 a”)) ™ = Fuw (1)

Bed~ (waw)

We use the claim to show the cancellation of the pole along HY. The residue of F,,
along the hyperplane Hy, is defined by [Resgo F,, J(A") = limy_x/ ((A, &) F, (A) for
A € HY. Forany A ¢ Y, write A = sa + A/, where A € HY. Thus, w, - A = —sa + A" and
(A, a) = 2s. Hence,

[Respo Fuyw](A') = lin325~Fw(—soc+)L') = —lin325~Fw(soc+)L') = —[Resyp F,, J(A")

and hence the poles of F,, (1) f-1, (t) and F(y,.) (1) £, 1.1 (1) along Hg \ X can-
cel each other. Thus, we proved that £§ (1, )y is holomorphic on aj: \ X. By Hartogs’
theorem, [H6r90, Theorem 2.3.2], £ (A, )y is entire and so is €& (A, £). [ |
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