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ABSTRACT

For the martingale case Föllmer and Sondermann (1986) introduced a unique
admissible risk-minimizing hedging strategy for any square-integrable contingent
claim H. Schweizer (1991) developed their theory further to the semimartingale
case introducing the notion of local risk-minimization. Møller (2001) extended
the theory of Föllmer and Sondermann (1986) to hedge general payment
processes occurring mainly in insurance. We expand local risk-minimization to
the theory of hedging general payment processes and derive such a hedging
strategy for general unit-linked life insurance contracts in a general Lévy process
financial market.
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1. INTRODUCTION

In this paper we consider life insurance contracts driven by a Markov jump
process and having unit-linked benefits (and possibly premiums) based on the
Lévy-process stock model of Chan (1999). Those benefits are usually due
immediately upon occurrence of some insurance event at random times. In life
insurance such an event could be for instance a disability or the death of the
policy-holder. Similarly, premiums are paid according to a predefined premium
scheme for a fixed time or as long as the policy-holder is alive. For those gen-
eral contracts we derive a locally risk-minimizing hedging strategy and compute
additionally the involved hedging risk, which has a local interpretation under
the historical measure. This is an important figure, since, as in reality, we face
an incomplete financial market in which riskless hedging is not possible. The
model and the results presented here complement Møller (2001) who derives
risk-minimizing hedging strategies for unit-linked life insurance payment streams
in the same multi-state Markov model but for a Black-Scholes martingale
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financial market. Moreover, in analogy to Riesner (2006a) we show for the
generalized model that the involved hedging risk can be separated in two com-
ponents: financial risk and insurance risk. In Møller (2001) the pure financial
risk is not present, since for a complete financial market, turned incomplete by
the mortality law, only the insurance risk appears.

To obtain a hedging strategy for a square-integrable contingent claim with
fixed maturity in a semimartingale financial market Schweizer (1991) developed
the theory of local risk-minimization. This theory is an extension of risk-mini-
mization developed earlier by Föllmer and Sondermann (1986) for the martin-
gale case. Møller (2001) enlarged the theory of Föllmer and Sondermann (1986)
to risk-minimizing hedging of general payoff streams, where the hedgers’ lia-
bilities are given by a square-integrable payment process. In the Appendix we
justify this concept to be embedded without any difficulties in the theory of local
risk-minimization (for the semimartingale case). We are therefore allowed to
apply it to our setting.

Additionally, we would like to mention Møller (1998) who began the analy-
sis of such hedging strategies in a Black-Scholes financial market. To apply the
local risk-minimizing hedging theory for square-integrable contingent claims
with fixed maturity Møller (1998) restricts himself to insurance contracts
having a single premium payment at the beginning and paying benefits at the
end of the considered time horizon only. This has also been generalized in
Riesner (2006a) towards a general Lévy process financial market.

2. THE MODEL

We consider a filtered probability space (W, �, (Ft)0 ≤ t ≤ T,�) modeled as a prod-
uct space of two independent filtered probability spaces: (W1, �, (Gt)0 ≤ t ≤ T, �1)
describing the financial market and (W2, �, (Ht)0 ≤ t ≤ T, �2) describing the insur-
ance portfolio. The filtrations (Gt)0 ≤ t ≤ T and (Ht)0 ≤ t ≤ T are used to construct the
filtration (Ft)0 ≤ t ≤ T via Ft =Gt 7 Ht, each 0 ≤ t ≤ T. All mentioned probability
spaces are assumed to satisfy the usual hypothesis of right continuity and com-
pleteness. T > 0 is the finite time-horizon. P and O denote the predictable and
the optional s-algebra on W ≈ [0,T ], respectively.

Financial market

The Lévy-process financial market model that we will work with is introduced
in Chan (1999). Given a (càdlàg) Lévy process L = (Lt)0 ≤ t ≤ T with L0 = 0 a.s.,
it consists of a risky investment S = (St)0 ≤ t ≤ T and a risk-free investment alter-
native B = (Bt)0 ≤ t ≤ T given by

dSt = St–(bt dt + st dLt), S0 > 0, (1)

dBt = rt Bt dt, B0 = 1,
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where the drift bt, the volatility st > 0 and the risk-free interest rate rt are sup-
posed to be continuous and deterministic functions on [0,T ]. The coefficient
functions f (t, x) = bt x and g (t, x) = st x are obviously process-Lipschitz.
Therefore the solution of (1) is unique (cf. Protter (2004), Chapter V, Section 3,
Theorem 6 and 7). The filtration Gt is supposed to be the completed s-algebra
s(Ls, 0 ≤ s ≤ t). We denote by N(dt,dx) the Poisson random measure on [0,3) ≈
� 5 {0} corresponding to the jumps of L and given the Lévy measure n (dx) of L
we define the corresponding compensated measure by M (dt,dx) := N (dt,dx) –
dtn (dx) (dt denotes the Lebesgue measure). For notational convenience we
set Nt ({0}) / n ({0}) = 0 and D f (t) = f (t) – f (t–) for any suitable function f.
The Lévy measure n (dx) satisfies in general min

�
# (1,x2)n(dx) < 3. We assume

further that
3

< .x dxn
>x 1

3# ^ h
! +

(2)

Assumption (2) (cf. Chan (1999)) allows one to decompose the process L into

Lt = cWt + Mt + at,

where (cWt)(0 ≤ t ≤ T ) is a Brownian Motion with variance c2t for some c ! (0,3)
and Mt = xM

t

0 �
## (ds,dx), 0 ≤ t ≤ T, is a square-integrable martingale. Finally,

a = �(L1). To have St > 0, we assume DLt = DMt > –1/st �1-a.s. and all 0 ≤ t ≤ T.
The discounted stock price St = St Bt

–1 is square-integrable and admits the fol-
lowing semimartingale decomposition:

St = S0 + Mt + At,

where Mt = ss
t

0
# Ss– d(cWs + Ms) is a �1-martingale and At = s s s( )b r

t

0
+ -as# Ss–

ds is a continuous, adapted and hence predictable process. There exist arbitrary
many measures equivalent to �1 such that S is a martingale under such a mea-
sure (cf. Chan (1999)). One such measure is the Föllmer-Schweizer measure
which we denote by �1 and which we choose to find a locally risk-minimizing
hedging strategy (cf. Appendix A.1). Its construction is described in Schweizer
(1991), Chan (1999) and is repeated in Riesner (2006a). With this measure we
consider in the following the risk-neutral financial market (W1,�, (Gt)0 ≤ t ≤T,�1).
M� (ds, dx) denotes the compensated jump measure of L under �1. Its com-
pensator is given by

nt
�(dx)dt = (1 + Gtx)n(dx)dt

with Girsanov parameter Gt =
( )c v

r b a

s

s

t

t t t
2 +

- -
and v = 2x

�
# n (dx). S is a square-integrable

martingale under �1 and admits the decomposition

dSt = st St–d (cWt
� + Mt

� ),
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where W� is a standard Brownian motion under �1 and Mt
�= x

t

0 �
## M�(ds,dx),

0 ≤ t ≤ T, is the compensated jump process of L under �1. Note that because
of the additional assumption (2) v and n�(·) are well-defined and that moreover
Mt

� is square-integrable.

Life insurance

One possible model to describe (W2,�, (H t)0 ≤ t ≤ T,�2) is the classical multi-state
Markov model of Hoem (1969); see also Møller (2001). One considers the set
J = {0,1,…,J} of possible states of a policy where usually one assumes 0 to
be its initial state. J = {active, disabled, dead} describes exemplarily three pos-
sible states of an insured individual. A càdlàg Markov process Z = (Zt)0 ≤ t ≤ T

with values in J and initial distribution (1,0, …,0) is now used to indicate the
state of the policy at time t. One further defines H t to be the completed s-alge-
bra s (Zs, 0 ≤ s ≤ t ). In order to count the number of transitions from state j to
state k in the time interval (0, t ] a multivariate counting process (N jk)j ! k is
defined by

Nt
jk = #{s | s ! (0, t ], Zs– = j, Zs = k} j,k ! J , j ! k, 0 ≤ t ≤ T.

Moreover the processes It
j =1{Zt = j}, j ! J , are introduced indicating whether the

policy is in state j at time t or not. The Markov chain Z is further assumed to
posses transition rates l jk given by

lt
jk = I j

t– mt
jk, 0 ≤ t ≤ T,

where the intensities of transition mt
jk are supposed to exist and to be determin-

istic, continuous functions. The transition rates l jk compensate the counting
processes Njk resulting in square-integrable, mutually orthogonal and zero-mean
martingales

Mt
jk = Nt

jk – jk
u ,dul

t

0
# 0 ≤ t ≤ T.

The orthogonality follows from the fact that the Njk do not have any simul-
taneous jumps (cf. Kallenberg (2002), Lemma 15.6). The predictable quadratic
variation process �Mjk, Mjk�t is hence given by

�Mjk, Mjk�t = jk
u dul

t

0
# = u

jj k
u ,I dum

t

0
# 0 ≤ t ≤ T. (3)

Given the intensities of transition the transition probabilities pjk(t,u) = �2(Zu =
k |Zt = j) of Z are determined by Kolmogorov’s backward differential equations

jj k l
j pk
l

kpm, , , ,dt
d t u t u t u

!:
t

l l j

= -p !^ ^ ^_h h hi 0 ≤ t ≤ u ≤ T, (4)

70 M. RIESNER

9784-07_Astin37/1_04  30-05-2007  14:21  Pagina 70

https://doi.org/10.2143/AST.37.1.2020799 Published online by Cambridge University Press

https://doi.org/10.2143/AST.37.1.2020799


subject to the conditions pjk(u,u) = 1{ j = k}. We follow Aase and Persson (1994)
and Møller (1998, 2001) in assuming risk-neutrality of an insurance company
towards mortality.

3. LOCALLY RISK-MINIMIZING HEDGING

Using the independence of the financial market and the insurance portfolio
we work in the following on the product space (W,�,�) where � denotes the
product measure of �1 and �2. This is the risk-neutral measure for the insurer
facing the hedging problem of unit-linked life insurance contracts. The multi-state
Markov insurance model admits quite general forms of benefit and premium
payments (cf. Møller (2001)). First, it might be the case that a transition from
state j to state k at time t immediately induces a payment gt

jk = g jk(t,St) and
second, it is possible that depending on the policy sojourning in state j the
insurance company continuously pays the rate gt

j = gj(t,St) at time t. Payments
of the first type usually occur with general life insurances whereas state-wise
life annuities typically generate payments of the second type. Being in state j,
the policy shall additionally admit lump-sum annuity payments gt

j = g j(t,St) at
fixed deterministic times t !G = {t1, …,tn} for some n ≥ 1. The amount payable
at time t! [0,T ], depending on the policy being in state j, is therefore equal to
G j

t = G j(t,St) = gt
j + gt

j
1{t !G} and up to time t the total state-wise annuity pay-

ment is equal to jG
t

0
# (u,Su)du = jg

t

0
# (u,Su)du + jg

, tt tG! #
! (t,St). Here and

for the rest of this paper we treat 1{u !G}du as discrete counting measure on the
set G with jump hight one. This enables us to discuss the continuous and the
discrete case simultaneously. Moreover, we assume benefit and premium pay-
ments represented as difference in the functions gjk, gj and g j, where negative
values are premium payments. For technical reasons (t,s) 7 g jk(t,s), (t,s) 7
gj(t,s) and (t,s) 7 g j(t,s)1{t !G} are supposed to be measurable for j,k ! J , and
we need that 

, < ,sup � B g u
,

�

u T
u u

0

1 2
3

!

- S^a hk
5

<

?

F for all gjk, gj, g j
1{· ! G}. (5)

That condition guarantees that each well-defined stochastic integral of Bu
–1g(u,Su)

with respect to a square-integrable martingale is a square-integrable martingale.
Next we consider the arbitrage-free price process of those insurance claims
given for 0 ≤ t ≤ u ≤ T by

F jk(t,St,u) := �� [BtBu
–1gjk(u,Su) |Gt ],

F j(t,St,u) := �� [BtBu
–1G j(u,Su) |Gt ].

Obviously we have F j(t,St,u) = �� [BtBu
–1gu

j |Gt ] + �� [BtBu
–1gu

j
1{u !G} |Gt ]. The

independence of the financial market and the insurance portfolio allows us
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to condition the expectations above only with the information described by Gt.
F · (t,St,u), 0 ≤ t ≤ u ≤ T, is the price at time t of an insurance claim due at time u.
The superscript ‘‘ ·’’ either stands for the state j or for a transition jk from
state j to state k. In order to perform the following calculations properly we
suppose that the functions F · (·, ·, u ) ! C1,2( [0,T ] ≈ [0,3)) for each u ! [0,T ],
that is, once continuously differentiable in the first and twice continuously
differentiable in the second variable. For notational convenience we denote by
F ·�(t,x,u) = dx

d F · (t, x, u). A further assumption is that F ·�(t,x,u) is uniformly
bounded, i.e. there exists a non-random constant c1 > 0 such that

| F ·�(t,x,u) | ≤ c1 < 3 ∀t,x,u and for all F j, F jk �-a.s. (6)

Later we need the Galtchouk-Kunita-Watanabe decomposition (cf. (12)) of the
discounted price processes Bt

–1F ·(t,St,u).

Proposition 3.1. Let vt
� = 2x

�
# vt

� (dx) and kt = (c2 + vt
� ), t! [0,T ]. For any price

process F · and 0 ≤ t ≤ u ≤ T the Galtchouk-Kunita-Watanabe decomposition of
Bt

–1F ·(t,St,u) is given by

Bt
–1F ·(t,St,u) = F ·(0,S0,u) + t

.
z

t

0
# (u)dSt + Kt

· (u),

where

t

.
z (u) =

t

c
k

2

F ·�(t,St–,u) +
t- t

x
Ss k
1

�t
# J ·(t, x, u)vt

� (dx)

with

J ·(t, x, u) = Bt
–1{F ·(t,St – + stSt– x, u) – F ·(t,St–,u)},

and

Kt
· (u) = tt t

. .
, ,u dW y u M d dyh h t( ) ( )�

�

�
t t1

0

2

0
+# ##^ ^ ^h h h

is orthogonal to S. Further the processes ht
(1) ·(u) and ht

(2) ·(y,u ) are given by

ht
(1)(u) = cst St–(F �(t,St–,u) – zt(u)),

ht
(2)(y,u) = J (t,y,u) – st St– zt(u)y.

Proof. We refer to Appendix A of Riesner (2006a) for an explanation of the
decomposition. Additionally we show here that the integrals with respect to S,
W � and M� (dt,dy) are really square-integrable. Since it is continuous in t and
(2) holds we have that

t t < .sup supx dx x dx x dxn n n
, ,

�

� � �t T t T0

2 2

0

3
3# +

! !

G# # #^ ^ ^h h h

5 5? ?
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The mean-value theorem yields J (t,x,u) = F�(t,x0,u) st St– x for some interme-
diate value x0 = x0(St–,st,x), and hence

t
t

, , , , .u c F t S u F t x u x dxz k k n
1

� �
�

�
t

t
t

2

0
2

= +- #^ ^ ^ ^h h h h

We conclude by (6) that

t
t

2 <sup supu
c

c x dxz k n
, ,

�

�t T
t

t T0 0

1 2
3# +

! !
#^ ^beh h lo

5 5? ?

∀u �-a.s. (7)

This non-random boundedness of z implies that sz
t

0
# (u)dSs is a square-integrable

martingale. Likewise we infer therefore that there exist non-random constants
c2, c3 > 0 such that

sup supu ch
,

( )

,t T
t

t T
t

0

1
2

0
#

! !

S^ h

5 5? ?

∀u �-a.s. (8)

,sup supy u c yh
,

( )

,t T
t

t T
t

0

2
3

0
#

! !

S^ h

5 5? ?

∀y,u �-a.s. (9)

The �-square integrability of St together with (8) implies now that h ( )
s

t 1

0
# (u)dWs

�

is a square-integrable martingale (cf. Protter (2004), Chapter IV, Lemma before
Theorem 28). Further with (9) we have that

s

s

s s, , ,

< ,sup sup

� �

�

y u M ds dy y u dy ds

Tc y dyS

h h n

n

( ) ( )

, ,

� �

�

�

�

�

�

T T

t T
t

s T

2

0

2
2 2

0

3
2

0

2

0

2
3#

=

! !

�

�

## ##

#

^ ^e ^a ^

^

h ho hk h

h

R

T

S
S
S

R

T

S
SS

=

5 5

V

X

W
W
W

V

X

W
WW

G

? ?

so s , ,y u M ds dyh ( ) �

�

t
2

0
## ^ ^h h is also a square-integrable martingale. This finally

yields that K (u) is a square-integrable martingale. ¡

Having defined the price processes we introduce now the payment process
(Yt)0 ≤ t ≤ T which is described by general unit-linked insurance contracts and for
which we will derive a hedging strategy. It is given by

j
t

j
0

k
u
j

u
j

u u
k du , .Y Y B I G du g N t T0

!:

t

j k k jJ

1

0
# #= + +

!

-#! !
J

L

K
K

N

P

O
O

Here it is important that S and Njk jump simultaneously only with zero proba-
bility. Hence the integrals jj k

u u u
k dB g N

t 1

0

-# are �-a.s. well-defined. Considering
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the process Y the notion unit-linked becomes finally apparent. The process
describes payments that depend on the current state of the policy and on the
market value of the stock St. To find now the locally risk-minimizing hedging
strategy for the payment process Y (under �), we have to derive a risk-mini-
mizing strategy for it under the measure � (cf. Appendix A.1). The intrinsic
value process Vt

* = �� [YT |Ft ], 0 ≤ t ≤ T, of Y under � and its Galtchouk-Kunita-
Watanabe decomposition play a crucial role. Like Møller (2001) we define the
auxiliary processes Vt

i for 0 ≤ t ≤ T and i ! J :

p jk
i

j, , , , , , .V t t u F t u F t u dum
!:

i
t j t u

jk
t

k k jt

T

j J

= +
!

S S S# !!
J

L

K
K^ ^ ^ ^

N

P

O
Oh h h h

R

T

S
SS

V

X

W
WW

In Møller (2001) the original measure � is already a martingale measure for the
stock admitting to evaluate the processes Vi directly under �. They reflect then
the current market value of future benefits less premiums at time t conditional
on the policy being in state i at time t and on the value of the stock being St.
In this case the processes Vi do actually represent the classical state-wise prospec-
tive reserve which is the expected value of discounted benefits less premiums
under the physical measure �. In our more general setting we have to interpret
this under the risk-neutral measure � calling Vi the state-wise �-prospective
reserve. In conclusion we express the processes Vi as

Vi(t,s) = �� [Bt (YT –Yt ) | Zt = i, St = s ]

and finally write

Vt
* = Yt + t , .I B V ti

t
i

i
t

J

1

!

- S! ^ h (10)

Theorem 3.1. The Galtchouk-Kunita-Watanabe decomposition of V* (under �)
is given by

Vt
* = V0

* + t -
,I d Kzi i

i

t

tt t
J0

+
!

S# !f p 0 ≤ t ≤ T,

where

jj kk
u zi ,p t u u u duz z m

!:
t
i

j t
j

t
k k jt

T

j J

= +
!

# !!
J

L

K
K

J

L

K
K ^ ^ ^

N

P

O
O

N

P

O
Oh h h

and

t

t

t t- -

t

t ,

q

K I dW I y M d dy

dM

h h t

!

( ) ( )

, :

�

�

�i i

i

t i i

i

t

i it

i k i k

t t
J J

1

0

2

0

0

= +

+

! !

k k

# ##

#

! !

!

f ^f ^p hp h

is orthogonal to S with

74 M. RIESNER

9784-07_Astin37/1_04  30-05-2007  14:24  Pagina 74

https://doi.org/10.2143/AST.37.1.2020799 Published online by Cambridge University Press

https://doi.org/10.2143/AST.37.1.2020799


i
j
u, ,p t u u u duh h m h

!

( ) ( ) ( )

:
t

i
j t

j k
t

jk

k k jt

T

j J

1 1 1
= +

!

# !!
J

L

K
K

J

L

K
K ^ ^ ^

N

P

O
O

N

P

O
Oh h h

i
j
u, , , ,y p t u y u y u duh h m h

!

( ) ( ) ( )

:
t

i
j t

j k
t

jk

k k jt

T

j J

2 2 2
= +

!

# !!
J

L

K
K

J

L

K
K^ ^ ^ ^

N

P

O
O

N

P

O
Oh h h h

i , , .q B g V t V tt
i

t t
k k

t
i

t
1

= + -
-k S S^ ^a h hk

zt
·(u), ht

(1)·(u) and ht
(2)·(y,u) are taken from Proposition 3.1.

Proof. The first step is to decompose the process Bt
–1Vi(t,St), i ! J. As in Møller

(2001) we let

t
j

i
j j
ut, , , , ,Y p t u B F t u t um

!

,

:

i u
j

j
t

k k

k k j
t

J

1
= +

!

- S SF! !
J

L

K
K^ ^ ^

N

P

O
Oh h h

for all i ! J and 0 ≤ t ≤ u ≤ T and apply Itô’s integration-by-parts formula (cf.
Protter (2004), Chapter II, Theorem 22, Corollary 2) yielding

t
j j j

j j j

d i

i

u

u

t

t t

, , , , ,

, , , , , .

dY B F t u t u p t u

p t u d B F t u d B t u

m

m

!

!

,

:

:

i u

j
t

k k

k k j
t j

j t
k k

t
k k jj

J

J

1

1 1

= +

+ +

!

!

-
- -

- -

S S

S S

F

F

! !

!!

J

L

K
K ^ ^ ^

^ ^a ^a

N

P

O
Oh h h

h hk hk

R

T

S
SS

V

X

W
WW

The quadratic covariation term is identically equal to 0, since pij (·, u) is of finite
variation and continuous for each u. This follows immediately from (4) stating
that it is differentiable in the first variable with a bounded derivative on [0,T ].
Substitution of (4) for dpij(t,u) yields
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Now we apply Proposition 3.1 to the differentials d(Bt
–1F · (t,St,u)), which yields
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Let us evaluate each of the six summands on the right hand sight separately
realizing first that
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The application of Fubini’s theorem is allowed here �-a.s., since the function
(w, t,u) 7 at

i,u(w), i ! J , is O 7 B ([0,T ])-measurable, and since by (5) we have
uniformly for all t,u that |F ·(t,St,u)|< 3 �-a.s. This implies together with the
continuity of mt

· that

<a d dut1
,

u

tT i u
t t00

3### ! + �-a.s.

Additionally, the function (w,t,u) 7 bt
i,u(w), i ! J , is P 7 B ([0,T ])-measurable

and uniformly bounded by a non-random constant (cf. (7)). Fubini’s theorem
for stochastic integrals (cf. Protter (2004), Chapter IV, Theorem 64) yields then:
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Also (w, t,u) 7 gt
i,u(w), i ! J , is P 7 B ([0,T ])-measurable and further there is

a non-random constant c2 such that
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S
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�-a.s.,

since (8) holds and the remaining terms are non-randomly bounded. Hence for
all 0 ≤ t ≤ T we have that

t dug ,i uT
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2 2
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S
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The square-integrability of S implies now that the integral of ( s dug ,i u

s

T
# ) with

respect to W� exists (cf. Protter (2004), Chapter IV, Lemma before Theorem 28).
Therefore we may apply the second version of Fubini’s Theorem for stochastic
integrals (cf. Protter (2004), Chapter IV, Theorem 65) yielding
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Analogously, the function (w, t,u,y) 7 dt
i,u(y), i ! J , is O 7 B ([0,T ]) 7 B (�)-

measurable, and by (9) we have that
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for a non-random constant c3. This implies for all 0 ≤ s ≤ T that
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by the square-integrability of S (cf. proof of Proposition 3.1). So we may apply
again Fubini’s theorem for stochastic integrals:
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The computation so far yields the desired decomposition of t ,B V ti
t
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Using (10) and integration by parts we now obtain the decomposition of V*:
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Since It
i is of finite variation, it is a quadratic pure-jump semimartingale (cf.

Protter (2004), Chapter II, Theorem 26). So the continuous part of the quadratic
covariation above is identically 0, and we get
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This term simplifies considerably because of the initial state of the Markov
chain Zt implying I0

i = 1{i = 0} and because of the sum of jumps being

t t ,I B V tD D 0
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- S! ^a hk �-a.s., 0 ≤ t ≤ T.

This holds, since at least Vi(t,St) is continuous in probability and the processes
Ii and S are independent by assumption. Moreover, we only treat càdlàg processes
and hence face only countably many jump discontinuities which yields the claim
by the s-additivity of �. Additionally observe that
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In the last step we used that dNt
ik – It

i mt
ikdt = dMt

ik. One shows now that this
is indeed the desired Galtchouk-Kunita-Watanabe decomposition. Observe
therefore that (S i ∈J I i

t– zt
i ) is �-a.s. bounded by a non-random constant (cf.

proof of Proposition 3.1 and (7)) and so the integral with respect to St is a
square-integrable martingale. Also by the boundedness of (S i ∈J I i

t– ht
(1) i) and of

(S i ∈J I i
t– ht

(2) i(y)) (in the sense of (8) and (9), respectively) the integrals with
respect to W� and M� (·, ·) are square-integrable martingales. The square-inte-
grability of the ‡ ik, which follows from (5), implies that the integrals with
respect to the Mik are also square-integrable martingales (cf. additionally (3)).
The orthogonality of Kt and S is a direct consequence on the one hand of the
orthogonal decomposition of Bt

–1F ·(t,St,u) and on the other hand of the inde-
pendence of S and Mik. ¡

Corollary 3.1. The unique 0-admissible locally risk minimizing strategy f
(under �) for the payment process Y of an unit-linked life insurance contract is
given by 
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The intrinsic risk process (under �) is for 0 ≤ t ≤ T given by
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where zi, h(1) j, h(2) j and ‡ jk are taken from Theorem 3.1.

Proof. The hedging strategy is an immediate consequence of Proposition A.1
and Theorem A.2. Further Rt(f) = �� [(KT –Kt)

2 |Ft ] with Kt as defined in Theo-
rem 3.1. To simplify this expression we use the pairwise orthogonality of the inte-
grals with respect to W�, M� (·, ·) and Mik. Note that in our case t0

W�t
g# is

a continuous,
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t

0
g## M� (dt,dy) is a purely discontinuous martingale and that

the Mik are independent of W� and M� by assumption (for details on the iso-
metries cf. Jacod and Shiryaev (2003), sections I.4.a/b and II.1). For 0 ≤ t ≤ T
one gets
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The portfolio value of the locally risk-minimizing strategy is Vt (f) = S i ∈J It
i

Bt
–1Vi(t,St). If we worked under the physical measure �, Vt (f) would exactly

correspond to the prospective reserve of a classical life insurance. Thus we call
here Vt (f) the �-prospective reserve indicating the evaluation under the mea-
sure �. In the following we comment additionally on the strategy and the
hedging risk. The locally risk-minimal investment in the stock at time t depend-
ing on the state i of the policy is

j j
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The difference from a classical Black-Scholes setting like in Møller (2001) is
apparent. If our Lévy process was merely a Brownian motion the measure
nt

� (dx) would be equal to 0 and kt / c2: we would only invest F ·�(t,St–,u), as
expected. In the presence of the underlying having jumps the locally risk-min-
imizing investment in the stock is nearly a weighted sum of F ·�(t,St–,u) and
the jump J ·(t,x,u) = Bt

–1{F ·(t,St– + st St– x,u) – F·(t,St–,u)}. Note that c2t is the
variance of the Brownian part cWt

� and that 
0 s

t
k# ds = c2t + 2

0
x

�

t
## ns

� (dx)ds is
the variance of Lt (under �). For the jump part the ‘‘weight’’ is not so obvious
but, as seen before, the mean-value theorem yields J ·(t,x,u) = F·�(t, x0,u)st St– x
for some suitable intermediate value x0 making the weighting more clear. For-
mula (11) shows that the insurer’s intrinsic risk Rt(f) of the locally risk-minimiz-
ing strategy has two components (dependent on the policy being in state i ):

(a) financial risk driven by trading in the market (only present in an incomplete
financial market)

t t it , .� � y dy p t dh h n t t( ) ( )� �

�

j j

t

T

j
jt t

J

1 2 2 2
+

!

�F F##! a ^a ^e ^k hk ho h= =G G

(b) insurance risk driven by mortality

j
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Note that the pure financial risk appears only in an incomplete financial mar-
ket and that Møller (2001), considering merely a complete financial market,
neglects this significant risk figure. The insurance risk is driven by the sum-at-
risk, ‡t

jk = Bt
–1(gt

jk +Vk(t,St) – Vj(t,St)), and results from the uncertainty of the
insured lives. It is equal to the total intrinsic risk in Møller (2001). Each time
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a transition of the policy from state j to state k takes place, the payment gt
jk

has to be cashed out contributing immediately to the insurer’s loss. At the
same time the state-wise �-prospective reserve Vj(t,St) has to be adjusted to
the new state k and is then given by Vk(t,St). If Vk(t,St) – Vj(t,St) is negative,
it is used to cover the payment gt

jk.
Møller (2001) already worked out two interesting examples for a standard

Black-Scholes financial market. We have a closer look into them to highlight
the differences from a standard Brownian motion setting.

Example 3.2. (Single unit-linked term insurance). We discuss a term insurance
issued to a single person against a single premium P at time 0. The contract
specifies the insurance benefit payable immediately upon death of the policy
holder if occurred before time T. Furthermore we assume that this payment
is of unit-linked with guarantee type, that is, the heirs receive a guaranteed
deterministic benefit gedt > 0 for some interest rate d > 0. However, if the value
of some reference portfolio St exceeds this minimal payment they get the
amount St. For this contract the state space of the multi-state Markov model
is J ={0,1}, where 0 represents the state policy holder alive and 1 the state pol-
icy holder dead. Let the policy holder be of age x at time 0 with remaining life-
time Tx after time 0. The policy holder dying at time Tx implies Nt

01 = 1(Tx ≤ t)
and moreover the intensity m01 of the only possible transition from state 0 to
state 1 is the hazard-rate function m of Tx. Note that naturally there are no tran-
sitions form state 1 to state 0. The transition probabilities can be determined
by Kolmogorov’s backward equations (4). Hence,

, .expp t u dm t
t

u

t00 = - #^ eh o

The probability p00(t,u) is the survival probability until time u given the policy
holder is alive at time t, in actuarial notation this is written as u–t px+ t. In con-
trast p01(t,u) = u–t px+ t = 1 – p00(t,u) is therefore the probability that the person
at age x + t dies before time u. We have two contract functions different from zero:

g01(t,St) = max(St,gedt) and Gt
0 = gt

0
1{t=0} = –P1{t =0}.

This means we only consider one price process F01(t,St,u) which has to be eval-
uated depending on the particular Lévy-process model of the financial market.
In case the Lévy process is a Brownian motion the Black-Scholes formula can
be applied (cf. Møller (2001)). The locally risk-minimizing strategy is given by

x , ,t u p t u duz z m1t tt

T

u
01

00$= T #^ ^ ^h h h

with

t t
t, , , , .u c F t u xJ t x u dxz

s
n�

1
�

t t
t t

01
2

01 01
= +-

-

�

k kS
S #^ ^ ^ ^h h h h
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The locally risk-minimal investment in the bond is jt = 1(Tx > t )Bt
–1V 0(t,St) –

zt St, where

, , , , .V t F t u p t u dumt
t

T

t u
0 01

00=S S#^ ^ ^h h h

The intrinsic risk is (cf. Corollary 3.1)

x

x

t t

t

0 0
t

t

> ,

> , ,

� �

� q

R t y dy p t d

t p t d

f h h n t t

t m t

1

1

( ) ( )� �

�

�

t
t

T

t

T

t t

t

1 2 2 2

00

01 2

00
01

= +

+

�T

T

F F

F

##

#

^ ^ b ^b ^f ^

^ b ^

h h l hl hp h

h l h

= =

=

G G

G

where
0 0 , ,u p t u duh h m( ) ( )

t t
t

T

u
1 1 1

00= # ^ ^h h

0 0 , , .y y u p t u duh h m( ) ( )
t t

t

T

u
2 2 1

00= #^ ^ ^h h h

ht
(1)01(u) and ht

(2)01(y,u) are as defined in Proposition 3.1. In this case the sum
at risk is given by ‡t

01 = Bt
–1(gt

01 –V 0(t,St)), which clearly shows the origin of
the insurance risk. If the person dies at time t the company’s effort is the pay-
ment gt

01 less reserve V 0(t,St). Further, the initial costs are C0(f) = V0(f) – P =
p00

T

0
# (0,u) mu F 01(0,S0,u)du – P. An idea of a minimal premium could therefore
be P = p00

T

0
# (0,u) mu F 01(0,S0,u)du.

Example 3.3. (Portfolio of n unit-linked term insurance contracts). Starting
form the single unit-linked term insurance with guarantee, we consider now a
portfolio of n identical such contracts issued to n policy holders with i.i.d.
remaining lifetimes and common hazard-rate function m. In this case the state
space is J = {0,1, …,n}, where state j corresponds to exactly j policy holders
having died. The process Z has transition rates lt

jk = It
j
1{k = j +1}(n – j)mt for j,k =

0, …,n – 1 and the transition probabilities are pjk(t,u) = 0 for k < j and pjj(t,u) =
exp( n j

u
- -

t
# ^ hmtdt). For k > j Kolmogorov’s backward equations determine

pjk. If an insured individual dies, we observe a transition from state j to state
j + 1 and the company has to cash out

gjk(t,St) = 1{k = j + 1}max(St,gedt),

which results in the price process F jk(t,St,u) = 1{k = j +1} F(t,St,u). The premium
is due at issuing date, thus

Gt
0 = gt

0
1{t = 0} = –nP1{t = 0}.
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The locally risk-minimizing hedging strategy is (cf. Corollary 3.1)

t - t , ,I p t u n j u duz z m z,t
i i

i
Z j

j Z

n

t

T

u t
J

t

t

= = -
! =

-

-

#! ! ^ ^ ^h h h

t t

t

,

, , , ,

I B V t

p t u n j B F t u du

j z

m z,

t
i

i

i
t t t

Z j
j Z

n

t

T

u t t t

J

1

1
t

t

= -

= - -

!

-

=

-

S

S

S

S#

!

!

^

^ ^ ^

h

h h h

where zt(u) is as in Proposition 3.1. (n – Zu) given Zt (u > t) follows a binomial
distribution with parameters ((n – Zt), p(t,u)), where p(t,u) = exp( dm t

u
t-

t
# ) (cf.

Møller (2001)). Hence

, ,n Z u p t u duz z mt t t
t

T

u= - - #^ ^ ^h h h

t t , , , .n Z B F t u p t u duj m zt
t

T

t u t t
1

= - -
- S S#^ ^ ^h h h

We are particularly interested in the intrinsic risk process of this strategy. A labo-
rious computation yields

t

t

t t

, , ,

, ,� q

R n Z p t p t n Z p t d

n Z p t d

f t t t r t t

t m t

1

�

t
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T
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T

t
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t

t t

,

, , ,

�

�

u p u du

y u p u du dy

r t h t m

h t m n

( )

( )

�

�

�

t u

T

u

T

t
t

t
t

1
2

2
2

=

+ �

F

F

#

# #

^ ^ ^e

^ ^e ^

h h h o

h h o h

R

T

S
S
S

R

T

S
S
S

V

X

W
W
W

V

X

W
W
W

and

‡t = Bt
–1(max(St,gedt) + V j+1(t,St) – V j(t,St)).

ht
(1)(u) and ht

(2)(y,u) are as in Proposition 3.1. Note that

V j+1(t,St) – V j(t,St) = , , , .F u p u dut t m
T

ut
t

- S# ^ ^h h

This has the following interpretation. If an insured person dies at time t,
the insurance company reduces its �-prospective reserve by the amount

t
, , ,F u p u dut t mut

T
S# ^ ^h h to cover the payment max(St,gedt).
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A. APPENDIX

A.1. General payment stream hedging for semimartingales

Aligning our setup to Schweizer (1991), we investigate local risk-minimization
to be applicable to general payment streams. Throughout the appendix we
work on some filtered probability space (W, �, (Ft)0 ≤ t ≤ T, �) satisfying the usual
conditions of right-continuity and completeness. Especially F0 ={0, W} and
FT = �. T ! � is fixed and denotes the finite time horizon. Further we consider
a financial market with time horizon T consisting of one risky asset (stock) with
discounted price process X and a riskless investment alternative (bond) assum-
ing its value to be constant and equal to one. X = (Xt)0 ≤ t ≤ T is defined to be a
semimartingale with decomposition

X = X0 + M + A,

such that the assumptions (X1) to (X5) of Schweizer (1991) hold.

Definition A.1. A trading strategy f = (z,j) is a process consisting of the predictable
process z = (zt)0 ≤ t ≤ T such that

uu < ,� d M d Az zu u

TT 2

0

2

0
3+ ## e o

R

T

S
S
S

V

X

W
W
W

(11)

i.e. z ! L2(�M) and d Azu u

T

0
# ! L2(�), and consisting of the adapted process

j = (jt)0 ≤ t ≤ T such that the portfolio value Vt(f) := ztXt + jt is càdlàg and satisfies
Vt (f) ! L2 (�), 0 ≤ t ≤ T.

Definition A.2. A payment stream or process is an adapted, càdlàg square-inte-
grable process Y = (Yt) 0 ≤ t ≤ T and the cost process C(f) is defined by

Ct(f) := Vt(f) – zu

t

0
# dXu + Yt , 0 ≤ t ≤ T

where z satisfies the conditions of Definition A.1.

The payment process Y may be interpreted as a hedger’s discounted liabilities
towards a buyer of the contract to be hedged, that is, it represents contractual
payments. More specifically, from the hedger’s point of view, Yt – Ys, 0 ≤ s <
t ≤ T, is taken to be the total discounted outgoings less income during the
interval (s,t]. The introduction of such a process to describe more general pay-
ment streams instead of contingent claims (i.e. H !L2, FT-adapted and describ-
ing a payment at time T) is due to Møller (2001). This immediately delivers an
interpretation of the portfolio value Vt(f): It is the value of the portfolio held at
time t after the payments Yt have been made. Since we are primarily concerned
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to hedge the payment process Y, it is apparent to concentrate on so called
0-admissible strategies f, i.e. VT (f) = 0 �-a.s. As Møller (2001), we additionally
consider the following risk process:

Rt(f) = � [(CT (f) – Ct(f))2 |Ft ] , 0 ≤ t ≤ T,

given by its càdlàg version. Møller (2001) calls, in analogy to Föllmer and Son-
dermann (1986), a trading strategy Y-mean-self-financing, if its cost process
Ct(f) is a martingale. For hedging general payment processes in a semimartin-
gale market, we consider now the same optimization problem as in the classi-
cal case. The following definition is taken from Schweizer (1991).

Definition A.3. Let f = (z,j) be a trading strategy and t ! [0,T ].

(a) An admissible continuation of f from t on is a trading strategy f = (z, j) sat-
isfying

zs = zs for s ≤ t, js = js for s < t,

and

VT(f) = VT(f) �-a.s.

(b) f is called risk-minimizing, if for any t ! [0,T ] and for any admissible conti-
nuation f of f from t on one has

Rt(f ) ≥ Rt(f) �-a.s.

If X is already a square-integrable �-martingale, the question of finding a risk-
minimizing trading strategy for general payment processes is completely solved
in Møller (2001). In fact it is enough to have a locally square-integrable local
martingale X. The central idea is to utilize the well-known Galtchouk-Kunita-
Watanabe decomposition. For completeness we review the result of Møller
(2001). We assume for the moment that X is a square-integrable martingale. For
a square-integrable process Y one gets for 0 ≤ t ≤ T

Vt
* := � [YT |Ft ] = V0

* + uzYt

0
# dXu + Kt

Y, �-a.s.,

where zY !L2(�X) and KY = (Kt
Y)0 ≤ t ≤ T is a square-integrable martingale orthog-

onal to X with K0
Y = 0, �-a.s. As usual we call two martingales orthogonal if

their product is a martingale, or equivalently for square-integrable martingales
if their predictable quadratic covariation is identically zero.

Proposition A.1. (Møller). Assume that X is a square-integrable martingale. For
every payment process Y there exists an unique 0-admissible risk-minimizing
trading strategy f = (z,j) for Y given by

(zt, jt) = (zt
Y, Vt

* – Yt – zt
YXt ), 0 ≤ t ≤ T.
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The associated risk-process is given by Rt(f) = � [(KY
T – Kt

Y)2 |Ft ].

Proof. Møller (2001). ¡

The difference from the classical theory is that a risk-minimizing strategy f is
chosen such that at time t, 0 ≤ t ≤ T, the value of the portfolio is equal to the
conditional expected value of the hedger’s balance, i.e. Vt(f) = � [YT –Yt |Ft ].

For contingent claim hedging in the semimartingale case things are different.
According to Schweizer (1991) it is impossible to find a risk-minimizing hedg-
ing strategy that minimizes the process Rt(f) uniformly over time and over all
admissible continuations of a trading strategy. For a detailed counterexample
we refer to Schweizer (2001). Since contingent claim hedging is just a special case
(Yt = 1{t ≥ T}H ) of our more general setting, the projection technique must of
course fail here, too. To solve this problem, Schweizer (1991) introduced locally
risk-minimizing hedging strategies and showed that they are the right ones to
consider in the classical semimartingale case.

Local risk-minimization

We investigate now if local risk-minimization can be extended from contingent
claim hedging to hedging of general payment processes. By intuition this might
be quite reasonable, however, in technical terms it is somewhat sophisticated.
In particular, the influence of the payment process Y on the concept is not so
obvious. Presenting just the main results in this paper we omit to work in detail
through the theory of Schweizer (1991) while considering the extended set-up.
All this has been worked out and is contained in Riesner (2006b). For a proper
definition of the technical term locally risk-minimizing hedging strategy we
refer to Schweizer (1991).

Lemma A.1. Assume X satisfies (X1)-(X5). Let Y be a payment process and f =
(z,j) a 0-admissible trading strategy. Then the following statements are equivalent:

(i) f is locally risk-minimizing.

(ii) f is Y-mean-self-financing, and the martingale C(f) is orthogonal to M.

Proof. The equivalence of (i) and (ii) follows from Proposition 3.1 and The-
orem 3.2 in Schweizer (1990), and Lemma 2.2 in Schweizer (1991). ¡

Remark. The orthogonality results of Schweizer (1991) and Schweizer (1990)
suppose the cost process Ct(f) to be a square-integrable martingale only. For
this reason, adding the square-integrable payment process Yt does not disrupt
the classical theory.

One now proceeds to characterize a locally risk-minimizing strategy by the
Galtchouk-Kunita-Watanabe decomposition of CT(f) with respect to � and M.
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This yields an optimality equation for the z component and the problem of
finding a locally risk-minimizing strategy is hence reduced to solve this sto-
chastic optimality equation.

Theorem A.1. Assume that X satisfies (X1)-(X5). Let Y be a payment process and
let f = (z,j) be a 0-admissible trading strategy. Then f is locally risk-minimizing
if and only if f is Y-mean-self-financing and z satisfies the optimality equation:

mY; � – z – mz, A; � = 0 �M-a.e. (13)

Proof. We consider the Galtchouk-Kunita-Watanabe decomposition of Vt
* :=

� [YT |Ft ], which is for 0 ≤ t ≤ T given by

Vt
* := � [YT |Ft ] = V0

* + um ; �Yt

0
# dMu + Kt

Y; �, �-a.s.,

as well as the Galtchouk-Kunita-Watanabe decomposition

u T ,�dA dA d Kz z m , ; , ;� �
u u

T

u u

T

u
AT Az z

0 0 0
= + +M# # #= G �-a.s.

Note that 
0

dAzu u
T

# is square-integrable, since f is a trading strategy. The two
decompositions together yield

T

u0

0 u u ,�

C Y

V K d M A

V dA K K

f z

m z

z m z m

* ; ;

* ; , ; ; , ;

� �
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T u u

T

u
YT

u T
Y

u

T

u

u u

T

C

Y
u

A
u T

Y
T

AT

f

z z

0

0 0

0 0

0

= -

= + + - +

= - + - - + -

=

dM

dM

dX#

# #

# #

^

^

]

b

h

h

g

l= G

1 2 34444 4444 �-a.s.

Lemma A.1 yields then the result. ¡

Finding a locally risk-minimizing strategy

In this section it is shown that an unique solution to the optimality equation
exists. First one adds some more structure on the considered probability space
(cf. Schweizer (1991).

Definition A.4. Two stochastic processes M and N are said to form a �-basis of
L2(�) if both M and N are square-integrable martingales under � and M –M0 and
N –N0 are �-orthogonal (as martingales). Further, if every H !L2(�) has a unique
representation
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uu�H H m n; ;� �HT

u
H

u

T

0 0
= + +dM dN# #6 @ �-a.s.

for two predictable processes mH; � ! L2(�M) and nH; � ! L2(�N).

The following assumptions are added to the model.

(P1) There exists a process N = (Nt)0 ≤ t ≤ T such that M and N form a �-basis
of L2(�).

(P2) There exists a probability measure � equivalent to � such that X and N
form a �-basis of L2(�).

Because of (P2) the considered financial market must be free of arbitrage.
Schweizer (1991) provides moreover a formula for the Radon-Nikodym den-
sity of the measure �, called the Föllmer-Schweizer measure, and shows that
it is essentially unique. This formula provides an insight into the performed Gir-
sanov change of measure removing the drift A from X. It gives furthermore
an idea of how to construct the measure �.

Consider now a payment process Y = (Yt)0 ≤ t ≤ T which is also square-integrable
with respect to �. Under assumption (P2) we apply Proposition A.1 to the
hedging problem and find an unique hedging strategy fY;� = (zY;�, jY;� ) which
is risk-minimizing with respect to � and satisfies VT (fY;� ) = 0. zY;� is given by
the Kunita-Watanabe decomposition

T u u� z n; ;� � �
T

YT

u
Y

u

T

0 0
= + +YY dX dN# #6 @ �-a.s. (14)

and

tT ttt ,�j z; ;� � �Y
t

Y
= - -YFY X6 @ �-a.s., 0 ≤ t ≤ T.

The idea is now to use fY;� as candidate for a locally risk-minimizing strategy
under �.

Theorem A.2. Assume that X satisfies (X1)-(X5) and that (P1) and (P2) hold.
Let Y be a payment process and square-integrable with respect to �. Suppose
additionally that nY;� ! L2(�N) and that zY;� satisfies (11). Then fY;� is locally
risk-minimizing with respect to �.

Proof. According to Theorem A.1 first one has to show that zY;� is a solution
to the optimality equation (13). This is proved as in the first part of Theorem 3.2
in Schweizer (1991) where zH;�̂ has to be replaced by zY;� and H byYT. It remains
now to show that fY;� is Y-mean-self-financing with respect to �. (14) yields

T Tu u .�f f z n; ; ; ,� � � � �
T

Y
T

Y Y
u

T Y
u

T

0

0 0
= - + = +

=

C Y YV dX dN# #a ak k 6 @

1 2 344 44
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Further,

t

u

ut t .

C Y

X Y

f f z

z j z
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t
Y
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Y Y

u t
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Y Y Y
u t
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= - +

= + - +

dX

dX

V #

#

a ak k

Recall that jt
Y;� = �� [YT |Ft ] –Yt – zt

Y;� Xt. Using (P2) we get

�� [YT |Ft ] = �� [YT ] + u u .z n; ;� �Y
u

Yt

u

t

00
+dX dN##

Hence, Ct(fY;�) = �� [YT ] + u0
,n ; �Y

u
t

dN# 0 ≤ t ≤ T. The claim follows, since N is
a martingale under � and nY;� ! L2(�N). ¡

Summarizing the Appendix we remark that the local risk-minimization theory for
the classical case transfers to the case of general payment processes and is applied
in the same manner. First, one removes the drift of the semimartingale X per-
forming an equivalent change of measure to the Föllmer-Schweizer measure �
and second, one applies the theory of Møller (2001) to find a risk-minimizing
hedging strategy under �. This strategy is then locally risk-minimizing with
respect to the original measure �.
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