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INVARIANT ANALYTIC HYPERSURFACES
IN COMPLEX LIE GROUPS

BRUCE GILLIGAN

Suppose G is a complex Lie group and H is a closed complex subgroup of G. Let
G' denote the commutator subgroup of G. If there are no nonconstant holomorphic
functions on G/H and H is not contained in any proper parabolic subgroup of G,
then Akhiezer [2] asked whether every analytic hypersurface in G which is invariant
under the right action of H is also invariant under the right action of G'. In this
paper we answer a related question in two settings. Under the assumptions stated
above we show that the orbits of the radical of G in G/H cannot be Cousin groups,
provided G/H is Kahler. We also introduce an intermediate fibration of G/H induced
by the holomorphic reduction of the radical orbits and resolve the related question in
a situation arising from this fibration.

1. INTRODUCTION

In a study of hypersurfaces in complex nil-manifolds Akhiezer [2] asks the following
question:

Let G be a connected complex Lie group and H be a closed complex subgroup
of G such that

(a) H is not contained in any proper parabolic subgroup of G and

(b) O(G/H) = C.

Is every hypersurface in G which is invariant under the right action of H also
invariant under the right action of G'l

It is known that if X = G/H is a homogeneous complex manifold and X has at least
one hypersurface, then there exists a proper closed complex subgroup J of G containing
H such that the bundle map IT : G/H -¥ G/J is the hypersurface reduction of G/H,
that is, G/J is locally separable by hypersurfaces and every hypersurface in G/H arises
as the pull-back via the holomorphic map n of a hypersurface in G/J, see [12]. In terms
of the hypersurface reduction Akhiezer's question asks whether G' C J.
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Whenever this question has an affirmative answer, then G/J is an Abelian complex
Lie group and since O{G/H) = C, it is clear that O(G/J) = C too. We call a complex
Lie group which has no nonconstant holomorphic functions a Cousin group, in honour of
Cousin, see [6]. Thus G/J is a Cousin group that is locally hypersurface separable and so
is a quasi-Abelian variety in the sense of Andreotti-Gherardelli [4]. In particular, G/J is
a covering space of an Abelian variety. As a consequence, G/J admits nonconstant mero-
morphic functions and nondegenerate theta-functions. Intuitively speaking, Akhiezer's
question asks whether hypersurfaces occur in a homogeneous complex manifold only be-
cause of nonconstant holomorphic functions, nonconstant meromorphic functions or as
the pull-backs of divisors from the projective manifold G/P, where P is a parabolic
subgroup of G containing H.

Akhiezer's question is known to have a positive answer in a number of settings. For
X = G/H compact this follows from the results in [9]. If G is a semisimple complex Lie
group and if is a closed complex subgroup satisfying the above conditions, then H is a
Zariski dense discrete subgroup of G. Otherwise, the algebraic closure of H would be
either reductive (implying O(G/H) / C) or would be contained in a proper parabolic
subgroup of G. It follows that the space G/H has no analytic hypersurfaces [10] and thus
G' = G = J in this setting. Akhiezer's question has also been answered affirmatively for
G nilpotent [2] or [12], for G solvable [13], and for G = 5 x R a group theoretic direct
product of a maximal semisimple subgroup S of G with the radical R of G [14].

The purpose of this short note is to provide an affirmative answer to the above
question in some other settings. In [14] it was observed that if G and H satisfy conditions
(a) and (b) with G acting almost effectively on G/H, then H is discrete and the subgroup
J := R • H is closed in G, where R denotes the radical of G. Now if G/H is Kahler and
satsifies conditions (a) and (b) with O(R • H/H) — C, that is, the radical orbits are
Cousin groups, then we prove that S — {e}, see Theorem 3. Hence G is solvable and it
follows that G/H itself is a Cousin group by [13].

If O(R • H/H) ^ C, then we make use of the holomorphic reduction J/H —> J/I to
construct an intermediate fibration

G/H -> G/I -> G/J.

Here I/H is a Cousin group and J/I is Stein. Now 1° is normal in G and is the connected
component of the identity of the ineffectivity of the G-action on G/I. Set G :— G//°,
R :— R/I°, and / := 1/1°. We show that if G = Sx R is a group theoretic direct product,
then S fl / is infinite. As a consequence, we prove in Theorem 4 that the assumption
G = S x R yields a contradiction, unless dimS = 0. This rules out dime R — 1.
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2. S O M E P R E L I M I N A R I E S

Throughout this paper we shall assume G is a connected complex Lie group and

H is a closed complex subgroup of G such that G is acting almost effectively on G/H.

Without loss of generality we shall also assume tha t G is simply connected. Further, we

suppose that G and H satisfy conditions (a) and (b) stated above. Let G = S x R denote

a Levi-Malcev decomposition of G, where S is a maximal semisimple subgroup of G and

R is the radical of G.

The next result was noted in [14, pp. 116-117]. The way the result is used in that

paper is in the product case. However, its proof is also valid in a more general setting,

as we have now stated it.

THEOREM 1 . Suppose G is a connected simply connected complex Lie group with

Levi decomposition G = 5 x R. Let H be a closed complex subgroup ofG. Assume that

G is acting almost effectively on G/H. Further assume that H is not contained in any

proper parabolic subgroup of G and that O(G/H) = C. Then NG{H°) = G, that is, H

is a discrete subgroup ofG. Moreover, the R-orbits in G/H are closed and thus one has

the homogeneous Bbration

G/H -> G/R • H = S/A,

where A := S n R • H is a Zariski dense discrete subgroup of the group S.

COROLLARY 1 . Suppose H is contained in a proper closed complex subgroup I

of G and assume that H is not contained in any proper parabolic subgroup of G and

O{G/H) = C. Then 7° < G. As well, R I is closed in G and SnR-1 is Zariski dense in

S.

P R O O F : Since H is not contained in any proper parabolic subgroup of G and

O(G/H) = C, the same statements hold relative to the subgroup / . Thus the Theorem

also applies to / . D

A hypersurface in a complex manifold X is a 1-codimensional complex analytic

subset of X. Now suppose G/H is a homogeneous complex manifold which has at least

one hypersurface. Assume tha t G and H satisfy conditions (a) and (b). Let G/H

-> G/J be the hypersurface reduction of G/H, see [12]. Then G/J is locally hypersurface

separable and the groups G and J satisfy conditions (a) and (b). In order to show that

Akhiezer's question has an affirmative answer, it is enough to show that the commutator

subgroup G' of G is contained in J , tha t is, tha t G/J is a Cousin group. By the above

Corollary the subgroup J° is normal in G. Let p : G —> G\ := G/J° be the natural

epimorphism. It is easy to check tha t p~1(G[) — J° • G'. As a consequence, whenever G\

is Abelian, it follows that J contains G" and Akhiezer's question has an affirmative answer.

We shall show that the group acting on a given Kahler homogeneous manifold is Abelian

in certain settings. Throughout the rest of this paper we consider Kahler homogeneous

manifolds, since a homogeneous complex manifold which is locally hypersurface separable
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is known to be Kahler, see [8].

Using known techniques one can answer Akhiezer's question when the group G is
a group theoretic direct product, at least in the case when the manifold G/H is itself
Kahler. This result was proved in [13] and the proof given there, as well as the one
presented here, both rely on the fact that if G is a product, then the maximal semisimple

. subgroup S is normal in G. We present our proof here because it uses an important tool:
the Tits' alternative for linear groups, see [15].

THEOREM 2 . Suppose G is a connected simply connected complex Lie group
whose Levi-Malcev decomposition is a direct product G = S x R. Suppose H is a
discrete subgroup ofG such that G/H satisfy conditions (a) and (b) and G/H is Kahler.
Then S = {e}, that is, G/H is a Cousin group.

PROOF: We shall show that the assumption dim S > 0 yields a contradiction. Since
G/H is Kahler, S D H is algebraic [5] and thus is finite. Using the Tits' alternative for
linear groups we showed in [3, Lemma 6] that H is contained in a subgroup L := A x R,
where A is an algebraic subgroup of 5 such that its connected component of the identity
A° is solvable. As a consequence, L is a proper subgroup of G. Hence G/L = S/A, a
contradiction, since A is either reductive or contained in a proper parabolic. D

3. THE RADICAL ORBITS CANNOT BE COUSIN GROUPS

We now show that in the Kdhler setting the radical orbits cannot be Cousin groups.

THEOREM 3 . Suppose G is a connected complex Lie group and H is a discrete
subgroup ofG such that G/H satisfies (a) and (b) and is Kahler. Let R denote the radical
ofG. Assume the typical radical orbit has no nonconstant holomorphic functions, that
is, O{R • H/H) - C. Then 5 = {e}, that is, G is solvable. In particular, G/H is a Cousin
group and G is Abelian. Moreover, if G/H is also locally hypersurface separable, then
G/H is a quasi-Abelian variety.

PROOF: We apply an argument similar to [8, proof of Lemma 2]. Since A is Zariski
dense in S, it follows that A contains a semisimple element A. It is well-known that the
Zariski closure of the cyclic subgroup generated by A is an algebraic torus in 5. Set
A :— (C*)h = (A)z. It is also known that A/{X)i is a Cousin group.

Let S — S\-... • Sn and let p* denote the projection of S onto its ith simple factor Sj
for i — 1 , . . . , n. As noted in [1, Lemma p. 328] we may choose A such that Pi(A) ^ {e}
for all i.

Let 7Ts : G -»• S denote the projection map. Pick h € H such that A = ns(h). This
is possible by the definition of A = Sf\R-H. Define H := (HtlR)- (h)z and G := A\xR.

Note that GnH D H and thus G/H is Kahler. The fibration

G/H -» G/R • H = A/(X)Z
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has the Cousin group R/R n H as fibre and the Cousin group A/(\)z as base and thus

O(G/H) = C. Since G is solvable and G/H is Kahler, it follows that G is Abelian [13].

Hence A acts trivially on R. But the kernel of the representation of 5 on the radical R

is a normal subgroup of 5 . Since this kernel contains A and Pi{A) ^ {e} for every i,

it follows that this kernel is equal to S and thus the representation of 5 on the radical

R is trivial, tha t is, G = S x R. But G/H is Kahler and O(G/H) = C. This is a

contradiction, see [14] or Theorem 2, unless G is solvable. Hence S = {e} and the other

claims of the theorem follow. D

4. T H E I N T E R M E D I A T E F I B R A T I O N

Our next task is to introduce an intermediate fibration of the homogeneous manifold

G/H which is induced by the holomorphic reduction of the radical orbit R • H/H. We

shall assume G is connected and thus R is also connected. For convenience, set J := RH.

Let J/H —> J/I be the holomorphic reduction of J/H, see [7, Section 1], where / is a

closed complex subgroup of J containing H. Applying this along with Theorem 1 we get

the intermediate fibration

G/H '!$ G/I J4 G/J = S/A, where A := SnR-H.

Now J need not be solvable. However, J/I = R/(R n /) is a holomorphically separable
solvmanifold and thus J/I is Stein, see [11]. As a consequence, the fibre I/H of the
holomorphic reduction of J/H is connected, for example, see [7, Proposition 1]. Since
J/H is Kahler in the settings in which we are interested, I/H is a Cousin group, see [13].

It follows from Corollary 1 that 7° is normal in G. We set G : - G/I° and R := R/I°
and let n : G -» G be the canonical epimorphism. Since I C J = R- H and H is discrete,
1° C R and thus R is the radical of G. Let G = 5 x R be a Levi-Malcev decomposition of
G. (Recall G is simply connected.) Note that n(S) is isomorphic to S. Thus G = S x R is
a Levi-Malcev decomposition of G. Since I/H = I"/I° f~l H is a Cousin group, it follows
that 1° is Abelian. Set / := 1/1°. Note that / is a discrete subgroup of G.

5. THE GROUP G IS A PRODUCT

Our approach will be to assume that dim 5 > 0 and dim R > 0. We do not know
that G/I is Kahler. In general, we can push down the Kahler metric from the total space
G/H to G/I only if the fibre I/H of this bundle is compact. We do not wish to make
this restriction. But, if G/I were Kahler, then the 5-orbit S/Snl in G/I would also be
Kahler and thus S tl I would be finite by the results in [5]. Hence the "good situation"
occurs when S n I is finite and the S-orbit is algebraic. We are going to look at the
setting where the group G is a group theoretic direct product. It then turns out that
S C\ I is infinite in this setting and we shall then show that this leads to a contradiction.
Our proof of this uses a technique from [14] along with Theorem 3.
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LEMMA 1. Let G be a simply connected complex Lie group and H a discrete
subgroup ofG such that G/H satisfies (a) and (b) and G/H is Kahler. Assume G acts
almost effectively on G/H. Also assume that G = S x R is a group theoretic direct
product, with dim 5 > 0. Then S n / is infinite.

PROOF: Assume to the contrary that the intersection SC\I is finite. Using the Tits'
alternative, we showed in [3, Lemma 6] that in the product group S x R the discrete
subgroup / is contained in a subgroup of the form A x R, where A is algebraic in S
with A° solvable; that is, / is contained in a proper algebraic subgroup of G. But, this
contradicts the assumption that G/H satisfies conditions (a) and (b). Hence S D / is
infinite. U

THEOREM 4 . Let G be a simply connected complex Lie group and H a discrete
subgroup of G such that G/H satisfies (a) and (b) and G/H is Kahler. Assume G acts
almost effectively on G/H. Suppose G = S x R is a group theoretic direct product.
Then S — {e}, that is, G/H is a Cousin group. Moreover, if G/H is locally hypersurface
separable, then G/H is a quasi-Abelian variety.

PROOF: The case R = {e} is handled by Theorem 3. So we assume dimi? > 0. We
claim that the group A : = 5 n / - f l normalises SnI. To see this suppose g = (s, 0) € A,
where s = ir with i € / and r € R and h £ S D /. Then

ghg"1 = irhr~li~l — ihi~l

since the action of 5 on R is trivial and thus r and h commute. Clearly, ihi~l E S f) I.
As a consequence, the Zariski closure S of A normalises the Zariski closure 5* of S D /.
By the previous lemma 5 D / is infinite. Hence 5* is a positive dimensional semisimple
complex Lie subgroup of 5. Note that S D I = S* C\ I.

Let Z := S*/S* n / be the orbit of the base point in G/T and let p : G/H -> G/T
be the bundle projection. Then Y := p~l(Z) is a Kahler manifold that is homogeneous
under the group S' x 1°. Since it fibres via the map p\Y : Y -» Z with fibre a Cousin
group and base Z, it follows that Y satisfies conditions (a) and (b). But this contradicts
Theorem 3. Thus S = {e} and the remaining statements follow by now applying the
results of [13] to the solvable group G. D

COROLLARY 2 . Suppose G/H as above and dim 5 > 0. Then dimc R ^ 1.
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