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A NOTE ON PERIODIC SOLUTIONS OF SOME
NONAUTONOMOUS DIFFERENTIAL EQUATIONS

M.R. GROSSINHO AND L, SANCHEZ

We prove the existence of nontrivial periodic solutions of some

nonlinear ordinary differential equations with time-dependent

coefficients using variational methods.

0. Introduction and statement of the results

In this work we study the existence, under suitable conditions, of

nontrivial !F-periodic solutions of the following nonlinear equations:

(0.1) x - a{t)x - B(t)x2 + y(t)x3 = 0

(0.2) x + a(t)x - $(t)x2 + y(t)x3 = 0

where a, 6 and y are measurable T-periodic functions such tha t i f we

denote by a , A , a and C the infimum and supremum of a and y ,

respect ively, and B = II 3l' -̂oo » then

(0.3) 0 < a < a(t) < A < » , 0 < e < y (t) < C < » and B < » .

The study of these equations was suggested by a paper of Cronin [4]

which deals with an equation related with the biomathematical model of the

aneurysm of the circle of Willis introduced by Austin [2]. In fact

equation (0.2) is the homogeneous analogue of the equation studied in [4]

for the case in which a , 6 and y are positive constants. Also in [4]

there is a forcing term of the type k-cos(mt) .

Solutions of (0.1) and (0.2) will always be considered in the sense
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of C -functions, x , such that 'x exists almost everywhere and

x(t) = x(t+T) .

For the sake of simplification of computation we shall deal with the

case of period 2TT . The results , however, apply to every period T with

obvious modifications.

Abstract results concerning the existence of nontrivial periodic

solutions of nonlinear problems have recently appeared in the literature

(see [3], [5] and [7]). However they do not apply to equations (0.1) or

(0.2). We also observe that, if a , 3 and y are constants, (0.1) and

(0.2) can be studied using the phase plane.

We prove the following theorems:

THEOREM 0.1 . Let a , 6 and y be measurable 2-n-periodic functions
that satisfy (0.3). Then equation (0.1) has a nontrivial 2-n-periodic
solution.

THEOREM 0.2. Let a , 0 and y be measurable 2-n-periodic functions
that satisfy (0.3) and such that

(0 .4) m < a < A < (m+1) for some integer m > 0 ,

and

(0.5) B2 < |- 6c , where 6 = a - m2 .

Then equation (0.2) has a nontrivial 2-n-periodic solution.

This work i s divided into two parts in which we prove theorems 0.1 and

0.2, respectively. Those proofs have an analogous structure and we use

s imi lar notations in both. The arguments and computations of section 1 are,

however, much simpler than those of section 2. We consider the interval

[0,2TT] and f i r s t we solve the projections of (0.1) and (0.2) onto spaces

of f i n i t e dimension using in the case of (0.1) a "Mountain Pass Lemma"

([7]) and in (0.2) a generalization of that lemma ([6]) . Then, after

adequate estimates, we pass to the l imit . We observe that working with the

f i n i t e dimensional approach the boundary conditions are well defined

(see (1.2) and (2.2)) and the variational principles that we use are

simpler.

NOTATIONS. Throughout th i s paper we use the standard spaces IF (0,2TT) ,

C*(0,2IT) , and the Sobolev spaces W (0,2TT) = \P' (0,2TT) which we denote
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singly by iP , CP and if . We use the symbols | - | and B -0 to

denote the usual norms of iP and W , respectively.

1. Equation (0.1)

Consider the interval [O,2TT] and the equation

(1.1) u - a{t)u - 6(t)w2 + Y(t)w3 = 0 ,

with the periodic conditions

(1.2) W(0) = U(2TT) , w(O) = M(2TT) ,

where a , B and y are measurable 2ir-periodic functions that satisfy

(0.3).

Proof of Theorem 0 . 1 . The proof i s divided in three s teps :

Step 1: Approximate solution in f in i te dimension

For each positive integer N consider the finite dimensional space

N i k t

^m = { 1 °ve '• °v e C SIX& t n e s u r a i s rea l}
N k=-N K k

and the functional «/„ : Y« -»• R defined by

JN{U) = f ( l '"l2 + h { t ) u 2 + i 6 '*)" 3 " |r(*)"4)<it •
0

It is easy to see that every critical point of J» is a solution of the

equation

(1.3) x - a{t)x = PN(e,(t)x2 - yU)x3)

where P i s the orthogonal project ion of L (0,2TT) onto 1\. . So we are

going to look for c r i t i c a l points of J~ . The tool we use i s the

"Mountain Pass Lemma" contained in [7] .

By Holder's inequali ty and (0.3) we have for u £ 1\.

(where a ,a ,a are positive constants) which implies that there exist

r,p > 0 such that J(u) > 0 if 0 < \u\ < r and J(u) > p > 0 if
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\u\ = r . On the o t h e r hand, denoting by II-II the norm

l = ( (|u| + a(£)w )dt)z , since Y~II ull = ( ( |u | + a(£)w )dt)z , since Y~ has f i n i t e dimension, we der ive

IV £. KX J J *± 1 &• 1 ~> £. U £.

(where a. , a_ and a. are positive constants) which implies that
4 o b

(1.4) J.Au) < 0 for |w|_ large enough ,

and therefore there is U., £ Y~ such that

(1.5) IWMI? > r an<^ ^/l/'u7i/' = ^ *

In par t i cu la r there i s w^ in Yff such that

(1-5) |w^l2 > r and ^(W^) = 0 ,

and obviously we can take W,, = W e y since ^mly = ^i • This fact will
1

be useful in step 2. Inequality (1.4) and the fact that i\. has f ini te

dimension show that the Palais-Smale condition is t r iv ia l ly satisfied in

[0,+°°) . Then by the "Mountain Pass Lemma" ([/]) J~ has a nonzero

c r i t i c a l point, u^ , and a corresponding c r i t i c a l value £>.. characterized

by:

(1.6) b = inf max J (g(y)) > 0 ,

gsr ye [0,1]

where

r. ; = { # e C ( [ 0 , l ] , Y ) : g{0) = 0, ^(1) = w] .

Step 2: Estimates for u.

Now we are going to prove that there are positive constants independent

of N , A and A , such that

(1-7) ^uT?i ** A\ •

(1.8) lu^l^ > A2 > 0 .
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Let b be the critical value that corresponds to the critical
N

point of J., , u . From i t s variational characterization (1.6) and from

the fact that, for * G [0,1] , g(t) = t W G r^ we derive

(1.9) 0 < bv - inf max JN(g(t)) < max ^wf* w) = J-, <u'
N 0Gr.7 tG[O,l] ^ ' " "

where W i s an element of Y, in which max J (t W) is achieved.
te[0l]

If we denote by < .,. > the duality bracket between ¥„ and its dual, by

(1.9) and by the fact that Uj, is a critical point of J~ we have

0 <hN = JiuN) ~ 1 < J ' ( V ' V

which implies the existence of a constant B (independent of N ) such

that

and, since II-II is equivalent to the standard H -norm, by the Sobolev

imbedding theorem, together with (0.3) and (1.3) it follows easily that

where B and B are positive constants independent of N . Hence (1.7)

holds.

As for (1.8) , we observe that , since Uj, is a cr i t ica l point of Jj,

i n Y , we have
/V

Therefore by (0.3)

2 iT • 2 2 3 4

0 < a\uN\\ < B\uN\3 + c\u

which implies (1.8) since Uj, % 0 .
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Step 3: Passing to the l imi t

By (1.7) and imbedding theorems, («„) has a subsequence (which we

still denote («„)) such that

and

u., -"• u in HN

-*• u in C .

Estimate (1.8) ensures that u i s nonzero. Since

PNi&UN~yUN) •*" 6W " yU i n L '

(1.3) shows that u satisfies the equation

(1.9) u - a.u - &u + yu = 0

2 • n

in the L sense. The periodici ty of u« and u,, and the C^-convergence

obviously imply

(1.10) M(0) = W(2TT) , M(0) = u(2-n) .

(1.9) and (1.10) show that u can be extended to (-•»,+») as a C -function,

with period 2TT , solving equation (0.1). This ends the proof.

REMARK 1. We observe that if a , B and y are (f-functions,

solutions of equation (0.1) are classical solutions, more precisely,
J>+2

solutions of class CT

2. Equation (0.2)

Consider the interval [0,2ir] and the equation

(2.1) u + a{t)u - B(t)w2 + y(t)u3 = 0

with the periodic conditions

(2.2) M(0) = U(2TT) , U{0) = W(2TT)

where a , B and y are functions that satisfy (0.3).

In the proof of Theorem (0.2) we use the following resu l t , which

follows easi ly from a theorem of Rabinowitz [6] , and which i s a

generalization of the "Mountain Pass Lemma"
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THEOREM 2.1 . Let H be a finite dimensional Hilbert space and

ft ,H subspaces of ft such that H
2 = "x • Suppose that J e CX{H,R)

and J{x) < 0 for every x ^ ft If there are constants r > r > 0

such that J(x) > 0 in (B \ {0}) n ft ) and J-(x) < 0 in H\ B ,
2 1

J has a critical point in {x £ # : J(x) > 0} and a corresponding

critical value characterized by

c = inf max J(h(x)) > 0

3 ^

where, choosing y G ft , H = H ® span {y} and

r = f t e C(H n 5 ,H) •. h{x) = x i f J-(x) < 0} .
1

Proof of Theorem 0.2. As in Theorem 0.1 we divide the proof into

three steps:

Step 1: Approximate solution in finite dimension

For each positive integer N such that N > A consider the finite

dimensional space defined in the first step of the proof of Theorem 0.1,

Y , and the functional J : X + R defined by

Analogously to (1.3) every critical point of J~ is a solution of the

equation

(2.3) x + a(t)x = P {&(t)x2 - y{t)x3) ,

and therefore we are going to look for c r i t i ca l points of J^ .

Let m be as in the statement of Theorem (0.2) and consider the

following subspaces of !„ :

N
Yfl={ I c, e € X : k 5

k=-N

and

y = { T c e e i
k=-m
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I t i s clear that YN = Y* ® ?N .

We claim that :

(2.4) JflW ** ° f o r every u € y

and

(2.5) there are constants r > r > 0 such that J^M > 0

in Y* n (B \ {0}) and </„(«) < 0 in YN \ B
2 r i

In fact if u G i\. we have

J (u) < v I \ok\ (k -a. + ( - M - T « )
" k=-m K Jo 3 4

^- , 2 . V I | 2 , B i i 3 c4
^5 u (m - a ) > c , + (— u — — it )

7
 L fe1 J „ 3 ' ' 4k=-m '0

2 7 I
w 2 ( ^ - a + B |Mj _ c M 2 }

0 4

w h i c h , b y c o n d i t i o n ( 0 . 5 ) , i m p l i e s ( 2 . 4 ) . As f o r ( 2 . 5 ) , t a k e u G Y~

C o m p u t i n g «^M(w) we h a v e

. f \c\2(k2-A) + \ 2 \ \ u i - \ u *
k=-N J o J

(w+l)2-i4 I |2 B , ,3 C | ,4
2 l " l 2 " 3 l " l 3 " 4 l W i 4

> \u\2 ^ ^ 2 ' " ^ ~ q 3 I " l 2 > •

This inequal i ty inp l ies the f i r s t statement of (2.5). As for the second

one i t i s obtained as in the proof of Theorem 0.1 (see (1 .4)) . Hence, by

Theorem 2 . 1 , J~ has a c r i t i c a l point in J.. and corresponding c r i t i c a l

value e.. characterized by

(2.6) cn = inf max _ J (h(u)) > 0 ,
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where y 6 ¥„ and

= [he C(Y~ ® span{y}) n S^ ,Jff) : fc(w) = K i f «7̂ <K) < 0}

Step 2: Estimates for £/„

As in the proof of Theorem 0.1 we are going to prove that there are

constants independent of N , A and A , such that

(2.7) " V 2
< A L

and

(2.8) \"N\a>
> A2 > ° •

Let c^ be the critical value that corresponds to the critical point

of J.j i Ujy . we claim that

(2.9) GN<Bl

and

(2.10) I ^ I 4
< B 2 '

where B and B are positive constants independent of N . In fact,

using the characterization of e.. (2.6) and the fact that h(u) = u G r

we have

0 < c. = inf _ max _ Jj.(h(u))
h£T ifE(Y®{y})nB

< max

< max

We observe that (2.5) guarantees the existence of

Suppose that the maximum is achieved at û . . Take y - cos Jt where j

is an integer such that N > j > (m+1) . Then u = \ c, e + X cosjt
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and we have

0 < aN< *VV < I {k2~a) K^11 + Jx2^2~a) + j (| t^- j u^.
0

,2 B [ 2 Y ,3 c f2n
r ,4X + J j |M| j |^|

< i - ,2 + S i- i3 _ £ i- ,4

Then

£ i - i4 < i - ,2 B i - ,3

which implies the existence of a constant B , independent of N , such

that

(2.11) 1^4 < B 3 •

Let c« = JJ,(UJ.) . If we get a bound for e.. , (2.9) is proved since

c, < Op, . Using the fact that «„ is a cr i t ica l point of J~ in

Yjy ® span{j/} and Holder's inequality, we get

b e c a u s e of ( 2 . 1 1 ) . Then (2 .9) i s proved. The f a c t t h a t Uj, i s a c r i t i c a l

p o i n t of Jj, i n Y.. and (2.9) imply

e
4

Therefore
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which imp l i e s ( 2 . 1 0 ) .

Now u s i n g ( 2 . 1 0 ) , a Ga l i a rdo-Ni renberg i n t e r p o l a t i o n and t h e Sobolev

imbedding theorem we a r e going t o prove ( 2 . 7 ) . Throughout t h i s proof we

denote by k s e v e r a l p o s i t i v e c o n s t a n t s independent of N . By (2.3) ,

(2.10) and H o l d e r ' s i n e q u a l i t y we have

2TT

B\u2
N\2

klu.A \u.,I „ + k

then

(2.12) | i i ^ l 2 < k + k \uN\

Write uT1 in t h e form u.. = a.. + u., where I u., = 0 and a... i s a
N N N N J _ N N

constant. Since &„ vanishes for some t £ [0,2TT] we can apply the

Gagliardo-Nirenberg interpolat ion to &„ :

By (2.10) and Holder's inequality

(2.14) \aN\ <±\

By ( 2 . 1 3 ) , (2.14) and (2.10) we have
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By (2 .12) and (2.15) we g e t

(2 .16 ) \aN\2 < k + k \iN\3
2 .

Since lwn/l2 ^ I /̂I/U ' f r o m (2.16), (2.10) and Holder's inequality we

conclude that (2.7) holds.

As for (2.8), we observe that from the variational characterization

of the eigenvalues and by (0.4) i t follows that X = 0 is not an eigenvalue

of the l inear problem

{ u + a(t) u = Xu ,

U(o) - W(2TT) = u(o) - w(2ir) = 0 .

From this fact, i t is easy to see, arguing by contradiction, that there

is k > 0 such that

\U+au\2 > k\u\2

f o r e v e r y u £ H t h a t s a t i s f i e s the p e r i o d i c c o n d i t i o n s ( 2 . 2 ) . Then,

u s i n g (2 .3) ,

< (B I H J + C \uJ2) |u,,L

which impl ies ( 2 . 8 ) , s ince !*„ jl 0 .

Step 3: Passing to the l imit

This is analogous to step 3 of the proof of Theorem 0.1.

This ends the proof.

REMARK 2.1. As in the case of remark 1.1, the regularity of the

solution thus obtained depends on the regularity of the coefficient

functions a , & and y .
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