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Abstract

We present two new stochastic volatility models in which option prices for European
plain-vanilla options have closed-form expressions. The models are motivated by the
well-known SABR model, but use modified dynamics of the underlying asset. The asset
process is modelled as a product of functions of two independent stochastic processes:
a Cox–Ingersoll–Ross process and a geometric Brownian motion. An application of the
models to options written on foreign currencies is studied.

Keywords: SABR; European option; volatility smile

2000 Mathematics Subject Classification: Primary 91B70
Secondary 60K99; 60J70; 62P05

1. Introduction

There is a growing interest in stochastic volatility models in all areas of financial mathematics;
see, for example, [8], [12], [13], [14], [15], [17], [21], [23], and [25]. One stochastic volatility
model which has gained great popularity with practitioners, in particular for modelling the
foreign exchange market, is the so-called SABR model [11]. As presented in [11], it has the
advantage that it allows asset prices and market smiles to move in the same direction. Moreover,
a closed-form (approximate) formula for the implied volatility is given. This implied volatility
is not constant but a function of the strike price and some other model parameters. Hence,
the market prices and market risk, including vanna and volga risk, can be obtained very easily.
Moreover, the SABR model is said to fit the implied volatility smile quite well. However, the
SABR option pricing formula is not the option price corresponding to the underlying stochastic
process, but is obtained by using an approximation, and as such must be treated with caution;
the asymptotic is based on the assumption that the time-to-expiry is small, and the recent work
of Benaim [3] showed that the extreme-strike behaviour of the formula is not consistent with
arbitrage-free pricing.

The aim of this paper is to build an alternative model which retains many of the desirable
features of the SABR model but also has exact closed-form expressions for the price of a
European call option. The expressions involve a one-dimensional integral of elementary
functions.

We begin by applying certain natural transformations to the SABR model, which suggest
varying the model in such a way that the discounted asset price process becomes the product of
two independent processes, whose transition densities are known in closed form. The explicit
formulae for the option prices follow easily from this representation.
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We then generalise the model in Section 4. We define the discounted stock price as the product
of a geometric Brownian motion and a function of the Cox–Ingersoll–Ross (CIR) process.
The function used is essentially a confluent hypergeometric function. This choice makes the
discounted asset price a martingale without restricting the choice of model parameters, creating
a new model with seven parameters, in contrast to the four parameters of the SABR model, and
the three of our original variant.

We therefore end up with a stochastic volatility model which is consistent with arbitrage-free
pricing for all strikes and maturities. We do not rely on approximation techniques to derive the
option prices for European plain-vanilla options, but get closed-form formulae. This is rarely
possible for other stochastic volatility models. Another not too common feature of our model
is the fact that we constructed an asset price process which is a martingale with finite higher
moments and not just a local martingale; see, e.g. [2] and [22] for further discussion on this
matter.

The recent preprint [16] presents a model similar to the ones we consider here.

2. Motivation

The SABR model is a stochastic volatility model in which the asset price and the volatility
are correlated. The stock price S is assumed to solve the stochastic differential equation (SDE)

dS = σSβ dW, dσ = ησ dB, dB dW = ρ dt,

for some constants β ∈ (0, 1), η > 0, and ρ ∈ (−1, 1), where W and B are Brownian motions.
In this model, singular perturbation techniques are used to obtain European option prices.
Closed-form approximations to the option price and the implied volatility are stated in [11].
Here, we transform the basic SABR model, making various changes along the way, to arrive at
a new model for which option prices are available in closed form. The prices are represented as
one-dimensional integrals. It should be emphasised that this section is purely for motivation;
we take the basic SABR model and carry out various transformations, changing the dynamics
in various ways when it suits us, and making whatever simplifying choices appear helpful at the
time. The reader for whom such free-form mathematics is anathema should immediately pass
to the next section, where an explicit model is proposed ab initio, inspired by, but completely
independent of, the account of this section.

Recall the constant elasticity of variance (CEV) model [5], where the stock price solves
dS = σSβ dW for a constant σ > 0. In this model it can be shown that the process Y =
Sγ , γ = 2(1 − β), solves the SDE of a time-changed squared Bessel process. In particular,
Yt = X(γ 2σ 2t/4), where X is a squared Bessel process with dimension 2(1 − γ −1), that is,
dX = 2(1 − γ −1) dt + 2

√
X dB̃; see, e.g. [7]. Then

dY = γ σ
√

Y dW + 1
2γ (γ − 1)σ 2 dt.

Let us apply this transformation to the SABR model. We have to account for the fact that in
the SABR model the two Brownian motions B and W are correlated. We therefore define the
process Y ′ = y + ỹ in terms of the processes

dy = γ σ
√

y dW ′ + aσ 2 dt, dỹ = γ σ
√

ỹ dB + bσ 2 dt,

where W ′ and B are independent Brownian motions, and a and b are constants which sum to
γ (γ − 1)/2. Then the correlation is dY ′ dσ = ησ 2γ

√
ỹ dt instead of dY dσ = ησ 2γ

√
Yρ dt ,
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so that now the constant ρ changes to the variable
√

ỹ/Y . We can set some initial value for ρ

by our choice of Y0 and ỹ0, but note that we cannot model negative correlation this way.
A particularly obliging choice of b is to take b = γ 2/4, since then

d
√

ỹ = σγ

2
dB = γ

2η
dσ,

one solution of which is

ỹ =
(

γ σ

2η

)2

.

The corresponding choice for a will be a = −β(1 − β), and if x = y/σ 2 then we find that

dx = γ
√

x dW ′ − 2ηx dB + (a + 3η2x) dt.

For tractability, we propose instead to take y = σ 2x′, where

dx′ = γ
√

x′ dW ′ + (a + 3η2x′) dt,

which is of course a different model, having the virtue that x′ and σ are independent. This
leads to the model

Yt = yt + ỹt = σ 2
t

((
γ

2η

)2

+ x′
t

)
,

where σ and x′ are independent. However, we will not necessarily have Y 1/γ to be a local
martingale.

3. First alternative to SABR

3.1. Model description

Guided by the argument of the preceding section, we propose to represent the discounted
asset price process by

St = Y
1/γ
t = (σ 2

t zt )
1/γ , (1)

with z and σ the diffusions

dz = (a1 − a2z) dt + 2
√

z dW, dσ = ησ dB, (2)

where 0 < η and 0 < γ < 2 are constants, and W and B are two independent Brownian
motions. The constants a1 and a2 are given by

a1 = 2(γ − 1)

γ
, a2 = (2 − γ )η2

γ
, (3)

values which (as we will shortly see) make S a martingale. The process z is the squared
modulus of a centred multidimensional Ornstein–Uhlenbeck (OU) process, commonly known
in the finance literature as a CIR process.

Remark 1. If a1 < 0, the process z will hit 0 almost surely. Let τ := inf{0 ≤ t : zt = 0}. For
a1 < 0, we consider the stopped process zt∧τ rather than z.

Definition 1. We refer to the model for the asset price defined by (1), (2), and (3) as the
stochastic volatility model (SV1 model).
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We show in the following lemma that S is a martingale.

Lemma 1. Suppose that the diffusions z and σ satisfy (2) and that the parameters are as in (3).
Then the process St = σ

2/γ
t z

1/γ
t is a martingale and solves the SDE

dS = S
2

γ

(
dW√

z
+ η dB

)
.

Proof. First we show that S is a local martingale, using Itô calculus, and finally we argue a
bound on S to show that S is a martingale.

Applying Itô’s formula to the functions x �→ x2/γ and x �→ x1/γ we obtain

dσ 2/γ = σ 2/γ

(
2 − γ

γ 2 η2 dt + 2η

γ
dB

)
,

dz1/γ = z1/γ

γ

((
a1

z
− a2 + 2(1 − γ )

γ z

)
dt + 2√

z
dW

)
.

Using the product rule and the independence of the Brownian motions B and W gives

dS = σ 2/γ dz1/γ + z1/γ dσ 2/γ

= S
1

γ

((
a1

z
− a2 + 2(1 − γ )

γ z
+ 2 − γ

γ
η2

)
dt + 2√

z
dW + 2η dB

)
.

Substituting in the definitions of a1 and a2 we obtain

dS = S
2

γ

(
1√
z

dW + η dB

)
= S

2

γ

√
1

z
+ η2 dW̃ ,

where W̃ is a Brownian motion.
Then S is a martingale, since sup0≤t≤T σt ∈ Lp and sup0≤t≤T zt ∈ Lp for any p > 1.

Since σ is a geometric Brownian motion, it is easy to see that sup0≤t≤T σt ∈ Lp for any
p > 1. Similarly, sup0≤t≤T zt ∈ Lp for any p > 1, since sup0≤t≤T zt is bounded in law by the
supremum of the squared Euclidean norm of an OU process in high enough dimension, as we
show in the following.

Let Y ∈ R
δ be a solution to the SDE dYt = −(a2/2)Yt dt + dŴt , where a2 ≥ 0 by

construction and Ŵ is a δ-dimensional Brownian motion. Let f (·) : R
δ → R denote the

squared Euclidean norm, i.e. f (Y ) = Y 2
1 + · · · + Y 2

δ . Then from Itô’s formula we obtain
df (Y ) = (δ − a2f (Yt )) dt + 2

√
f (Yt ) dW̃t , where W̃ is a one-dimensional Brownian motion.

Hence, we see that z and f (Y ) have the same volatility function. Let δ1 := {g ∈ Z : g ≤ a1 <

g +1}+1 and δ2 := {g ∈ Z : g ≤ a1 < g +1}−1. Therefore, δ1 −a2z ≥ a1 −a2z ≥ δ2 −a2z

for all z ≥ 0. Hence, by the stochastic comparison theorem (assuming that f (Y0) = z0) we
constructed an almost sure upper bound and an almost sure lower bound on zt in terms of the
squared Euclidean norm of an OU process in dimensions δ1 and δ2, respectively.

Before we can compute the prices of European put and call prices, we formulate the following
lemma, which specifies the transition density of the process z.

Lemma 2. Suppose that the diffusion z satisfies (2). We define, for t < T ,

c := 2a2

4(1 − exp(−a2(T − t)))
, u := czt exp(−a2(T − t)),

v := czT , q := a1

2
− 1.

https://doi.org/10.1239/jap/1231340234 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1231340234


A stochastic volatility alternative to SABR 1075

Then the following statements hold.

1. Given zt , zT is distributed as 1/2c times a noncentral χ2 random variable with a1 degrees
of freedom and noncentrality parameter 2u:

zT = 1

2c
χ2

a1
(2u).

2. For a1 > 0, the transition density from zt to zT is given by

p(zt , zT ) = c exp(−u − v)

(
v

u

)q/2

Iq(2
√

uv),

where Iq(·) denotes the modified Bessel function of the first kind of order q.

3. If a1 < 0, the CIR process will hit 0 almost surely. Since we require that it is then
absorbed at 0, the distribution of z has point mass 	 := 1 − ∫ ∞

0 p(zt , z) dz > 0 at 0.
For a1 < 0, the transition density is given by

p(zt , zT ) = c exp(−u − v)

(
v

u

)q/2

I|q|(2
√

uv).

For additional information and a proof of the lemma, we refer the reader to [6], [9, Chap-
ter 3.4], [10], and [18, Section 6.2.2].

In the following we exploit the independence of the two processes σ and z, and compute
prices for European put and call options by conditioning. This allows us to obtain analytic
expressions for the option prices, as the next theorem states.

Theorem 1. (SV1 model.) Suppose that St = σ
2/γ
t z

1/γ
t , where the diffusions z and σ satisfy (2)

and the parameters are as in (3). Let r denote the interest rate, and let S̃t := ertSt be the
underlying asset price. Then the time–0–prices of a European put option, P SV1, and of a
European call option, CSV1, with expiry T and strike price K are given

P SV1(S0, T , K, r, η, z0, γ ) = E[(e−rT K − ST )+]
=

∫ ∞

0
h1(z)pT (z) dz + 1{a1<0} 	e−rT K (4)

and

CSV1(S0, T , K, r, η, z0, γ ) = E[(ST − e−rT K)+] =
∫ ∞

0
h2(z)pT (z) dz, (5)

where

h1(z) := e−rT K
(−d2) − σ
2/γ
0 z1/γ exp

(
η2T

γ

(
2

γ
− 1

))

(−d1),

h2(z) := σ
2/γ
0 z1/γ exp

(
η2T

γ

(
2

γ
− 1

))

(d1) − e−rT K
(d2).

Here

d1 := d2 + 2η

γ

√
T , d2 := γ

2η
√

T

(
log

(
σ

2/γ
0 z1/γ

e−rT K

)
− η2

γ
T

)
,


(·) is the cumulative distribution function of the standard normal distribution, and pT (z) :=
p(z0, zT ) is the probability density function of the noncentral χ2 distribution, as specified in
Lemma 2.
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Proof. We only show the expression for the put price, (4), since (5) is similar. We first
assume that a1 ≥ 0. From Lemma 1 we know that S is a martingale. Hence, the put price is
the expectation given in (4). Since the processes z and σ are independent, we can compute the
expectation by conditioning as follows:

P SV1(S0, T , K, r, η, z0, γ ) = E[(e−rT K − ST )+]
= E[(e−rT K − σ

2/γ

T z
1/γ

T )+]
= E[E[(e−rT K − σ

2/γ

T z
1/γ

T )+ | zT = z]]
= E[h1(z)]
=

∫ ∞

0
h1(z)pT (z) dz,

where
h1(z) = E[(e−rT K − σ

2/γ

T z
1/γ

T )+ | zT = z]

=
∫ ∞

−∞

(
e−rT K − σ

2/γ
0 z1/γ exp

((
2 − γ

γ 2 η2 − 2η2

γ 2

)
T + 2η

γ

√
T x

))+

× exp(−x2/2)√
2π

dx

=
∫ a

−∞
e−rT K

exp(−x2/2)√
2π

dx − σ
2/γ
0 z1/γ exp

(
−η2T

γ

)

×
∫ a

−∞
exp

(
−1

2

(
x2 − 4η

√
T

γ
x

))
dx√
2π

= Ke−rT 
(a) − σ
2/γ
0 z1/γ exp

(
−η2T

γ

)
exp

(
2η2T

γ 2

)



(
a − 2η

√
T

γ

)

= Ke−rT 
(a) − σ
2/γ
0 z1/γ exp

(
η2T

γ

(
2

γ
− 1

))



(
a − 2η

√
T

γ

)

and

a := γ

2η
√

T

(
log

(
e−rT K

σ
2/γ
0 z1/γ

)
+ η2T

γ

)
.

Then, with d2 = −a and d1 = −a + 2η
√

T /γ , the result follows.
If a1 < 0, the CIR process has point mass

	 := 1 −
∫ ∞

0
p(zt , z) dz > 0

at 0 and, therefore, the additional term 	h1(0) = 	e−rT K is added. Since, for the call price,
h2(0) = 0, no additional term is necessary.

Integrals (4) and (5) can be rewritten as the definite integral
∫ 1

0
h

(
1 − x

x

)
pT

(
1 − x

x

)
dx

x2 ,

and can be evaluated by numerical integration. Alternatively, they can be evaluated by Monte
Carlo methods by sampling from a noncentral χ2 distribution.
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Remark 2. In this model, the correlation between the asset and its volatility will always be
positive, in contrast to the SABR model. Hagan et al. [11] stated that, with foreign exchange
(FX) options, a key feature of the asset dynamics is that if the spot rises then the place where
the implied volatility is minimal should also rise, and this was a feature that they claimed is
not reflected by many stochastic volatility models. The model we propose here allows for this
feature to some extent, since a shift of σ has the effect of multiplying S by some constant, but
not altering the dynamics in any other way. Thus, if the spot moves upward due to an increase
in σ then the implied volatility surface also shifts to the right. However, the effect of a change
in z is ambivalent.

Remark 3. In the context of FX options, with Y denoting the price of one unit of foreign
currency in domestic currency units, St = exp((rf − rd)t)Yt is a martingale. Then the time–
0–price of a European put option is given by

E[exp(−rdT )(K − YT )+] = exp(−rf T ) E[(K exp(−(rd − rf )T ) − ST )+].
We denote the corresponding put and call prices in our model byP SV1(S0, T , K, rd, rf , η, z0, γ )

and CSV1(S0, T , K, rd, rf , η, z0, γ ), respectively.

3.2. Empirical analysis

In this section we present some empirical results. We consider data used in [4]. In the FX
market, option prices are not quoted directly. The quotes are in terms of the Black–Scholes
implied volatility. We consider EUR/USD volatility quotes as of 12 February 2004. On that day
the spot exchange rate was 1.2832. The data contain observations for nine different maturities
(one and two weeks; one, two, three, six, and nine months; and one and two years) and seven
different strikes.

3.2.1. The fitting criterion. In the classical Black–Scholes model, the exchange rate process
solves the SDE

dSBS = SBS((rd − rf ) dt + σBS dW),

where rd and rf denote the constant domestic and foreign interest rates, respectively. The
volatility σBS is assumed to be constant. The price for a European call, CBS, and put, P BS, at
time 0 with maturity T and strike K is then given by

CBS(S0, T , K, rd, rf , σBS) = exp(−rdT )[S0 exp((rd − rf )T )
(dBS
1 ) − K
(dBS

2 )],
P BS(S0, T , K, rd, rf , σBS) = exp(−rdT )[K
(−dBS

2 ) − S0 exp((rd − rf )T )
(−dBS
1 )],

where

dBS
1,2 = log(S0/K) + (rd − rf ± (1/2)(σBS)2)T

σBS
√

T
,

from which the implied volatilities are computed from the prices.
When looking at empirical data, we usually observe that the implied volatilities are not

constant but U-shaped (volatility smile). In the FX market, this smile is usually symmetric.
In the following we try to fit the SV1 model to the data such that we minimise the squared
difference between the observed implied volatilities and the model implied volatilities. We
denote by

σ (SV1) := σ (SV1)(η, z0, γ )
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a model implied volatility, meaning that it solves

P BS(S0, T , K, rd, rf , σ (SV1)) − P SV1(S0, T , K, rd, rf , η, z0, γ ) = 0.

Suppose that (σ
implied
1 , . . . , σ

implied
N )� ∈ R

N is the vector containing the observed implied
volatilities for European options corresponding to the vector (K1, . . . , KN)� ∈ R

N of strike
prices, the vector (T1, . . . , TN)� ∈ R

N of maturities, and the vectors (rd,1, . . . , rd,N )� and
(rf,1, . . . , rf,N )� ∈ R

N of domestic and foreign interest rates, respectively. Here S0 denotes
the asset price at time 0. In the following we minimise the squared difference between the
observed implied volatility and the implied volatility derived from the model price, i.e. we
compute

min
η,z0,γ

N∑
i=1

(σ
(SV1)
i (η, z0, γ ) − σ

implied
i )2.

3.2.2. Implementation. The computation of the option price involves a numerical evaluation of
the integral ∫ ∞

0
h(z)pT (z) dz;

see Theorem 1. This requires some care since in many examples the integrand has a very
high and small peak. Simple integration routines might miss this point and might, therefore,
compute too small prices. To overcome this problem, we did the following.

The integrand consists essentially of a product of a Black–Scholes-type formula h(·) and
the density of a noncentral χ2 random variable pT (·). So there are special functions involved:
the cumulative distribution function of the standard normal distribution, 
, and the modified
Bessel function of the first kind, Iq . Both functions can cause problems (regarding numerical
precision) when considered with very small or large arguments. We therefore expressed 


in terms of the logarithm of the complementary error function, log((2/
√

π)
∫ ∞
x

exp(−t2) dt).
Moreover, we did not compute Iq directly, but its scaled version Iq(x)e−|x|.

Then we considered the logarithm of the integrand rather than the integrand itself. We used
an optimisation routine to determine the maximum of the logarithm of the integrand x�. We
then split the area of integration and computed

∫ x�

0
h(z)pT (z) dz +

∫ ∞

x�

h(z)pT (z) dz.

Therefore, we ensured that the numerical integration routine did not miss the main mass. The
pricing routine was implemented in C using the GNU Scientific Library.

We used different optimisation routines to fit the data. We used gradient search methods,
simulated annealing, and the simplex algorithm in [19].

3.2.3. Empirical results. In this section we present the empirical results from the analysis for
one maturity (three months) only. The model parameters are as follows. The exchange rate at
time 0 is S0 = 1.2832, the maturity is T = 0.2493, and the interest rates are rd = 0.011 299 5
and rf = 0.020 900 7. We consider seven observations. Figure 1 shows the results. We see
that our model (SV1) and the SABR model seem to fit the European put prices well. However,
if we consider the implied volatilities, we see that our model does not fit the implied volatilities
as well as the SABR model does. The SABR model seems to fit the observed smile perfectly.
However, we have to bear in mind that our model contains only three parameters, η, z0, and γ

(since σ0 =
√

S
γ
0 /z0), whereas the SABR model contains four parameters.
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Figure 1: Comparing the fit of the SV1 model to the fit of the SABR model for (a) the implied volatilities
and (b) the European put prices. The optimal parameters are β = 0.99, η = 1.005 231 4, σ0 = 0.107 841 8,
and ρ = 0.147 685 for the SABR model, and η = 0.01, z0 = 91.576 027, and γ = 1.998 081 5 for the

SV1 model.

4. Second alternative to SABR

4.1. Model description

We now generalise the approach of the previous section. We still assume that the discounted
stock price can be written as a product of two independent processes. However, we now assume
that the discounted stock price S is a product of a geometric Brownian motion and a general
function of a CIR process:

St = σtg(zt ), (6)

where σ is a geometric Brownian motion and z is a CIR process, i.e.

dσ = σ(µ dt + η dB), dz = (a1 − a2z) dt + 2
√

z dW. (7)

The two Brownian motions B and W are assumed to be independent, which makes the analysis
tractable, but restricts the correlation between asset and volatility to be nonnegative. The
function g solves the following second-order ordinary differential equation (ODE):

2zg′′(z) + (a1 − a2z)g
′(z) + µg(z) = 0. (8)

(Observe that g(z) = z1/γ is a solution if a1 = 2(1 − γ −1) and a2 = µγ . With µ =
(2 − γ )η2/γ 2, we see that the SV1 model is a special case of the SV2 model; see Definition 2,
below.) The ODE (8) can be solved in terms of the Kummer functions M(·, ·, ·) and U(·, ·, ·);
see [1]. The Kummer functions are defined by

M(a, b, z) :=
∞∑

n=0

(a)nz
n

(b)nn! ,
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where (a)n = a(a + 1)(a + 2) · · · (a + n − 1), (a)0 = 1, and

U(a, b, z) := π

sin(πb)

(
M(a, b, z)


(1 + a − b)
(b)
− z1−b M(1 + a − b, 2 − b, z)


(a)
(2 − b)

)
.

Then a solution g to the ODE (8) is given by

g(z, a1, a2, µ) = C1M

(
− µ

a2
,
a1

2
,
a2z

2

)
+ C2U

(
− µ

a2
,
a1

2
,
a2z

2

)
(9)

for some constants C1 and C2.

Definition 2. We refer to the model for the asset price defined by (6), (7), and (9) as the
stochastic volatility model (SV2 model). Moreover, we require that µ < 0, a1 > 2, and a2 > 0
in the following.

With this choice of parameters, the CIR process z stays away from 0. For µ < 0, the
Kummer function M stays positive. In the empirical analysis, the constants C1 and C2 were
chosen such that the function g(·) stays positive.

With this choice of g we have found a martingale.

Lemma 3. Suppose that the diffusions z and σ satisfy (7) and that g is given by (9). Then the
process St = σtg(zt ) is a martingale and solves the SDE

dSt = St

(
g′(zt )

g(zt )
2
√

zt dWt + η dBt

)
.

Proof. We will have need of the result stated in Proposition 1, which can be seen as an
application of Theorem 1.3.5 of [24], though we present a direct proof in Appendix A.

For diffusion (14), below, on I = (0, ∞), it is well known (see, for example, [20, ChapterV])
that 0 is inaccessible if and only if s(0+) = −∞ and that +∞ is inaccessible if and only if
s(∞) = ∞, where s is the scale function defined up to irrelevant affine transformations by

s′(x) = exp

(
−

∫ x 2b(z)

σ (z)2 dz

)
.

Routine calculations prove that 0 and ∞ are inaccessible for the diffusion z satisfying (7)
provided that a1 ≥ 2 and a2 > 0; for this diffusion,

σ(x) = 2
√

x, b(x) = a1 − a2x, s′(x) = x−a1/2 exp

(
a2

2
x

)
. (10)

It only remains to analyse the scale function of the drift transformed version of the diffusion,
for which

σ(x) = 2
√

x, b̃(x) = a1 − a2x + 4xg′(x)

g(x)
, s̃′(x) = s′(x)

(g(x))2 . (11)

This will require the asymptotics of the Kummer functions at 0 and ∞.
We use the first-order approximation of the Kummer functions. According to [1, Chapter 13],

for z > 0 and z → ∞,

M(a, b, z) = 
(b)


(a)
ezza−b(1 + O(|z|−1)), U(a, b, z) = z−a(1 + O(|z|−1)).
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Hence, for large z, we can write

g(z, a1, a2, µ) = C1M

(
− µ

a2
,
a1

2
,
a2z

2

)
+ C2U

(
− µ

a2
,
a1

2
,
a2z

2

)

= O

(
exp

(
a2z

2

)
z−µ/a2−a1/2

)
. (12)

From (10), (11), and (12), we see that
∫ ∞

s̃′(x) dx = +∞.

All that remains is to show that
∫

0+ s̃′(x) dx = +∞, and for this we need the asymptotics near 0
of g.

For small z, the Kummer functions can be approximated; see [1, Chapter 13]. For |z| → 0,
M(a, b, 0) = 1. For U(·, ·, ·), there are several approximations dependent on the value of
the second parameter; see [1, Chapter 13, Equations 13.5.6–13.5.11]. Also, the order of the
approximation varies. Since we require a1 > 2, we obtain, for small z,

U

(
− µ

a2
,
a1

2
,
a2

2
z

)
= 
(a1/2 − 1)


(−µ/a2)

(
a2

2
z

)1−a1/2

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(|z|a1/2−2), a1 > 4,

O

(
log

∣∣∣∣a2

2
z

∣∣∣∣
)

, a1 = 4,

O(1), 2 < a1 < 4.

Whichever of these obtains, we immediately see that

g(z) = O(z1−a1/2) as z → 0. (13)

Combining (10), (11), and (13), we see that
∫

0+
s̃′(x) dx = +∞,

and the proof is complete by applying Proposition 1 (see Appendix A).

Then the prices of European put and call options can again be derived in closed form by
conditioning.

Theorem 2. (SV2 model.) Suppose that St = σtg(zt ), where the diffusions z and σ satisfy (7)
and g is given by (9). Let r denote the interest rate, and let S̃t := ertSt be the underlying asset
price process. Then the time–0–prices of a European put option, P SV2, and of a European call
option, CSV2, with expiry T and strike price K are given by

P SV2(S0, T , K, r, a1, a2, z0, µ, η) = E[(e−rT K − ST )+] =
∫ ∞

0
h̃1(z)pT (z) dz

and

CSV2(S0, T , K, r, a1, a2, z0, µ, η) = E[(ST − e−rT K)+] =
∫ ∞

0
h̃2(z)pT (z) dz,
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where

h̃1(z) := e−rT K
(−d̃2) − σ0g(z)eµT 
(−d̃1),

h̃2(z) := σ0g(z)eµT 
(d̃1) − e−rT K
(d̃2).

Here

d̃1 = 1

η
√

T

(
log

(
σ0g(z)eµT

K

)
+

(
r + η2

2

)
T

)
, d̃2 = d̃1 − η

√
T ,


(·) is the cumulative distribution function of the standard normal distribution, and pT (z) :=
p(z0, zT ) is the probability density function of the noncentral χ2 distribution, as specified in
Lemma 2.

Proof. From Lemma 3 we know that S is a martingale. The remaining part of the proof is
along the lines of the proof of Theorem 1 and, therefore, omitted.

Remark 4. In this stochastic volatility model, the option price is effectively an average of
Black–Scholes prices. Recall that in the classical Black–Scholes model, where the stock price
S is given by

St = S0 exp

((
r − η2

2

)
t + ηWt

)
,

the put price is given by

P BS(S0) := e−rT K
(−dBS
2 ) − S0
(−dBS

1 ),

where

dBS
1 := 1

η
√

T

(
log

(
S0

K

)
+

(
r + η2

2

)
T

)
, dBS

2 := dBS
1 − η

√
T .

Therefore, if we substitute S0 in this formula by the random variable σ0eµT g(z), where z is a
noncentral χ2 distributed random variable, we find that h̃1(z) = P BS(σ0eµT g(z)). Moreover,

P SV2(S0, T , K, r, a1, a2, z0, µ, η) = E[P BS(σ0eµT g(z))].

Remark 5. The new stochastic volatility model, SV2, contains seven model parameters: a1,
a2, z0, µ, η, C1, and C2. Again, σ0 can be derived from σ0 = S0/g(z0).

Remark 6. This modelling approach can be modified by replacing the CIR process with an OU
process. The corresponding function g(·) can then still be expressed in terms of the Kummer
functions. For this extension, it is possible to allow for correlation between the Brownian
motion driving the geometric Brownian motion and the Brownian motion driving the OU
process. European option prices can still be obtained in closed form.

4.2. Empirical results

We now fit the second stochastic volatility model, SV2, to the same example considered
already in the previous section. We consider a European put option with three months expiry.
Figure 2 shows the implied volatilities and the fitted option prices compared to the observations
and the SABR model. We find that both the SV2 and the SABR models fit the put prices well.
However, the SABR model still seems to fit the implied volatility smile better.
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Figure 2: Comparing the fit of the SV2 model to the fit of the SABR model for (a) the implied
volatilities and (b) the European put prices. The optimal parameters are β = 0.99, η = 1.005 231 4,
σ0 = 0.107 841 8, and ρ = 0.147 685 for the SABR model, and a1 = 3.977, a2 = 0.849, µ =

−0.000 043 9, η = 0.1079, z0 = 0.043 05, C1 = 1.57, and C2 = 1.63 for the SV2 model.

5. Summary

The aim of this paper was to construct a stochastic volatility which is close in spirit to the
popular SABR model, but does not rely on approximation techniques. Moreover, we focused
on the analytical and numerical tractability when choosing the dynamics and relationship of the
stochastic processes involved. We obtained two stochastic volatility models which satisfy these
criteria. In the first model, the discounted asset price is modelled as a product of two independent
processes: a geometric Brownian motion and a power of a CIR process. In the second model,
which generalises the first model, we expressed the discounted asset price as a product of two
independent processes: a geometric Brownian motion and a confluent hypergeometric function
of a CIR process. For both models, we derived analytic expressions for prices of European
put and call options, which is rarely possibly in other stochastic volatility models. The prices
can be expressed as integrals of elementary functions and can, therefore, be computed very
efficiently. The models fitted well to FX option prices, and quite well to FX option implied
volatilities.

Appendix A. Result used in the proof of Lemma 3

Proposition 1. Suppose that I is a nonempty, open interval and that σ, b, b̃ : I → R are locally
Lipschitz in I , σ > 0 throughout I . Let P and P̃ be the laws on the path space C(R+, I ) under
which the canonical process X solves the SDEs

dXt = σ(Xt ) dWt + b(Xt ) dt, X0 = x0, (14)

and
dXt = σ(Xt ) dWt + b̃(Xt ) dt, X0 = x0,
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respectively, for some fixed x0 ∈ I . If τ := inf{t : Xt /∈ I }, and Z is the ‘change-of-measure’
local martingale,

dZt = Ztf (Xt ) dWt,

where f (x) := σ(x)−1(b̃(x) − b(x)), then Z is a true martingale if and only if

P̃(τ = ∞) = 1. (15)

Proof. First suppose that (15) holds. Take compact intervals Kn ⊂ I , increasing to I , and
let τn = inf{t : Xt /∈ Kn}. Then Zn

t := Zt∧τn is a martingale for each n, because

dZn
t = Zn

t f (Xt ) 1{t≤τn} dWt

and the drift in the change of measure is bounded. Under the probability Pn given by

dPn

dP

∣∣∣∣
Ft

= Zn
t ,

the process X solves the SDE

dXt = σ(Xt ) dWt + b̃(Xt ) 1{t≤τn} dt + b(Xt ) 1{t>τn} dt.

Note that, for any T ∈ R
+,

1 = E[Zn
T ]

= E[Zn
τn

: τn ≤ T ] + E[Zn
T : τn > T ]

= E[Zn
τn

: τn ≤ T ] + P̃(τn > T )

= E[Zτn : τn ≤ T ] + P̃(τn > T ).

Since Z is a positive local martingale, it is a supermartingale, and so 1 ≥ E[ZT ]. By hypothesis,
P̃(τn > T ) → 1 as n → ∞ and, therefore,

E[ZT ] = E[ZT : τn ≤ T ] + E[ZT : τn > T ]
= E[ZT : τn ≤ T ] + E[Zn

T : τn > T ]
= E[ZT : τn ≤ T ] + P̃(τn > T )

→ 1.

Conversely, if Z is a martingale then the laws P̃ and P are equivalent on each Ft , so the event
{supn τn ≤ t} has probability 0 under both P and P̃.
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