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Abstract

We apply deep kernel learning (DKL), which can be viewed as a combination of a Gaussian process (GP) and a deep
neural network (DNN), to compression ignition engine emissions and compare its performance to a selection of other
surrogate models on the same dataset. Surrogate models are a class of computationally cheaper alternatives to
physics-based models. High-dimensional model representation (HDMR) is also briefly discussed and acts as a
benchmark model for comparison. We apply the considered methods to a dataset, which was obtained from a
compression ignition engine and includes as outputs soot and NO, emissions as functions of 14 engine operating
condition variables. We combine a quasi-random global search with a conventional grid-optimization method in order
to identify suitable values for several DKL hyperparameters, which include network architecture, kernel, and learning
parameters. The performance of DKL, HDMR, plain GPs, and plain DNNs is compared in terms of the root mean
squared error (RMSE) of the predictions as well as computational expense of training and evaluation. It is shown that
DKL performs best in terms of RMSE in the predictions whilst maintaining the computational cost at a reasonable
level, and DKL predictions are in good agreement with the experimental emissions data.

Impact Statement

Surrogate models, also known as emulators, meta-models, or response surfaces, are models, which are used in
place of other models or data. In practice, there are two main reasons for using surrogate models. The first one is
computational expense, in applications, which require large numbers of model evaluations, such as optimization
problems, involving detailed, physics-based models. The second reason is to obtain functions, which describe
behavior parametrically, in case of discrete data points. As requirements vary widely across applications, there is
no one-size-fits-all surrogate. In addition, the challenge of constructing a suitable surrogate becomes dramat-
ically harder as the number of input variables increases—a phenomenon sometimes referred to as the curse of
dimension. In this work, we show that a state-of-the-art machine-learning technique performs well as a surrogate
of a high-dimensional, highly nonlinear, industrial dataset of engine emissions, and present a method, which
allows fitting the surrogate in a way convenient to users.
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1. Introduction

Complex physical systems such as internal combustion engines are generally studied via physical or
computational experiments, or their combinations. In many situations, physical experiments may not be
feasible or can be highly expensive to perform, and computer experiments are then preferred in such cases.
These involve experimenting on a rigorous first-principles or physics-based model instead of the real
system (Garud et al., 2017a). However, expressive computer experiments often involve high computa-
tional cost. Therefore, in any application that requires large numbers of data points or model evaluations
such as optimization or parameter estimation, it is inevitable to replace high-fidelity models and real
physical experiments by computationally cheap surrogate models.

A surrogate model is an empirical analytical or numerical expression for the quantification of
relationships between relevant input features and output labels/values of a physical system (Garud
et al., 2018a). Surrogate models can be viewed as a substitute model, which mimics the behavior of a
detailed model or data as closely as possible while keeping the computational cost at a minimum. The
construction of a surrogate model requires one to choose a mathematical or numerical form for modeling.
Surrogate modeling has been studied extensively in applications in numerous areas across science and
technology, too numerous to review here, and for a variety of purposes, the most popular ones being
parameter estimation (Frenklach et al., 1992; Kastner et al., 2013) and sensitivity analysis (Azadi et al.,
2014). Many statistical and machine learning methods have been proposed as surrogate models in the
literature, such as high-dimensional model representation (HDMR) (Rabitz and Alis, 1999; Sikorski et al.,
2016), support vector regression (Drucker et al., 1997), and radial basis function (RBF) fitting (Park and
Sandberg, 1991), to name a few. The variety of available surrogate modeling techniques is reflective of the
fact that there is no such thing as a “universal surrogate.” Any given technique may work well in some
applications, but relatively poorly in others, depending on the unique characteristics in each case, such as
dimensionality, oscillatory or discontinuous behavior, and many others. Learning based evolutionary
assistive paradigm for surrogate selection (LEAPS2) is a framework that was proposed to recommend the
best surrogate(s) with minimal computational effort given the input/output data of a complex physico-
numerical system (Garud et al., 2018b). A frequently encountered issue, particularly in engine applica-
tions, is that the input spaces of the datasets are high-dimensional. Another common problem, and again
this applies particularly to engine applications, is that the size of the datasets is usually quite limited due to
the high cost induced by the data measurement, which further compounds the problem of high dimen-
sionality, although techniques exist to alleviate this (Garud et al., 2017a, Garud et al., 2017b).

The literature is replete with work related to the application of various machine-learning methods to
internal combustion engine modeling, optimization, and calibration. Ghanbari et al. (2015) used support
vector machines (SVMs) to predict the performance and exhaust emissions of a diesel engine and showed
that SVM modeling is capable of predicting the engine performance and emissions. In the study by Najafi
et al. (2016), an SVM and an adaptive neuro-fuzzy inference system (ANFIS) are applied to predicting
performance parameters and exhaust emissions such as CO, and NO, of a spark ignition (SI) engine and
are compared in terms of their performance, and they showed ANFIS is significantly better than SVM.
Silitonga et al. (2018) applied a method known as kernel-based extreme learning machine (K-ELM) to
evaluate the performance and exhaust emissions of compression ignition (CI) engines with biodiesel—
bioethanol—diesel blends at full-throttle conditions. Lughofer et al. (2011) investigated the modeling of
NO, emissions of a diesel engine using a fuzzy model directly from measurement data, which is then
shown to be a good alternative to physics-based models. Yilmaz et al. (2016) compared the response surface
methodology (RSM), a commonly used surrogate model, with least-squared support vector machine
(LSSVM) based on their performance in predicting the performance and exhaust emissions of a diesel engine
fueled with hazelnut oil, and showed that LSSVM narrowly outperforms RSM. Ghobadian et al. (2009)
studied the application of a multilayer perceptron (MLP) to predicting exhaust emissions of a diesel engine
using waste cooking biodiesel fuel and showed that MLP performs quite well in emissions prediction. Further
studies in modeling and predicting the performance and exhaust emissions of diesel engines under different
conditions can be found in the literature, such as the work of Niu et al. (2017) on the comparison of artificial
neural network (ANN) and SVM on emissions prediction of a marine diesel engine, and the study by
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Wong et al. (2015) on using relevance vector machine in modeling and prediction of diesel engine
performance. Various studies on the application of ANNs to emissions modeling in diesel engines under
different conditions can be found for example in Najafi etal. (2009), Sayin etal. (2007), and Yusafetal. (2010).

In the field of machine learning applications in diesel engine modeling, one of the most widely used
methods is known as ELM, which has inspired many extensions and applications in the diesel engine
community since its introduction. ELMs are feedforward neural networks, with a single hidden layer in
most cases (Huang et al., 2006). ELMs are an alternative to conventional neural networks in the sense
that each hidden unit in an ELM is a computational element, which can be same as classical nodes in an
MLP, as well as basis functions or a subnetwork with hidden units (Huang and Chen, 2007). Vaughan
and Bohac (2015) proposed an online adaptive ELM named weighted ring-ELM, which provides real-
time adaptive, fully causal predictions of near-chaotic homogeneous charge compression ignition
engine combustion timing. Janakiraman et al. (2016) proposed a stochastic gradient based ELM
(SG-ELM), a stable online learning algorithm, designed for systems whose estimated parameters are
required to remain bounded during learning. Wong et al. (2018) studied the ELM-based modeling and
optimization approach for point-by-point engine calibration. Silitonga et al. (2018) studied the
application of K-ELM (Huang et al., 2012) for prediction of the engine performance of biodiesel—
bioethanol-diesel blends.

In addition to the above-mentioned studies, there exist a large number of works on the application of
machine learning to diesel engine calibration and control. For instance, Tietze (2015) studied the
application of Gaussian process (GP) regression for calibrating engine parameters. Jeong et al. (2008)
applied a hybrid evolutionary algorithm consisting of a genetic algorithm and particle swarm optimization
to optimize diesel engine design with respect to decreasing exhaust emissions. Berger and Rauscher
(2012) and Berger etal. (2011) discussed various learning methods such as linear regression, feedforward
neural networks, and GP regression for modeling and optimization for stationary engine calibration.
Malikopoulos et al. (2007) proposed a reinforcement-learning-based decentralized control method, which
allows an internal combustion engine to learn its optimal calibration in real time while running a vehicle.

In this study, we focus on data-driven engine emissions modeling using deep kernel learning (DKL)
(Wilson et al., 2016)—a state-of-the-art machine learning technique, which can be viewed as a standard
deep neural network (DNN) with a GP as its last layer instead of a fully connected layer. In this way, we
can not only use a deep feedforward network to extract a high-level representation of the data, but also take
advantage of the nonparametric flexibility induced by the GP regression. We implement DKL for a diesel
engine emission dataset, taking 14 input variables including speed, load, injection timing, and others to
make predictions of NO, and soot emissions. We then use a systematic two-stage procedure to determine
several of the hyperparameters in DKL, and compare the resulting surrogate to a plain deep feedforward
network, a plain GP, as well as HDMR.

The paper is structured as follows. In Section 2, we discuss in some detail HDMR, deep feedforward
networks, GPs and DKL, respectively. In Section 3, we apply the three methods to the target engine
emission data, and compare their performance. Conclusions are drawn in Section 4.

2. Methods
2.1. High-dimensional model representation

Here, we briefly recall a well-established surrogate modeling method, high-dimensional model repre-
sentation (HDMR), which we use as a reference method for comparison.

HDMR s a finite expansion for a given multivariable function (Rabitz and Alis, 1999). Under its
representation, the output function y can be approximated using the following expression:

N, N, N,
y%f(x):fo"'Zfi(xi)"’szzj(xi’xf)’ O
i=1 =1 j=1
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where N, is the dimension of the input space and frepresents the mean value of f(x). The above
approximation is sufficient in many situations in practice since terms containing functions of more than
two input parameters can often be ignored due to their negligible contributions compared to the lower-
order terms (Li et al., 2002). The terms in Equation (1) can be evaluated by approximating the functions
fi(xi)and f; (x;,x ;) with some orthonormal basis functions, ¢ (x;), that can be easily computed. Popular
choices for the basis functions include ordinary polynomials (Li et al., 2002) and Lagrange polynomials
(Baran and Bieniasz, 2015). Apart from applications in chemical kinetics, HDMR has been applied in
process engineering (Sikorski et al., 2016) and also in engine emissions modeling (Lai et al., 2018).

2.2. Deep neural networks
Deep learning, or deep ANNSs, are composed of multiple processing layers to learn a representation of data
with multiple levels of abstraction (LeCun et al., 2015). Deep learning has gained exploding popularity in
the machine learning community over the past two decades, and it has been applied in numerous fields
including computer vision, natural language processing, recommendation systems, and so forth, due to its
ability to find both low- and high-level features of the data as well as its scalability to high-dimensional
input spaces. However, the construction of deep learning requires specification of many hyperparameters
including number of epochs, regularization strength, dropout rate, and so forth, and there is no universal
paradigm for determining the optimal settings for these hyperparameters. Hence the performance ofa DNN
can heavily depend on engineering techniques such as architecture specification and parameter tuning.
In our study, we are only concerned with fully connected neural networks. The goal of a neural network
is to learn the underlying representation of the given datasets. A deep feedforward network follows the
standard forward propagation and backpropagation to tune the learnable parameters of the neural network,
then use the trained network for further predictions on similar problems. In Figures | and 2, we show simple
graphical representations for forward and backpropagation in a fully connected network, respectively.
The architecture of a neural network can be described as a directed graph whose vertices are called
neurons, or nodes, and directed edges, each of which has an associated weight. The set of nodes with no
incoming edges are called input nodes, whereas the nodes with no outgoing edges are called output nodes.

Output Layer

Hidden Layer 2

Hidden Layer 1

Input Layer

Figure 1. Forward propagation in a three-layer feedforward neural network. For each unit in the layers
other than the input layer, the output of the unit equals the inner product between all the outputs from the
previous layer and the weights followed by a nonlinearity (e.g., the ReLU function).
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Figure 2. Backpropagation in a three-layer feedforward neural network. Computing the derivatives of the
cost function with respect to the weight parameters using chain rules, then the parameters are updated
using gradient descent with the computed derivatives.

We define the first layer to be the input layer and the last layer to be the output layer, and all other layers in
between are called the hidden layers. The input data are propagated in a feedforward fashion as follows:

Figure 1 shows how input signals are propagated forward in a three-layer fully connected neural
network, where for each unit in any layer other than the input layer, the input to the unit equals the inner
product between the output signals from all the units from the previous layer and the associated weights:

= Z Wiii- 2)

ieprevious layer

The unit then outputs a scalar by applying a nonlinearity, g, to this inner product: y; =g (z j). The signals
are propagated forward in this way layer by layer until the output layer is reached. Commonly used
nonlinear activation functions include the rectified linear unit (ReLU) f(z) = max (0,z), the sigmoid
function o(z) = [1 + exp(—z)] ' and the hyperbolic tangent function tanh (z). In this case, we have
omitted bias terms for simplicity.

At an output node, after taking the linear combination of its predecessor values, instead of applying an
activation function, an output rule can be used to aggregate the information across all the output nodes. In
aregression problem, as opposed to a classification problem, we simply keep the linear combination as the
output prediction.

The weights and bias parameters in neural networks are usually learnt via backpropagation using the
cached quantities from the forward propagation stage. Backpropagation, as represented in Figure 2,
is executed using gradient-descent—based optimization methods. Given a cost function, £(J,y), which
quantifies the difference between the current predictions of the output (¥) and the actual outputs (y), the
derivatives of E with respect to each weight in each layer of the network can be derived using the chain
rule,

OE OEdy;, OE _ OE
()Zj_ayjaZj’ ()Wij_ylaZj’

3)
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where the initial dE/dy;is derived given the activation function and the cost function. Then we
compute 0E/0z;, oE /ow;;and 0E /dy; iteratively for each node 7in layer /and node jin layer / — 1 until
we reach the input layer. Then we use methods such as stochastic gradient descent to update the weights in
the network:

JoE
Wij < Wi — (XWZ] “)

where o is some scalar known as the learning rate.

Iterative application of forward propagation and backpropagation will gradually decrease the cost
function value in general, and if the cost function is convex in the input space, it will eventually converge
to the global minimum or somewhere close to the global minimum.

The power of neural networks lies in the composition of the nonlinear activation functions. From the
results on universal approximation bounds for superpositions of the sigmoid function by Barron (1993), it
can be implied that a neural network with sigmoid activation can arbitrarily closely approximate a
nonparametric regression mode.

Here we only discuss fully connected neural networks, where the only learnable parameters are the
weight parameters w;; between each node 7in layer / — 1 and each node jin the previous layer /. For a
general review of various architectures of deep learning such as convolutional neural networks and
recurrent neural networks, the reader is referred to LeCun et al. (2015) for example.

2.3. Gaussian processes

A GP is a stochastic process, which is a collection of random variables, with the property that any finite
subcollection of the random variables have a joint multivariate Gaussian distribution (Williams and
Rasmussen, 2006). We denote the fact that a stochastic process /() is a GP with mean function m(-) and
covariance function k(-,-) as

F()~GP(m(-),k(-,-))- ®)

2)

The definition implies that for any *0,x@ . xMeq, where L denotes the set of possible inputs, we

have

()t ()] b ([ (). ()] ). ©

where the covariance matrix K has entries K ;; = k(x@,x( f)).

GPs can be interpreted as a natural extension of multivariate Gaussian distributions to have infinite
index sets, and this extension allows us to think of a GP as a distribution over random functions. A GP is
fully determined by its mean and covariance functions. The mean function can be any real-valued
function, whereas the covariance function has to satisfy that the resulting covariance matrix K for any
set of inputs W, .. xW e has to be a valid covariance matrix for a multivariate Gaussian distribution,
which implies that K has to be positive semidefinite and this criterion corresponds to Mercer’s condition
for kernels (Minh et al., 2006). Hence the covariance function is sometimes also known as the kernel
function. One of the most popular choices of kernel function is the RBF (or squared error) kernel

x_x/ 2
krer (x,x") = exp <—“212”> )

https://doi.org/10.1017/dce.2020.4 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2020.4

Data-Centric Engineering e4-7

where / is a kernel parameter which quantifies the level of local smoothness of the distribution drawn from
the GP.

GPs have gained increasing popularity in the machine learning community since Neal (1996) showed
that Bayesian neural networks with infinitely many nodes converge to GPs with a certain kernel function.
Therefore, GPs can be viewed as a probabilistic and interpretable alternative to neural networks.

In our study, the focus of the application of GPs lies within regression tasks. Suppose we are given a
dataset P = {x(i) 0 }izl ,» that one may refer to as the training set, of independent samples from some
unknown distribution, where xR and y<i)ER fori=1,...,n. A GP regression model is then

y(i) :f(x(i))—l—e(i),fori:l,...,n, 8)

with a GP prior over the functions /', thatis f (-) ~ QP (m(-),k(-,-)), for some mean function m(-) and valid
kernel function k(-,-), and the €? are independent additive Gaussian noises that follow
N(0,0?) distributions.

Suppose we are given another dataset D, = {ng), y@ } 1 , that one may refer to as the blind-test

ey
set, drawn from the same distribution as 9. By the definition of a GP, we have

) . (€))

where X = {x)} _,» Frepresents [F (M), f ()] T K (X,X) represents an n x n kernel matrix
whose (i,j) entry is K (x@,x( f>), and analogous definitions for quantities with asterisk subscripts, for

example, X, = {ng)} . Then, given the additive Gaussian noises, the joint distribution of
i=1,...,n,

F K(X.X) K(X.X,)

K(X..X) K(X..X.)

XX~ N (0,

Fy

Y= [y(l),...,y(”)]Tand Y. becomes

K(X.X)+0  K(X.X.) D (10)

K(X.,X) K(XuX.)+o?l

xx.~ (0]
Y,

Using the rules for conditioning Gaussian distributions, the posterior distribution of the blind-test data
given the training data is then given by
Y*|X>(<7X5Y N‘/v(,u*,z*)’
" = m(X.,) + K(X.. X) [K(X,X) +621] 'Y, (11)
z, — K(X.. X.) — K(X.. X)[K(X.X) +021] " K(X,X.).
Equation (11) is the posterior GP regression model for predictions. The kernel parameters 0 of the

kernel function in the GP regression model can be learnt by maximizing the (log) posterior marginal
likelihood

log p(Y]6,X)ox — YT (Ky(X,X)+0°1) 'Y — log |[Ky(X.X) +6*1| (12)

with respect to the kernel parameters, where we have emphasized the dependence of the kernel matrix
K on its parameters 6 through a subscript.
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2.4.. Deep kernel learning

We now briefly discuss the main method we apply as a surrogate model, DKL (Wilson et al., 2016).
DKL can be intuitively interpreted as a combination of a DNN and a GP. A graphical representation of a
DKL model is shown in Figure 3, where we can see that the structure consists of a DNN followed by a
GP. As mentioned in the previous section, a GP is the limit of a Bayesian neural network with an infinite
number of nodes, hence the GP at the end of the DKL architecture can be interpreted as another hidden
layer in the DNN, but with an infinite number of nodes, and this greatly increases the expressiveness
compared to a stand-alone DNN. When the data enters the DKL model, it is first propagated in a forward
fashion through the neural network. The high-dimensional input data is thus transformed by the neural
network into a lower-dimensional feature vector, which is then used as the input arguments for GP
regression. The expectation of the resulting posterior distribution is then taken as the value predicted by
DKL as a function of the input data. As GPs naturally do not perform well in high-dimensional input
spaces, the DNN acts as a feature extractor and dimensionality reduction method for more robust GP
regression. Being a combination of deep learning and kernel learning, DKL encapsulates the expressive
power for extracting high-level features and capturing nonstationary structures within the data given its
deep architectures and the nonparametric flexibility in kernel learning induced by its probabilistic GP
framework.

We can also view DKL as a GP with a stand-alone deep kernel. Starting from a base kernel
k(x(i),x( J) |0) with kernel parameters, the deep kernel can be constructed as

Output
layer

GP ko (--)
layer

wit)
Hidden
layers .

w2

[ wit

Input
layers

Figure 3. Deep kernel learning: input data is propagated in a forward fashion through the hidden layers
of the neural network parameterized by the weight parameters. Then, the low-dimensional high-level
Sfeature vector as the output of the neural network is fed into a GP with a base kernel function ky(-,-) for
regression. The posterior mean of the Gaussian regression model is taken as the prediction given the input
data (Adapted from Wilson et al., 2016).
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(0.5 7160) — k(5 (x.0) g (€ 7)), (13)

where g(x;w) is a nonlinear mapping induced by the neural network with weight parameters w. A popular
choice for the base kernel k(x(i),x( ) \6)) is again the RBF kernel (Equation 7). Inspired by Wilson et al.
(2016), we also look at the spectral mixture (SM) base kernel

3 !2|

kSM xx|9 Z

1
5 CXP <§||E%q(xx')|2) cos (x —x',2mu, ) (14)

by Wilson and Adams (2013), where the learnable kernel parameters 6 = {laq,Eq, Mgy ¢ consist of a weight,
an inverse length scale, and a frequency vector for each of the O spectral components, and where (-,-)
denotes the standard inner product. The spectral mixture kernel is meant to be able to represent quasi-
periodic stationary structures within the data.

We denote by y = {w, 8} the parameters of the DKL model, consisting of the neural network weight
parameters w and the GP kernel parameters. These parameters are learnt jointly via maximizing the log-
posterior marginal likelihood of the GP (Equation 12) with respect to.

3. Applying DKL to engine emissions
3.1. Dataset

The dataset used in this work was obtained from a diesel-fueled compression ignition engine whose main
geometric features are provided in Table 1. The data consists of soot and NO, emissions taken engine-out
during steady-state operation at 1,861 distinct operating points. Each of these points is characterized by
14 operating condition variables, which include engine speed and torque, intake manifold temperature,
injection pressure, mass fraction of recirculated exhaust gas, start, end, and fuel mass of injection, and
combustion chamber wall temperatures. The set of points is spread roughly evenly over the entire engine
operating window in terms of speed and load. NO, emissions are measured in units of parts per million by
volume (ppmv) with a nominal error bar of 3% and soot represent the carbon fraction of emitted
particulate matter with a stated measurement uncertainty of 5%.

Since the numerical values of the soot response vary over several orders of magnitude, it is necessary to
consider their logarithms instead of their raw values. The NO, response values can be used as is. We split
the dataset randomly into disjoint training and blind-test sets, which comprise 90% and 10% of the total,
respectively.

3.2. Implementation

In all numerical experiments, our DKL implementation consists of a five-layer fully connected network
and a GP with RBF kernel. The neural network employs the rectified linear unit (ReLU) function LeCun

Table 1. Specification of the turbocharged four-stroke
diesel-fueled compression ignition engine used in this work.

Quantity Value
Bore 98 mm
Stroke 120 mm
Connecting rod length 180 mm
Compression ratio 17:1
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etal. (2015) as the activation function for each hidden layer, and all the weights are initialized with the He
normal initialization (He et al., 2015). We use the standard root mean squared error (RMSE) loss function,
and the Adam optimizer for optimization (Kingma and Ba, 2014).

We implement DKL as a surrogate model into model development suite (MoDS) (CMCL Innovations,
2018)—an integrated software written in C++ with multiple tools for conducting various generic tasks to
develop black-box models. Such tasks include surrogate model creation (Sikorski et al., 2016), parameter
estimation (Kastner et al., 2013), error propagation (Mosbach et al., 2014), and experimental design
(Mosbach et al., 2012). Our MoDS-implementation of DKL uses PyTorch (Paszke et al., 2017) and
GPyTorch (Gardner et al., 2018).

All simulations were performed on a desktop PC with 12 3.2 GHz CPU-cores and 16 GB RAM. Even
though MoDS allows parallel execution, all simulations were conducted in serial in order to simplify
quantification of computational effort. For the same reason, no GPU-acceleration of Torch-based code
was considered. We also did not explore the use of kernel interpolation techniques (Wilson and Nickisch,
2015; Quifionero-Candela and Rasmussen, 2005) to speed up GP learning.

3.3. Network architecture, kernel, and learning parameters

The DKL framework involves learnable parameters such as network weights and kernel parameters, as
well as hyperparameters such as the learning rate, number of iterations, and number of nodes in each layer
of'the neural network. Before training can be carried out, suitable values of the hyperparameters need to be
chosen. We approach this in two ways: First, we make this choice manually, based on previous experience
and cross-validation over a small hyperparameter search-space, and second, we employ a systematic,
optimization-based procedure. In both cases, we determine the following seven hyperparameters: the
number of nodes in each of the four hidden layers, the prior white-noise level of the GP, the number of
epochs, that is training iterations, and the learning rate.

The optimization approach consists of two stages: a global quasi-random search followed by a local
optimization with a gradient-free grid-based method, both of which are conducted using MoDS. For the
first stage, a Sobol sequence (Joe and Kuo, 2008), a low-discrepancy sampling method, is employed. We
generate 1,000 Sobol points within the space spanned by all of the hyperparameters given in Table 2,
which also provides the range and scaling type for each parameter. We then fit the DKL under each of
these 1,000 hyperparameter settings to the training data. The quality of each fit is assessed by calculating
the objective function

2

®(0) = Nbl— 1 Z( f<x(i)) _y(i)>2

i€y

)] e

Table 2. Deep kernel learning hyperparameters considered for optimization.

Parameters Lower bound Upper bound Scaling Rounded
N nodes layer 1 1 1,000 Log Yes
N nodes layer 2 1 1,000 Log Yes
N nodes layer 3 1 1,000 Log Yes
N nodes layer 4 1 15 Linear Yes
White noise scale 0.0 0.5 Linear No
Number of epochs 10 1,000 Log Yes
Learning rate 0.001 0.1 Log No
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where f denotes the surrogate model, that s, the trained DKL, and x”) and y*) the experimental operating
conditions and responses (soot or NO,), respectively, of the ith data point. J, denotes the set of indices
belonging to the blind-test data points, and Ny, denotes their number, whereas Jiand Nirefer to the
analogous quantities for the training data points. The normalization of the two parts of the objective
function, that is, the training and blind-test parts, by the number of points they contain, implies that the two
parts are equally weighted with respect to each another, irrespective of how many points they contain. We
tested other forms of the objective function but found empirically that this form yields the best results.
Furthermore, we note that including the blind-test points into the objective function is not a restriction. In
any application, whatever set of points is given, it can arbitrarily be split into training and blind-test
subsets. Again, we made this choice because we found empirically that it produces the best results.

Scatter plots of the Sobol points, showing their objective values against two of the architecture
parameters, are given in Figure 4. In Figure 4a, we observe that best performance is achieved if the
number of nodes in the first layer well exceeds the number of inputs. From Figure 4b, we conclude that the
number of features extracted by the neural network part of DKL, that is, the number of nodes in the fourth
hidden layer or in other words the number of quantities fed as input to the GP, for which the objective
function attains its minimum is three. The objective value deteriorates appreciably for four and five
features.

The best Sobol point as measured by Equation (15) (highlighted in Figure 4) is then optimized further
with respect to the white noise of GP, number of epochs and learning rate using the algorithm by Hooke
and Jeeves (1961)—a gradient-free grid-based optimization algorithm, which is also part of MoDS. Since
both the Sobol and Hooke—Jeeves method are designed for continuous variables, we treat the discrete
parameters, that is, the number of nodes in each layer and the number of epochs, internally as continuous
and simply round their values to the nearest integers when passing them on to DKL. This is also indicated
in Table 2. Other optimization methods more suitable for discrete problems, such as genetic algorithms,
are expected to perform at least as well, however, it is beyond the scope of the present work to explore this.

We note that the Hooke-Jeeves optimization step achieves only a relatively small improvement upon
the best Sobol point, with the algorithm terminating after 68 and 78 iterations for NO, and soot,
respectively. However, one should bear in mind that DKL training itself being based on stochastic
optimization, and thus noise inherently being present in the quality of the fit, presents a challenge to any
local optimization method. We furthermore find that there is little to no benefit in including the
architecture parameters of the network, that is, the number of nodes in the hidden layers, into the
Hooke-Jeeves optimization, so we excluded them from this stage.
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(a) Objective against number of nodes in layer 1. (b) Objective against number of nodes in layer 4.
DKL performs relatively poorly for small numbers Best performance is found for 3 extracted features,
of nodes in hidden layer 1. i.e. 3 nodes in layer 4.

Figure 4. Combined training and blind-test objective function value (Equation 15) for 1,000 Sobol points
in the space of hyperparameters of Table 2. The point with the lowest objective value overall is circled.
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Table 3. Best values found for the hyperparameters in deep kernel learning through optimization.

N nodes N nodes N nodes N nodes White noise Number of Learning
Output Layer 1 Layer 2 Layer 3 Layer 4 Scale Epochs Rate
NO, 822 46 356 3 0.39 210 0.019
Soot 690 5 6 3 0.48 466 0.026

The average CPU-time for (serial) evaluation of each Sobol or Hooke-Jeeves point was about 1 min for
NO, and 2 min for soot. The reason for the larger evaluation time for soot is that the optimization favored a
number of epochs on average about twice as high for soot as for NO,.

Table 3 shows the best values for the hyperparameters we find using the procedure described above.
We note that due to the random nature of both the global search and the DKL training process itself, our
procedure does not guarantee a global minimum.

The best values found manually for the hyperparameters in DKL are 1000, 500, 50, and 3 for the numbers
of nodes in the hidden layers, a white-noise level of 0.1, 200 training epochs, and a learning rate of 0.01.

3.4. Comparison

Figure 5 shows a comparison of model versus experiment using HDMR and DKL for both NO, and soot
responses. For DKL, two sets of results are shown: One (Figure 5c,d) obtained using the best values for the
hyperparameters found manually, and another one (Figure 5e,f) using the optimized values. The NO, values
are scaled linearly, whereas the soot values are scaled logarithmically. The shaded areas in the plots represent
an error margin of 20% with respect to the experimental values. We note that DKL generally produces more
accurate regression fits for the data than HDMR for both NO, and soot, and also that DKL with the optimized
hyperparameters is more accurate than with the manual ones. In the NO, regression with DKL, almost all of
the predicted training and blind-test values lie within 20% of the experimental value and a large majority of
the predictions align closely with the experimental values. For HDMR, although only few points lie outside
the 20% margin, the predictions tend to be distributed further from the experimental values. For the soot
regression, similar behavior is observed, but in this case, significantly more predictions lie outside the 20%
error bar with respect to the experimental values. Soot being more challenging than NO, in terms of
regression is entirely expected, due to soot emissions depending much more nonlinearly on the engine
operating condition and the measurements being intrinsically much more noisy. In addition, we note in
Figure 5 that the spread of training points is quite similar to that of the blind-test points for HDMR, whereas
the latter is much wider for DKL, with the effect being stronger for soot than for NO,.. These observations are
quantified in Table 4 in terms of the percentage of points, which lie within 20% of the experimental values, as
well as RSME. The blind-test RMSE is indeed seen to be larger than the training error for both NO, and soot
regression, and the difference is larger in relative terms for soot. This is indicative of over-fitting—a well-
known issue with neural networks (Srivastava et al., 2014). Any surrogate with a large number of internal
degrees of freedom is prone to over-fitting, especially if this number exceeds the number of data points.
Given the number of layers and nodes typically used in a neural network, and hence the associated number of
weights, it is clear that in our case the number of degrees of freedom in DKL is much larger than the number
of available data points. Another factor contributing to over-fitting is the sparsity of the dataset in the input
space, where there are less than 2000 available training points in 14 dimensions. As an aside, an additional
consequence of this sparsity is that the variances predicted by Equation (11) are too small to be useful, which
is why they are not shown in any of the plots.

Figure 6 shows density plots of relative values y/y for both outputs for DKL and HDMR, where y and
yrepresent the predicted and experimental values, respectively. It can be observed that for both outputs, the
relative values for both HDMR and DKL are mainly distributed near unity, and the majority of the predicted
values are within 20% of the experimental values for both methods for both outputs. However, it is clear
from the plots that the overall distribution of errors of DKL is significantly more centralized at unity than
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Figure 5. Modeled NO, and soot responses against experimental ones using high-dimensional model
representation (HDMR) and two sets of deep kernel learning (DKL) architectures and hyperparameter
values. Soot values are logarithmic. For confidentiality reasons, no values are shown on the axes.
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Table 4. Percentage of predictions within 20% of the experimental value and root mean square errors (RSME) of NO, and soot
regressions for high-dimensional model representation (HDMR) and deep kernel learning (DKL).

Percentage w/in 20% of experience RSME
Output Surrogate Training Blind test Total Training Blind test
NO, HDMR 94.9% 90.3% 94.5% 44.78 69.17
DKL (man.) 99.7% 99.4% 99.6% 22.07 38.93
DKL (opt.) 99.9% 99.5% 99.9% 11.91 34.94
Soot HDMR 47.6% 36.9% 46.5% 0.17 0.30
DKL (man.) 74.0% 44.0% 71.0% 0.09 0.22
DKL (opt.) 94.4% 56.1% 90.6% 0.05 0.17
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Figure 6. Densities of prediction values relative to experiment using high-dimensional model repre-
sentation (HDMR) and deep kernel learning (DKL) regression for NOy and soot emissions, respectively.
DKL generates better predictions in terms of the number of points within 20% of the experimental values,

and the difference is greater for soot.

HDMR for the regression of both outputs as the density is more centralized at unity for DKL than HDMR
for both outputs. It is also clear that the number of predictions within 20% of the experimental value made
by DKL is more than those made by HDMR, and this difference is greater for the soot prediction.

In Table 5, we show a comparison between DKL and HDMR on NO, regression in terms of their
training time and evaluation time. We see that HDMR is significantly computationally cheaper than the
DKL method. The training time for DKL is 56 seconds whereas the HDMR fitting takes less than 2 s on
the same device. Hence, the trade-off between accuracy and computational cost needs to be taken into

Table 5. CPU-time comparison between deep kernel learning (DKL) and high-dimensional model representation (HDMR).

Surrogate Training time (s) Evaluation time (s)
DKL 56 3
HDMR 2 1
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Table 6. Root mean squared error (RMSE) performance of the considered surrogates on the diesel dataset.

Output GP (RBF) GP (SM) DNN DKL (RBF) HDMR
NO, 110.06 777.93 34.282 11.91 44.78
Soot 4.77 2.28 0.52 0.05 0.17

Abbreviations: DKL, deep kernel learning; DNN, deep neural network; GP, Gaussian process; HDMR, high-dimensional model representation.

consideration when selecting surrogates for particular applications. It is worth noting that evaluation of a
trained DKL model is computationally much cheaper than its training process, which indicates that a
pretrained DKL model may be feasible in some near real-time applications. We furthermore note that a
large part of this evaluation time is one-off overhead, such that batch-evaluation of collections of points
can be achieved with relatively minor additional computational expense.

Table 6 compares plain GP regression using RBF and SM kernels, a stand-alone DNN, and DKL with
RBF kernel, as well as HDMR with respect to RMSE for both NO, and soot emissions. We observe that
the performance of DKL is significantly superior to the plain GPs with either the RBF or the spectral
mixture kernel on both outputs. This is consistent with expectation, since, as discussed in Section 2.4, the
14-dimensional input space of our engine dataset would be expected to cause problems for plain GPs.
DKL also outperforms a stand-alone DNN, indicating a genuine benefit in the combination of a GP and a
DNN.

In Figure 7, we show the RMSE loss history of the NO, regression for DKL and plain neural network
during the training process. We observe that the prediction losses with respect to the experimental values
of the DKL training throughout the training process is consistently lower than those of the plain DNN
training. Even at the beginning of the training, it can be observed that the loss for the DKL prediction is
lower than for the plain DNN prediction. This agrees with our expectation due to the existence of a GP at
the end of DKL, which automatically computes the maximum a posteriori (MAP) estimate given the
training dataset as the prediction. We can also see that the loss history curve for the DKL is much smoother
than that for the DNN. Hence the RMSE loss of the DKL training process is a robust estimator for the
performance of the trained model whereas for the DNN training, the RMSE estimates the performance of
the model with larger uncertainty.

From Figures 5-7 and Table 6 we conclude that the DKL shows improvement over HDMR, plain GPs
and plain neural networks in the regression tasks on the considered diesel engine emission dataset.
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Figure 7. Loss history of training deep kernel learning (DKL) as well as a plain deep neural network
(DNN) for NO, regression.
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4. Conclusions

In this paper, we studied DKL as a surrogate model for diesel engine emission data. Instead of using a
physical-based model for modeling the complex system, we have taken a purely data-driven approach.
DKL was applied to a commercial Diesel engine dataset for NO, and soot emissions comprising 1,861
data points, with 14 operating condition variables as inputs. We employed a systematic two-stage
procedure, consisting of a quasi-random global search and a local gradient-free optimization stage, to
determine seven DKL hyperparameters, which include network architecture as well as kernel and learning
parameters. It was found that the global search, conducted through sampling 1,000 Sobol points, was most
effective in identifying a suitable set of hyperparameters. Local optimization was found largely ineffective
for the network architecture hyperparameters, but led to minor improvement for the kernel and learning
parameters. We compared DKL to standard deep feedforward neural networks, GPs, as well as HDMR,
and the results indicate that, overall, DKL outperforms these methods in terms of regression accuracy as
measured by RMSE on the considered 14-dimensional engine dataset for NO, and soot modeling. Further
research themes could involve designing DKL with nonstationary kernel functions to deal with the
heteroskedasticity of the input arguments.
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