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AN ACTION OF THE KLEIN FOUR-GROUP
ON THE IRRATIONAL ROTATION C'-ALGEBRA

P.J. STACEY

Explicit automorphisms of the irrational rotation algebra are constructed which
are associated with the two 2 x 2 diagonal integer matrices of determinant — 1.
The fixed point algebra of the product of these two automorphisms is shown to be
isomorphic to the fixed point algebra of the flip.

1. THE Z2 x Z2 ACTION

Let 8 be an irrational number with 0 < 0 < 1 and let the irrational rotation
algebra Ag be the universal C*-algebra generated by two unitaries U, V satisfying
VU = e2*xeUV. This algebra has been the subject of extensive study in recent years.
In particular it has been shown, as a consequence of the remarkable results in [8]
and [9], that there exists a surjective homomorphism from kut(Ag), the group of *-
automorphisms of Ag, onto k\it{Ki{Ag)), which can be identified with GL2(Z) via
the identification of K\(Ag) with Z2. It was shown in [6] and [17] how to construct
a partial lifting of the map Aut(Ag) -» GL2(Z) via an isomorphism from SX2(Z) into
Aut (Ag). The purpose of the present paper is to describe explicit automorphisms of Ag

arising from the matrices I J and I ) and to investigate the associated

automorphism arising from the matrix —/. The construction is given in terms of the
inductive limit description of Ag developed in [9, Section 5] which is now described.

Let the continued fraction expansion of 6 be [mo,mi,m2,...], with associated
partial quotients Po/qo:Pi/ii,P2/q2, • •• , and let the natural numbers an,bn,cn,dn be
defined by

(an bn\ _ fmin 1 \
\cn dn)~ \ 1 O 07 V i 07 V i o

Furthermore, for each k G N, let k x k matrices Rk and Sk with entries in C^S1) be
defined by

0 id\ J „ / 0
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136 P.J. Stacey [2]

The construction given in [9] gives A$ as an inductive limit of a sequence Ai —> A<i —>
A3 —» . . . where An = Mqin (C(S1)) © Mqinl (C(5'1)) and where the connecting maps
9n : An -> An+i are specified, for constant A, B, by

7
i94n-l

(111) 9n(A,B)-^ o B ^ / J ^ 0

Here, for an ^ x I matrix M, Ik® M denotes the k£ x fc^ matrix with k copies
of M down the main diagonal and M ® Ik denotes the k£ x kt matrix consisting of
k x k blocks rriijlk in the obvious way. As the notation indicates, this description
corresponds to an isomorphism between M^t and the tensor product Mk <8> M(.

The connecting maps 6n were chosen to give the following prescribed effect on
K0(An) and Ki(An) when these are both identified with Z2: on K0(An), 9n cor-
responds to the matrix I n I, whereas on K\{An) 6n* corresponds to the

V cn+i dn+i)
identity. It will be important in the sequel to note that the identification of K\ (An) with
1? can be given by associating (1,0) with ([ug 4 j , [/]) and (0,1) with ([/], [u94n_J),
where, for each k G N,

/ id 0 \
Uk={o ikj-

The inductive limit of the system Ai —> Ai —\ ... is A% because of the main results of
[8] and [9], which show that it is sufficient to demonstrate that the inductive limit has
the same K-theory as AQ .

It may be of interest to note the following alternative way of describing the maps

9n, which will however not be used in the sequel.

P R O P O S I T I O N 1 . 1 . Let

9n : Mq,n{C(S1)) (BM^CiS1)) -> M,4l l+4(C(51)) © ^ /

be defined by (i), (ii), (Hi) above. Then 9n((fij),(gij)) is equal to

where, for each i,j, fa and 3^ are elements of C^S1) and fij(Ran+1), fij(SCn+1),

gij(Sbn+1), 9ij(Rdn+i) use the usual functional calculus for a unitary element of a

C* -algebra.

PROOF: It is easily seen that the formula given above gives the appropriate answers
(i), (ii), (iii) and defines a *-homomorphism. D
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[3] An action of the Klein four-group 137

The Z2 x Z2 action on Ag will be defined in terms of certain inductively defined
matrices Vn, V^, Wn, W'n. To define these, first let Qk be the k x k matrix

and let Wx = Iqi,Vx = Qq3,W[ = Qq4 and V{ = Iq3. Then, for each n ^ 1, let

7 , . = | • • • " — c n + 1

" + 1 ' Vn ® Qdn+1

and, for each / € C(S1,Mk), where fc G N, let (Rf)(t) = /(<)• It will be shown that
an action of Z2 x Z2 on Ag is defined by the formulae

an = (AdWn,(AdVn)oR)

where Wn, W^, Vn, V^ are regarded as constant matrix valued functions on 5 1 .

PROPOSITION 1.2.

(i) an, a'n are automorphisms of An.
(ii) a£ = id, a'£ = id and an0i'n = a'nan, so that an,a'n define a Z2 x Z2

action on An.
(iii) aB. = {id, - id) and a'nt = ( - id, id) on Z2 S / f i ^ ) .

PROOF:

(i) This is clear from the definitions.
(ii) It follows inductively that, for all n 6 N, W% = I, W'j = I, V* =

I, V^2 = I, WnW^ = W^Wn and VnV^ = V^Vn, from which the result
follows.

(iii) This follows from R(u) = u*, where ([I], [u]) and ([u], [I]) are the gener-
ators of Ki(An) described earlier.

0
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138 P.J. Stacey [4]

THEOREM 1 . 1 . There exists an isomorphism @ from 1>i x Z2 to Aut(Ag) with

/3(l,0), = (id,-id) and /3(0,1), = (-id, id) on Z2^Kl(Ag).

PROOF: The result will follow from Proposition 1.2 and the fact that 8nt = id on
Ki(Ag) if it can be shown that an+i6n — 9nan and a'n+19n — 8na'n for each n e N.
However

a 0 fi

= enan(idIqin,0),

0 0 \ /O 0
0 I®S! ,

= enan(0,idIq4n_1)

and

VnBV*

Hence an + i^n = 9nan. The proof for aj,+10n = 9na'n is exactly similar. D

2. A FIXED POINT ALGEBRA

It is natural to ask if the Z2 x Z2 action and the SZ^Z) action on Ag can be
combined to give a G^2(Z) action. If this were to be possible then /3(1,1) would be
conjugate to the flip automorphism, studied in [3, 4, 5], which is the automorphism
of Ag corresponding to —/ € SL2(Z) under the correspondence established in [6] and
[17]. Consequently the fixed point algebra of /?(1,1) would be isomorphic to the fixed
point algebra of the flip. We shall now show this to be the case, which leaves open the
possibility of a GL2(Z) action on Ag.

To facilitate the statement of the results let

£» = ( / „ „ + W n < ) / 2 and Fn = (lq4n_1+VnV;)/2.
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[5] An action of the Klein four-group 139

Then En and Fn are the projections associated with the symmetries WnW^ and VnV^.
It will also be convenient to abbreviate aa' = /3(1,1) to /? and to use /?„ for its
restriction to An.

PROPOSITION 2.1.

(i) The fixed point algebra Bn of (in is B\ ® B2 where B\ is isomorphic to

and i?2 is isomorphic to

{/ € C([0,1], Mqin_x) : /(0), /(I) € {Fn}'}.

(ii) K1(Bn) = {0}.

(iii) The ordered group Ko(Bn) is isomorphic to Z6 with positive cone
{(ni,n2,n3,n4,n5, n6) : n< ^ 0 for 1 < i ^ 6, ni + n2 ^ n3, n4 + n5 ^
n6}.

PROOF: (i) Recall that /3n = (Ad(WnW^) o R, Ad(VnV^) o R) from which it fol-
lows that B\ = {f e C(S\Mq4n) : f(t) = WnW^f(i)WnW^ for each t € S1}.
Each element of B\ is determined by its restriction to {t £ S1 : lint ^ 0} and
is therefore specified by the function g : s —> / (e I 7 r s ) on [0,1] which satisfies
g(0),g(l) € {WnW^}' = { £ „ } ' . The result for B2

n is exactly similar.

(ii) By [10, Lemma 2.1], K\{B^) is isomorphic to K0(Mq4n)/{it(a) - i*(b) : a,b e
Ko({En}')} i where it results from the inclusion map from {En}' into Mqin. It is
readily seen that Ko({En}') is isomorphic to Z 2 with i, : Z 2 —> Z given by z»(ni, ri2) =
ni + n2. Hence K\(B^) is isomorphic to Z / Z . Similarly i T i ( 5 2 ) is also zero, as
therefore is Ki(Bn).

(iii) By [10, Lemma 2.1], K0(B^) is isomorphic to {(a, b) : a,b £ K0({En}'),
it(a) = i*(b)} which is isomorphic to { ( n i , n 2 , m 1 , m 2 ) : ni + n2 — rn\ + m 2 } , with
positive cone given by the usual positive cone on Z 4 . Hence, restricting to the first three
coordinates, Ko(B^) is isomorphic to Z 3 with positive cone {(ni, n2, ^3) : ni, n2,723 ^
0, TI3 ^ ni + n2}. The result for KQ(B%) is exactly similar, from which the result for
K0(Bn) follows. D

The next step is to determine the 6 x 6 matrices corresponding to the maps 6n* •
K0{Bn) -» K0(Bn+i) and to check that they are non-singular. In order to do this,
an explicit expression for En and Fn will be obtained. The expression will involve
matrices of the form (Ik + <5fc)/2, where Qk was denned earlier: it will be convenient
to denote such a matrix (Ik + Qk)/2> by Pfc.
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140 P.J. Stacey [6]

LEMMA 2 . 1 . For each n € N,

(i) WnW^ = diag(<2fcn(i),Qfcn(2),...,<2fcn(2n

(") VnV£ = diag(Qen{1),Qen{2), • • • .Q*n(2»- i

(iii) En = diag(PM 1 ) l Pfcn(2),... .Pfc^n-i))

(iv) Fn = diag(p M l ) , P / B ( 2 ) , . . . , P ^ ^ - i j ) ,

where the integers fcn(i) and £n(i) are defined inductively by fci(l) = (j4,^i(l) = 93
and, for each n € N and each 1 < i ^ 2""1, &n+1(i) = an+ikn(i), fcn+i(2n~1 + i) =

PROOF: These are all straightforward consequences of the definitions, using the
observation that, for any matrix ( i ^ ) , the matrix (xij)®Qk consists of blocks XijQk • D

Lemma 2.1 can now be used to compute the images of the generators of Z6 =

K0(Bn) under 0 n , .

LEMMA 2 , 2 . Let K0(Bn) and K0(Bn+i) be identified with Z6 as in Proposition

2.1 and let an+i = [an+i/2], /3n+i = [6n+i/2], 7 n + i = [cn+i/2] and 6n+i = [dn +i /2] ,
where [x] denotes the integral part of x. Then

09,(1,0,1,0,0,0) = ( a n + i - a n + i , a n + i , a n + i - a n + 1 , c n + i - 7n+i,7n+i,cn +i ~7n+i)

0n,(0,1,0,0,0,0) = ( a n + i , a n + i - a n + i , a n + 1 , 7 n + i , c n + i - 7n+i,7n+i)

0n»(0,0,0,1,0,1) = (bn+i - /3n+i,/3n+i,bn+i - / 3 n + i , d n + i - (5n+i,(5n+i,dn+i - <Jn+i)

0n,(0,0,0,0,1,0) = (/3n+i,ftn+i - /9n+i,/3n +i,(Jn +i,dn +i - Sn+i,Sn+i).

PROOF: Define e,kn(i) ^ Pkn{i) *° ^ e * n e ^n(l) x ^n(l) matrix whose sole non-zero

entries are 1/2 in each of the four corners and let e = diag (ekn(\), 0fcn(2)i ••••> O^/jn-i)) >

so that e is a minimal projection in EnMqiinEn (regarded also as a constant element

of B^). Then
6b T f ) \ /p 6b T 0"

' » < e ' ° ) = » i 0 0j'\ 0 0

Furthermore Pfcn+ l ( i)(e ® JOn+1) = (ifcn(i) ® JOn+1 + Qfcn(i) ® Qa n + 1 ) /2 (e ® /«B+1) =

e ® P O n + 1 - ( e ® J a n + 1 )P* B + 1 ( i ) and, similarly, P/B+I(i)(e <8> ICn+1) = e ® PC n + 1 =

(e®/Cn+i)-Pfn+1(i)- Hence, using Lemma 2.1,

(£n + 1,0)0n(e,O) = (diag (e®PO f l + 1 ,0) ,0)

= 0n(e, 0) ( £ n + i , 0)

and

(0, F n + i )0 n (e , 0) = (0, diag(e ® PCn+1,0))
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[7] An action of the Klein four-group 141

It follows that 0 n . ( l , 0 ,1,0,0,0) = (n,T2,Ti,<7i,cr2,o-i) where n = Tr(e <g> P O n + 1 ) , T2 =

T r i e ® Ia , , ) — T\ = an+i — T I , <7i = T r i e ® P c , , ) a n d o-> = T r i e ® / c ,, ) — c i =
Cn+i-ffi. However Tr(e®Pa n + 1) = Tr(Pan+1) = [(an+1 +1)/2] = an+i -
[an+i/2] and, similarly, Tr(e®PCn+1) = cn+i - [cn+1/2]. Hence ^.(1,0,1,0,0,0) =
(a n + 1 - a n + i , o : n + i , a n + i - a n + i , c n + i - 7,1+1,7n+i,cn+i - 7n +i) . The image of
(0,0,0,1,0,1) is computed in exactly the same way using #n(0, e) where e is a minimal
projection in FnMqAn_1Fn obtained from ein^ ^ Ptn(±)- The other two images are
then computed in a similar manner but based on minimal projections

/ 1 - 1 \
efcn(i) = g I J < l ~ P ^ ( i )

and
/ 1 - 1 \

2 V-i i / •
In order to find the images of other generators, such as (1,0,0,0,0,0) and

(0,0,0,1,0,0), it is necessary to consider non-constant projections and to find their
image under 9n. This is done in the following lemma.

LEMMA 2 . 3 . Maintaining the notation of Lemma 2.2,

0n.(l, 0,0,0,0,0)

= (an+i + l,an+i - an+i - l ,an + 1 ,7n+i + l,cn+i - 7n + 1 - l,7n+i + 1)

and

0^(0,0,0,1,0,0)

PROOF: AS in the proof of Lemma 2.2, construct a minimal projection e with e(0)
in EnMqinEn and e(l) in (1 - En)Mq4n(l — En), starting with a minimal kn(l)xkn(l)
projection ekn(i) defined by

efcn(i)(s) = 2
\e """ i /

which satisfies efcn(i)(0) ^ Pf c n ( 1 ) and efcn(1 )(l) ^ 1 - Pf c n ( i ) . Then, using Lemma 2.1,
e(0) < En and e(l) ^ 1 - En, so [e] G K0(B\) corresponds to (1,0,0) € Z 3 . In

https://doi.org/10.1017/S000497270003080X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003080X


142 P.J. Stacey [8]

order to calculate 6n(e, 0) it is convenient to regard e as an element of C[Sl,Mqir^)

by identifying efcn(i) above with the matr ix valued function defined on S1 by

if1

Note that Qfcn(i)efcn(i)(t)<2fcn(i) = eknW(t) so, using Lemma 2.1, WnW^e(t)WnW^
e (t), as required for e to belong to the fixed point algebra B\ of /?„ restricted to 4̂

The image of #n(e, 0) can be found by writing ekn{\) as

from which it follows that 9n(e,0) — (diag(/, 0),diag(g,0)) where / is the fcn+i(l) x
fcn+i(l) matrix and g is the ln+i(l) x ^n+i(l) matrix given by

and, similarly,

To calculate ( £ n + i , 0 ) 0 n (e ,O)( l ) observe tha t

><2on
+ 1

Qan+1Kn+1(t) = i ^ + x ^ Q a n + x it foUows tha t P f c n + l ( i ) / ( l ) =

and therefore tha t (£ n + i ,O)0 n ( e ,O) ( l ) = 6> n (e ,0) ( l ) (£ ; n + i ,0 ) . The trace is given by

T r ( £ n + 1 d i a g ( / ( l ) , 0 ) ) = T r ( P f c n + l ( 1 ) / ( l ) ) = [an+1/2] + 1 (as can be seen by a sepa-

rate analysis of the cases o n + i odd and a n + 1 even). Similarly (En+i,0)8n(e,0)(-l) =
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[9] An action of the Klein four-group 143

0n(e,O)(-l)(£n+1,O) with Tr(£n+1diag(/(-l),0)) = Tr(P,n + l ( 1 ) / ( - l ) ) = [an+1/2].

Thus the first three components of 9n* (1,0,0,0,0,0) are an+i+l, an+\ — an+i — 1, an+i.

The second three components are calculated similarly considering (0,Fn+i)6n(e,0) via

Pen+i(i)9 where g is constant. The formula for #n*(0,0,0,1,0,0) then follows by an

exactly similar argument. D

PROPOSITION 2 . 2 . Let An be the 6 x 6 matrix corresponding to 6ntf :

KQ{Bn) -»• K0{Bn+1). Then det (An) = ± 1 .

PROOF: TO ease the complexity of the notation omit subscripts so, by Lemmas 2.2
and 2.3,

/ a + 1 a a - 2a - 1 0+1 0 b-20-l\
a - a - 1 a-a 2a + l-a b- 0-1 6-/3 2/3+1-6

a a a-2a 0+1 0 6 - 2 / 3 - 1
7 + 1 7 c - 2 7 - 1 8+1 6 d- 26 - 1

c - 7 - 1 c - 7 27 + l - c d-S-l d-S 28+1-d

\ 7 +1 7 c -27 - l 8 8 d-28 J

Denoting the i th column by Cj and the zth row by Ri and performing the following
sequence of row and column operations:

C1 = C\ — C2, C4 = C4 — C5, C3 = C3 + C2, C6 = C& + C5,

i?2 = -̂ 2 + Rl, R5 = R4 + R5, R\ = -Rl — -^3, -̂ 4 = -̂ 4 ~ -̂ 6

C3 = Cz + C^ + C\, C6 = C$ + C5 + C\

yields

An =

(1
0
0
0

0

U

0
a

a

0
c

7

0
2a
a
0
2c
c

0
0
1
1

0
0

0
6

0
0

d

0 >
26

6
0

2d

dj

Using the fact that ad - be = 1, the determinant of this matrix reduces to (a - 2a)
(d - 28) + (c - 27) (2/3 - b). Thus when either a or d is even (so that both 6 and c are
odd) det (^4n) = 0 - 1 = - 1 and when either b or c is even (so that both a and d are
odd) det (An) = 1 — 0 = 1 . Since ad — be = 1 these are the only possible cases. D

PROPOSITION 2 . 3 . Let B be the fixed point algebra of Ag under the auto-

morphism 0. Then KQ(B) is isomorphic to Z6 and K\{B) is isomorphic to {0}.

PROOF: B is the inductive limit of the sequence B\
follows immediately from Propositions 2.1 and 2.2.

B2
02 , . . . , so the result

D
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Proposition 2.3 is the basis for showing that B is isomorphic to the fixed point
algebra Bg of the flip. Another key ingredient is the observation that B is simple with
a unique tracial state.

PROPOSITION 2 . 4 . Let B be the fixed point subalgebra of Ag under the au-
tomorphism (3. Then

(a) B is simple;

(b) B has a unique tracial state (obtained by restricting that on Ag).

PROOF: (a) The action of (3 on Ki(Ag) is given by - / whereas any unitarily

implemented automorphism acts trivially on K\{Ag). Hence by a standard result,

described in [12, Theorem 8.10.12], the fixed point algebra B of (3 is simple.

(b) It is shown in [3, Remark 4.7] that it is sufficient to show that the crossed

product Mg Y.-STL2 of the weak closure Mg of Ag in the trace representation by the

unique extension (3 of j3 to Mg is a factor. Equivalently, it is sufficient to show that

the weak closure of B in the trace representation is a factor, that is, that the unique

trace on Ag restricts to a factor state on B. Thus the tracial state space of B will now

be investigated.

The commutative diagram

...B

where the vertical
state spaces

maps are

T(B1

V>iJ
T(Ai

1 1
Ai > A2 -

inclusions, gives

) < T(B2)

) < T(A2)

I
> ...Ae

rise to a commutative diagram of tracial

< . . ..T{B)

T</>oo

T{Ae)

Recall that An = Mqin(C(S1)) © Mq4n_1(C(S1)) from which it follows that T{An)

has a direct sum decomposition T\n ® T\n. For each probability measure /x on S1

there exists a trace T« on Mq(C(S1)) denned by T « ( / ) = /Tr(/)d/x, where Tr is the
normalised trace on Mq, and T\n = {T£ : fj, € M^ (S1)} for the appropriate choice of q
that is, qin for T\ or q^n-i for T\n . Similarly T(Bn) has a direct sum decomposition
Thn ®TBn> where T^n is the tracial state space of {/ € C([0,1], Afg) : / (0) , / ( l ) G
{En}'}. Using M{*"(0,1) to denote the set of probability measures /x on [0,1] for which
fi({0}) = ^i({l}) = 0 and rM to denote the associated trace in Tg , the trace space
T^n is the convex hull of the face F^ = {rM : /i G M1

+(0,1)} and four other traces
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[11] An action of the Klein four-group 145

TO,£)TO,I-.E>TI,K> n,i-E- The first of these is defined by ro,£;(/) = Tr(Enf(0)), where
TV is the normalised trace on EnMq4nEn, and the others are defined similarly.

Let K^ be {rM : \i € M+[0,1]}, which is equal to the convex hull of F%, ArOjE+
(1 - A)ro,i_£ and AT^E + (1 — X)riti-E, where A = dim(En)/(q<in — dim(.En)), and
let K\ be defined similarly. The image of T(An) under the mapping ipn is K\ © K\

and it follows from the uniqueness of the trace on Ag that there is therefore a unique
element in the limit K of the system

This unique element T\ corresponds to the restriction to B of the unique trace on Ag.

It belongs to the face F of T(B) determined by the system of faces

F{ © F? <- F% © Fl <- ....

and therefore this face F, which is contained in K, contains a unique element. Hence
T\ is an extreme point of T(B) and so, by [7, 6.8.6 and 6.8.7], is a factor trace, as
required. D

PROPOSITION 2 . 5 . B is a simple AF algebra.

PROOF: By Proposition 2.4 B is a simple unital C*-algeba with a unique tracial
state and, by construction, B is an inductive limit of the algebras Bn = B^ © B\.

Hence (as observed in [16, Theorem 3.0]) B is covered by the classification results of
Su, obtained in [13] and [14], from which the result follows. D

Propositions 2.4 and 2.5 can now be used to determine the order structure on
KQ{B) and hence to compare it with the known order structure on Ko(Bg).

PROPOSITION 2 . 6 . There is an order isomorphism from the group KQ{B) onto

Ko(Be).

PROOF: The ordered group K0(Bg) is isomorphic to the ordered group K0(Cg),
where Cg is the crossed product of Ag by the flip. However Ko(Cg) has been computed
by Kumjian [11] to be equal to Z 6 . Its order structure has been investigated in [15]
where it is shown (in the course of the proof of [15, Theorem 4.1]) that there are
generators for Z6 such that the coordinate 6-tuple (n1 ,n2,n3,n4 ,n5,n6) is positive if
and only if it is zero or 2n\ + n.2 + H3 + 714 + n^ + 8ns > 0. Let A be the invertible
6 x 6 matrix

A =

(0
0

0
0
0

u

1
0

0
0

- 2
1

0
1

0
0

- 1

0

0
0
1

0
0
0

0
0
0
0
1

0

0 ^
0

0
1

- 1

0 J
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and note that if Ax = y then 2yi + y2 + 2/3 + j/4 + 2/5 + 0y6 = 9xx + 9x2 + X4 +

£5, so that Ko(Bg) is isomorphic to Z6 with positive cone consisting of 0 and
{(rix, n2, n3, n.4, n5, n6) : flri! + 0n2 + n4 + n5 > 0}. However, using [2, Propositions 2.4
and 2.5 and Theorem 3.1], the ordering on Ko{B) is the strict ordering determined by
the unique trace r .

Let pn : Ko(Bn) —> Ko(An) be the map arising from the inclusion Bn —> An

and let p,^ be the corresponding map from Ko{B) to ii'o(A). Then Tf(ni,... ,TIQ) =

T*Poo("i! • • • ,"6) > where r is used both for the unique trace on As and its restriction
to B. However it is known that T*(mi,m2) = 6m\ + m2 for (mi,m2) € Z2 = K0{Ag)

and so the proof will be complete if it is shown that Poo(^ii^2,^3,"4,"5,"6) =
(ni + 712,714 + ns). It is clear from a consideration of the trace of constant projec-
tions that, for each n £ N, p n (n i , n2, n^, n^, ns,n6) — (ni + n2,ri4 + 115). So consider
the following commutative diagram

where 9Q* is defined on Z6 by a matrix Ao as in Proposition 2.5 with ao = 94, 60 —
P4, Co = 93, <io = pz and is denned on Z2 by the 2 x 2 matrix with entries ao, 60;

 co> do.
It follows that pOo(ni,n2,n3,ni,n5,n6) = 00~^pi9ot(ni,n2,n3,ni,n5,nQ) = (n i+n 2 ,
«4 + n$), as required. U

The major result of this section can now be obtained:

THEOREM 2 . 1 . Let (3 be the isomorphim from Z2 x Z2 to Aut(Ag) described

in Theorem 1.1. Then the fixed point algebra B of (3(1,1) is isomorphic to the fixed

point algebra Bg of the flip determined by U 1-4 U* and V H V * .

PROOF: By [5] Bg is an AF algebra so, by Proposition 2.5 and the classifi-
cation theorem for AF algebras, it suffices to show that the order isomorphism of
Proposition 2.6 preserves the scales. From the commutative diagram in the proof
of Proposition 2.6, the order unit of K0(B) corresponding to the identity of B is
^ ( ^ 4 , 9 4 - d4, d4, d3, q3 - d3, d3) = (0,0,0,0,1,0) where d4 = [q*/2] and d3 = [q3/2].
If A is the 6 x 6 matrix used in the proof of Proposition 2.6 then A" 1 (0,0,0,0, l ,0) t r -

https://doi.org/10.1017/S000497270003080X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003080X


[13] An action of the Klein four-group 147

(0,0,0,0,1,0)"" so, by [1, Theorem 7.4.3], it suffices to show that r f (0,0,0,0,1,0) = 1,
where TB is the normalised trace on Bg. However it is shown in the course of the proof
of [15, Theorem 4.1] that r f (0,0,0,0,1,0) = 1/2, where TC is the normalised trace on
the crossed product Cg — Ag x Z2 of Ag by the flip. However when Bg is embedded
in Cg in the usual way, described for example in [4, Section 4], TB = 2TC . Hence
r,B(0, 0,0,0,1,0) = 1, as required. D
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