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In (2), John von Neumann introduced the concept of a continuous ring 9î 
as a generalization to the infinité limiting case of the total matr ic algebras 
over a division ring. Von Neumann sketched a theory of ar i thmet ic for such 
continuous rings 9Î and asserted : 

(Jc) every continuous ring 9Î contains purely transcendental elements c. 

This means : for every polynomial p(t) = tm + Z\tm~x + . . . + zm {m > 1) which 
has all coefficients zt in the centre of 9î, the element p(c) has a reciprocal in 9?, 
that is, {p{c))~l exists such that p(c) - (p(c))~l = {p (c))~l - p (c) = 1. 

A manuscr ip t found in von Neumann ' s files after his dea th (see (1)) gives 
detailed proofs for all s ta tements in (2) with one exception: no indication of 
proof is given for ( ^ ) . In the present note we give a proof of ( * ) . 

Cont inuous rings were characterized by von Neumann in (2) as those 
irreducible associative regular rings which possess a uni ty element and are 
complete, continuous rank rings. 

We recall some definitions of von Neumann (see 3, Pa r t I I , chapters x v n , 
x v i n ) : an associative ring 9Ï is called regular if for each a in 9Î, the equat ion 
axa = a has a t least one solution x in 9Î. A regular ring 9Î is called 
a rank ring if a real-valued function R(a) is defined for all a in 9Î with the 
properties : 

Always 0 < R(a) < 1. 
R(a) = 0 if and only if a — 0. 

* ( 1 ) = I-
R(ab) < R ( a ) , R(ab) < R{b). 
For e2 = e} f

2 = / , ef = fe = 0, always R(e + / ) = R(e) + R(f). 

Then necessarily Ria) = 1 if and only if a~l exists, R(a + b) < R{a) + R(b)f 

and the function d(a, b) = R(a — b) determines a metric on 9? ; 9Î is called 
a complete rank ring if 9? is a complete metric space under the metric R(a — b). 

If 9? is a complete rank ring which is irreduciblef then the values of the rank 
function are precisely, 0, 1/n, 2/n, . . . , n/n, for some positive integer n or 
precisely all real numbers > 0, < 1. In the la t ter case 9Î is called continuous. 

Received December 1, 1960. 
tAn associative ring 9Î with unity element is called irreducible if whenever two subrings 

9ti, 9?2 are such that : (i) each x in 9? is expressible in the form Xi + x2 with Xi in 9ti and Xi 
in9?2 and (ii) X\Xi — x2X\ — 0 for all X\ in9?i, Xi in9Î2, then one of 9?i, 9?2 must consist of 0 only. 
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40 I. HALPERIN 

As von N e u m a n n showed (3, P a r t I I , Theorem 18.1) if 9? is a cont inuous 
ring then the principal r ight ideals (a)T, and also the principal left ideals 
(a) i, form cont inuous geometries R<^, Lro with dimension functions D, D' 

respectively a n d : 

D((a)r) = # ' ( ( a ) i ) = R{a). 

We shall make use of the following facts: 

(i) in a cont inuous geometry, for each element r 9e 0, there is a decomposi­
tion r = t i U r2 with t i , r2 perspective and r i r\ r2 = 0 (see 3, P a r t I, chapters 
V I , V I I ) ; 

(ii) if the continuous geometry is R^ with 9Î a regular ring and r = (e)T 

with e idempotent then for the t i , r2 in (i) it is possible to find idempotents 
eh e2 so t h a t e = e\ + e2, t i = (ei) r , r2 = (e2) r and <?i, e2 are orthogonal, t h a t 
is, £ie2 = ^ I = 0 (see 3, P a r t I I , chapter i n ) ; 

(iii) in any regular ring 9Î if (ei)r and (e2)r are perspective and eu e2 are 
orthogonal there exist elements su and s2i such t h a t S12S21 = e\, 2̂1̂ 12 = ^2, 
S12 = ^1^12^2, 52i = e^siiei (see 3, P a r t I I , chapter i n ) ; 

(iv) in any continuous geometry with dimension function D, if t i , . . . , Xm 

are independent then D(yji=1
m r,) = Ei=i r o £>(*)<• 

W e now prove two lemmas from which we shall deduce ( ^ ) . 

L E M M A 1. Suppose 9? is a continuous ring and eu i = 1, . . . , TV are orthogonal 
idempotents with R(et) = 1/N for all i. Suppose that for some c in 9?, 

(cet)r = (ei+1)r for 1 < i < N, 

(ceN)r = (ei)r. 

Then for every polynomial p(t) = tm + Z\tm~x + . . . + zm with coefficients zt 

in the centre of 9? and degree m < N, it is so that R((p(c))) > 1 — m/N. 

Proof. Clearly D{(e^)r) = 1/N for all i. W e shall show below: 

(1) if i < N — m then (p(c)et)r C Oi + • . . + ei+m)r\ 

(2) if i < N — m then (p(c)el)r C\ (ei + . . . + ei+m-i)T = 0; 

(3) (p(c)ei)r, i = 1, • • • » N — m are independent ; 

(4) (p(c)ei)r is perspective to (ei+m)r if i < N — m. 

Then (3) and (4) will imply t h a t 

( N—m \ N—m 

U (fi(c)et)T) = D Z>((£(c)«<),) 
i = l / f = l 

•ZV"—m A T — m -I 

t h a t is, R(p(c)) > 1 — m/N, as required. 
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To prove (1) : note that if i + m < N then 

p(c)et = cmet + z^-^t + . . . + zmet 

€ (ei+m)r W fe+w_l)r VJ . . . VJ (^)r 

< (ei + . . . + ei+m)r. 

Thus (p(c)ei)r G (ex + ... + ei+m)r as required. 
To ^/we (2): note first that (c)r D (et)r for 1 < i < iV so (c)r = 9Î. Thus 

c - 1 exists. 
Now if x Ç (P(c)et)r C\ (ei + . . . + e i+w_i) r then 

x = (cmet + Zicm~lei + . . . + zmet)y = (ei + . . . + ei+OT_i)x 

for some y in 9î. Since c^z- G (A+y)r for i + j < iV and (ei)r, . . . , (eN)r are 
independent, so cmeiy = 0. Since c - 1 exists, so ety = 0. Now it follows that 
x = 0. This proves: 

{p{c)el)r C\ (ei + . . . ^+m_i) r = 0, that is, (2). 

To prove (3) : This follows from (1) and (2) since 

for i = 2, . . . , N — m. 
To prove (4): note (with the help of (2)) that: 

{p{c)el)r C\ Oi + . . . + ei+m-l)r = 0 = (et+m)r n («i + . . . + «i+OT-l)r 

and 

(P(c)et)r U (ei + . . . + e i+m_i)r 

= (cwe*)r W (ei + . . . + e i+m_i)r 

= (e*+m)r W (ei + . . . + ^ f+w_i) r . 

This shows that ipic)e^)r is perspective to (e i+w) r with axis of perspectivity 
Oi + • • . + ei+m-i)r. This proves (4). 

COROLLARY TO LEMMA 1. The element c is purely transcendental, if for every 
integer N = 1 , 2 , . . . there exists an integer M > N and orthogonal indempotents 
ei, . . . , eM 'with R(ei) = 1/M for 1 < i < M and 

(cet)r = 0*+i)r for 1 < i < M, 
(ceM)r = (ei)r. 

Proof. Let pit) be any polynomial tm + Z\tm~l + . . . + zm with coefficients 
in the centre of 9Î. Then Lemma 1 shows that for every N > m, we have 
R{p{c)) > 1 — w/Af > 1 — m/N. Hence R(p(c)) = 1 and so ^ O ) - 1 exists. 
This means that c is purely transcendental. 

LEMMA 2. Suppose N is a positive integer and e^N\ i = 1,. . . , 2N are orthogonal 
idempotents such that i£(e*(iV)) = 1/2^ for all i. Suppose also that c(N) is an 
element in 9î such that 
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/ (AT) (N)\ i (N) \ r -, , • , o.V 

(c et )T = (e\+i)r for 1 < i < 2 , 
c e^N = U. 

Then there exist orthogonal idempotents ef
(N+1), i = 1, . . . , 2N+1 and an element 

c(Ar+1) such that: 

(5) R(e?+1))=^+ifor alii, 

(6) r V ) , = ( « Ï Î " ) , /or 1 < i < eN+\ 

(7) cw+1)
e$t1

1) = 0, 

(8) ef> = ef
+1) + c^y, 

(9) c'N+1)eT = c w « r for 1 < » < 2*', 

(10) i ? ( c w + 1 ) - 0 = 2 ^ ï -

Proof. We can suppose ei(iV) = ei + e2 with elf £2 orthogonal idempotents 
and 

R(ei) = R(e2) = iie(e?°) 

(see (i) and (ii), preceding Lemma 1). Define 

Now for 1 < j < 2AT, 

(«<*>), = «C{N)ye[N))r = ( ( C
W ) r ) r U ( ( c W ) ^ î ? ) r f 

Hence (see (ii) preceding Lemma 1) there exist orthogonal idempotents 

JN+I) AN+1) 
ej , e2N+j 

such that their sum is e/N) (so (8) holds) and 

(ef
+1)), = «c™ye?+n)„ 

Note that 

2?(^)=* (^ + 1 ) )+J?(^y) 
< J î ( ^ + 1 ) ) + i J C ^ Î ? ) = R(e[N)) = 2î(e™). 

It follows that equality holds throughout, so R(et<
N+1)) = l /2* + 1 for all i, 

so (5) holds. 
Now 
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and 

(>2tf+l )r 

are perspective (since they have equal ranks); hence by (iii), preceding 
Lemma 1, there exist elements s(N), Si(N) such that: 

AM — JN+V AN) AN+l) . 
s = £2-^+1 s e^N ; 
AN) AN+l) AN) AN+l) 
Si = Ô2N S\ e2KN) + l ? 

AN) AN) _ (N+l) AN) AN) _ 
5 Si — e^N+i, si s — e $ + l ) 

(5 #2^ )r — (^2#+l j n S #2^+1 = U. 

Define c(Ar+1> = c(N) + s^NK Then if 1 < i < 2N, 

if i = 2N, 

AN+l) AN+l) AN) AN+l) AN+l) AN+l) AN) AN+l) # 
C 6i — C €>i , C e2N-\-i — C 2̂-̂ "+i > 

AN+l) AN+l) __ AN) AN+l) . AN+l) AN+l) AN) AN+l) _ n 

c e^N — s e>2N ; c e2N+\ = s e2N+\ = U. 
It follows that (6), (7), (9) also hold. Since 

R(sm) = R(ei%+1)) = -è+î 

it follows that all of (5), (6), (7), (8), (9), (10) hold. 

Conclusion from Lemmas 1 and 2. The hypotheses of Lemma 2 are satisfied, 
for N = 0, if we choose ex

w = 1 and c(0) = 0. 
Now we can define c{N) and the et

(N\ i = 1, . . . , 2^ by induction on N as 
in Lemma 2. Then 

R(c™-cm)= th<^ 
i=N+l* * 

so c(N) is a rank-convergent sequence. Since 9Î is assumed to be complete in the 
rank metric there will exist an element c in 9î such that R(c — c{N)) —> 0 as 
N -» oo. 

Now for any N > 1, 

c ef> = lim c{M) eT = e%\ if 1 < * < 2*. 
M~ÏCO 

Also, 

^ = lim (c(M+1) e$?) 

= lim ( ( « $ $ ) , U (c^t?+i)r U • • • U ( e ^ i + 0 , ) . 

(C e2N ) r = l i m [C Ô2N ) r = 

AN+D\ , | (AN+2) \ , . . . / (M) 

M->cx> 

The idempotents e2i+i{i+1\ i = iV, . . . , M — 1 are orthogonal and e2*+i(i+1) 

= ei(A° e2*+i(*+1) for N <i i < M. Thus (see (iv) preceding Lemma 1), 

D(ce$?)r = lim D 4 = ^ 
M->oo i=N+ x 21 2 " ' 
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Since 

and both of these principal right ideals have the same dimension namely, 
1/2^, they must be identical. 

Thus this element c satisfies the hypotheses of the Corollary to Lemma 1 
and so c must be purely transcendental.* 

*Other types of transcendental elements have been constructed by I. Amemiya and the 
author. 
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