TRANSCENDENTAL ELEMENTS IN CONTINUOUS RINGS

In memory of Maurice Audin

ISRAEL HALPERIN

In (2), John von Neumann introduced the concept of a continuous ring \Re as a generalization to the infinite limiting case of the total matric algebras over a division ring. Von Neumann sketched a theory of arithmetic for such continuous rings \Re and asserted:
(\star) every continuous ring \Re contains purely transcendental elements c.
This means: for every polynomial $p(t)=t^{m}+z_{1} t^{m-1}+\ldots+z_{m}(m \geqslant 1)$ which has all coefficients z_{i} in the centre of \Re, the element $p(c)$ has a reciprocal in \Re, that is, $(p(c))^{-1}$ exists such that $p(c) \cdot(p(c))^{-1}=(p(c))^{-1} \cdot p(c)=1$.

A manuscript found in von Neumann's files after his death (see (1)) gives detailed proofs for all statements in (2) with one exception: no indication of proof is given for (\star). In the present note we give a proof of (\star).

Continuous rings were characterized by von Neumann in (2) as those irreducible associative regular rings which possess a unity element and are complete, continuous rank rings.

We recall some definitions of von Neumann (see 3, Part II, chapters xvir, XVIII): an associative ring \Re is called regular if for each a in \Re, the equation axa $=a$ has at least one solution x in \Re. A regular ring \Re is called a rank ring if a real-valued function $R(a)$ is defined for all a in \Re with the properties:

```
Always \(0 \leqslant R(a) \leqslant 1\).
\(R(a)=0\) if and only if \(a=0\).
\(R(1)=1\).
\(R(a b) \leqslant \mathrm{R}(a), R(a b) \leqslant R(b)\).
For \(e^{2}=e, f^{2}=f\), ef \(=f e=0\), always \(R(e+f)=R(e)+R(f)\).
```

Then necessarily $R(a)=1$ if and only if a^{-1} exists, $R(a+b) \leqslant R(a)+R(b)$, and the function $d(a, b) \equiv R(a-b)$ determines a metric on $\Re ; \Re$ is called a complete rank ring if \Re is a complete metric space under the metric $R(a-b)$.

If \Re is a complete rank ring which is irreducible \dagger then the values of the rank function are precisely, $0,1 / n, 2 / n, \ldots, n / n$, for some positive integer n or precisely all real numbers $\geqslant 0, \leqslant 1$. In the latter case \Re is called continuous.

[^0]As von Neumann showed (3, Part II, Theorem 18.1) if \Re is a continuous ring then the principal right ideals $(a)_{r}$, and also the principal left ideals $(a)_{l}$, form continuous geometries $\bar{R}_{\Re}, \bar{L}_{\Re}$ with dimension functions D, D^{\prime} respectively and:

$$
D\left((a)_{r}\right)=D^{\prime}\left((a)_{\imath}\right)=R(a) .
$$

We shall make use of the following facts:
(i) in a continuous geometry, for each element $\mathfrak{r} \neq 0$, there is a decomposition $\mathfrak{r}=\mathfrak{r}_{1} \cup \mathfrak{r}_{2}$ with $\mathfrak{r}_{1}, \mathfrak{r}_{2}$ perspective and $\mathfrak{r}_{1} \cap \mathfrak{r}_{2}=0$ (see 3, Part I, chapters vi, vii);
(ii) if the continuous geometry is \bar{R}_{\Re} with \Re a regular ring and $\mathfrak{r}=(e)_{r}$ with e idempotent then for the $\mathfrak{r}_{1}, \mathfrak{r}_{2}$ in (i) it is possible to find idempotents e_{1}, e_{2} so that $e=e_{1}+e_{2}, \mathfrak{r}_{1}=\left(e_{1}\right)_{r}, \mathfrak{r}_{2}=\left(e_{2}\right)_{r}$ and e_{1}, e_{2} are orthogonal, that is, $e_{1} e_{2}=e_{2} e_{1}=0$ (see 3, Part II, chapter III);
(iii) in any regular ring \Re if $\left(e_{1}\right)_{r}$ and $\left(e_{2}\right)_{r}$ are perspective and e_{1}, e_{2} are orthogonal there exist elements s_{12} and s_{21} such that $s_{12} s_{21}=e_{1}, s_{21} s_{12}=e_{2}$, $s_{12}=e_{1} s_{12} s_{2}, s_{21}=e_{2} s_{21} e_{1}$ (see 3, Part II, chapter III);
(iv) in any continuous geometry with dimension function D, if $\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{m}$ are independent then $D\left(\cup_{i=1}^{m} \mathfrak{r}_{i}\right)=\sum_{i=1}^{m} D(\mathfrak{r})_{i}$.

We now prove two lemmas from which we shall deduce (\star).
Lemma 1. Suppose \Re is a continuous ring and $e_{i}, i=1, \ldots, N$ are orthogonal idempotents with $R\left(e_{i}\right)=1 / N$ for all i. Suppose that for some c in \Re,

$$
\begin{aligned}
\left(c e_{i}\right)_{r} & =\left(e_{i+1}\right)_{r} \quad \text { for } \quad 1 \leqslant i<N, \\
\left(c e_{N}\right)_{r} & =\left(e_{1}\right)_{r} .
\end{aligned}
$$

Then for every polynomial $p(t)=t^{m}+z_{1} t^{m-1}+\ldots+z_{m}$ with coefficients z_{i} in the centre of \Re and degree $m \leqslant N$, it is so that $R((p(c))) \geqslant 1-m / N$.

Proof. Clearly $D\left(\left(e_{i}\right)_{r}\right)=1 / N$ for all i. We shall show below:

$$
\begin{equation*}
\left(p(c) e_{i}\right)_{r}, i=1, \ldots, N-m \text { are independent } \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \text { if } i \leqslant N-m \text { then }\left(p(c) e_{i}\right)_{r} \subset\left(e_{1}+\ldots+e_{i+m}\right)_{r} \tag{1}\\
& \text { if } i \leqslant N-m \text { then }\left(p(c) e_{i}\right)_{r} \cap\left(e_{1}+\ldots+e_{i+m-1}\right)_{r}=0 \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\left(p(c) e_{i}\right)_{r} \text { is perspective to }\left(e_{i+m}\right)_{r} \text { if } i \leqslant N-m \tag{4}
\end{equation*}
$$

Then (3) and (4) will imply that

$$
\begin{aligned}
R(p(c)) & =D\left((p(c))_{r}\right) \geqslant D\left(\bigcup_{i=1}^{N-m}\left(p(c) e_{i}\right)_{r}\right)=\sum_{i=1}^{N-m} D\left(\left(p(c) e_{i}\right)_{r}\right) \\
& =\sum_{i=1}^{N-m} D\left(\left(e_{i+m}\right)_{r}\right)=\sum_{i=1}^{N-m} \frac{1}{N}=1-\frac{m}{N}
\end{aligned}
$$

that is, $R(p(c)) \geqslant 1-m / N$, as required.

To prove (1): note that if $i+m \leqslant N$ then

$$
\begin{aligned}
p(c) e_{i} & =c^{m} e_{i}+z_{1} c^{m-1} e_{i}+\ldots+z_{m} e_{i} \\
& \in\left(e_{i+m}\right)_{r} \cup\left(e_{i+m-1}\right)_{r} \cup \ldots \cup\left(e_{i}\right)_{r} \\
& \leqslant\left(e_{1}+\ldots+e_{i+m}\right)_{r} .
\end{aligned}
$$

Thus $\left(p(c) e_{i}\right)_{r} \subset\left(e_{1}+\ldots+e_{i+m}\right)_{r}$ as required.
To prove (2): note first that $(c)_{r} \supset\left(e_{i}\right)_{r}$ for $1 \leqslant i \leqslant N$ so $(c)_{r}=\Re$. Thus c^{-1} exists.

Now if $x \in\left(p(c) e_{i}\right)_{r} \cap\left(e_{1}+\ldots+e_{i+m-1}\right)_{r}$ then

$$
x=\left(c^{m} e_{i}+z_{1} c^{m-1} e_{i}+\ldots+z_{m} e_{i}\right) y=\left(e_{1}+\ldots+e_{i+m-1}\right) x
$$

for some y in \Re. Since $c^{j} e_{i} \in\left(e_{i+j}\right)_{r}$ for $i+j \leqslant N$ and $\left(e_{1}\right)_{r}, \ldots,\left(e_{N}\right)_{r}$ are independent, so $c^{m} e_{i} y=0$. Since c^{-1} exists, so $e_{i} y=0$. Now it follows that $x={ }^{\prime} 0$. This proves:

$$
\left(p(c) e_{i}\right)_{r} \cap\left(e_{1}+\ldots e_{i+m-1}\right)_{r}=0, \text { that is, (2). }
$$

To prove (3): This follows from (1) and (2) since

$$
\left(p(c) e_{i}\right)_{r} \cap \cup_{j<i}\left(p(c) e_{j}\right)_{r} \subset\left(\left(p(c) e_{i}\right)_{r} \cap \cup_{j<i+m}\left(e_{j}\right)_{r}=0\right.
$$

for $i=2, \ldots, N-m$.
To prove (4): note (with the help of (2)) that:

$$
\left(p(c) e_{i}\right)_{r} \cap\left(e_{1}+\ldots+e_{i+m-1}\right)_{r}=0=\left(e_{i+m}\right)_{r} \cap\left(e_{1}+\ldots+e_{i+m-1}\right)_{r}
$$

and

$$
\begin{aligned}
\left(p(c) e_{i}\right)_{r} & \cup\left(e_{1}+\ldots+e_{i+m-1}\right)_{r} \\
& =\left(c^{m} e_{i}\right)_{r} \cup\left(e_{1}+\ldots+e_{i+m-1}\right)_{r} \\
& =\left(e_{i+m}\right)_{r} \cup\left(e_{1}+\ldots+e_{i+m-1}\right)_{r} .
\end{aligned}
$$

This shows that $\left(p(c) e_{i}\right)_{r}$ is perspective to $\left(e_{i+m}\right)_{r}$ with axis of perspectivity $\left(e_{1}+\ldots+e_{i+m-1}\right)_{r}$. This proves (4).

Corollary to Lemma 1. The element c is purely transcendental, if for every integer $N=1,2, \ldots$ there exists an integer $M \geqslant N$ and orthogonal indempotents e_{1}, \ldots, e_{M} with $R\left(e_{i}\right)=1 / M$ for $1 \leqslant i \leqslant M$ and

$$
\begin{aligned}
& \left(c e_{i}\right)_{r}=\left(e_{i+1}\right)_{r} \quad \text { for } \quad 1 \leqslant i<M \\
& \left(c e_{M}\right)_{r}=\left(e_{1}\right)_{r} .
\end{aligned}
$$

Proof. Let $p(t)$ be any polynomial $t^{m}+z_{1} t^{m-1}+\ldots+z_{m}$ with coefficients in the centre of \Re. Then Lemma 1 shows that for every $N \geqslant m$, we have $R(p(c)) \geqslant 1-m / M \geqslant 1-m / N$. Hence $R(p(c))=1$ and so $p(c)^{-1}$ exists. This means that c is purely transcendental.

Lemma 2. Suppose N is a positive integer and $e_{i}{ }^{(N)}, i=1, \ldots, 2^{N}$ are orthogonal idempotents such that $R\left(e_{i}{ }^{(N)}\right)=1 / 2^{N}$ for all i. Suppose also that $c^{(N)}$ is an element in \Re such that

$$
\begin{aligned}
\left(c^{(N)} e_{i}^{(N)}\right)_{r} & =\left(e_{i+1}^{(N)}\right)_{r} \quad \text { for } 1 \leqslant i<2^{N} \\
c^{(N)} e_{2 N}^{(N)} & =0
\end{aligned}
$$

Then there exist orthogonal idempotents $e_{i}^{(N+1)}, i=1, \ldots, 2^{N+1}$ and an element $c^{(N+1)}$ such that:

$$
\begin{align*}
& R\left(e_{i}^{(N+1)}\right)=\frac{1}{2^{N+1}} \text { for all } i, \tag{5}\\
& \left(c^{(N+1)} e_{i}^{(N+1)}\right)_{\tau}=\left(e_{i+1}^{(N+1)}\right)_{r} \text { for } 1 \leqslant i<e^{N+1}, \tag{6}\\
& c^{(N+1)} e_{2}^{(N+1)}=0, \tag{7}\\
& e_{i}^{(N)}=e_{i}^{(N+1)}+e_{2}^{(N+1)}, \tag{8}\\
& c^{(N+1)} e_{i}^{(N)}=c^{(N)} e_{i}^{(N)} \text { for } 1 \leqslant i<2^{N}, \tag{9}\\
& R\left(c^{(N+1)}-c^{(N)}\right)=\frac{1}{2^{N+1}} . \tag{10}
\end{align*}
$$

Proof. We can suppose $e_{1}{ }^{(N)}=e_{1}+e_{2}$ with e_{1}, e_{2} orthogonal idempotents and

$$
R\left(e_{1}\right)=R\left(e_{2}\right)=\frac{1}{2} R\left(e_{1}^{(N)}\right)
$$

(see (i) and (ii), preceding Lemma 1). Define

$$
e_{1}^{(N+1)} \equiv e_{1} \quad e_{2 N+1}^{(N+1)} \equiv e_{2} .
$$

Now for $1<j \leqslant 2^{N}$,

$$
\begin{gathered}
\left(e_{j}^{(N)}\right)_{r}=\left(\left(c^{(N)}\right)^{j} e_{1}^{(N)}\right)_{r}=\left(\left(c^{(N)}\right)^{j} e_{1}^{(N+1)}\right)_{r} \cup\left(\left(c^{(N)}\right)^{j} e_{2}^{(N+1)}\right)_{r}, \\
\left(\left(c^{(N)}\right)^{j} e_{1}^{(N+1)}\right)_{r} \cap\left(\left(c^{(N)}\right)^{j} e_{2}^{(N+1)}\right)_{r}=0 .
\end{gathered}
$$

Hence (see (ii) preceding Lemma 1) there exist orthogonal idempotents

$$
e_{j}^{(N+1)}, e_{2 N+j}^{(N+1)}
$$

such that their sum is $e_{j}^{(N)}$ (so (8) holds) and

$$
\begin{aligned}
& \left(e_{j}^{(N+1)}\right)_{r}=\left(\left(c^{(N)}\right)^{j} e_{1}^{(N+1)}\right)_{r} \\
& \left(e_{2 N+j}^{(N+1)}\right)_{r}=\left(\left(c^{(N)}\right)^{j} e_{2 N+1}^{(N+1)}\right)_{r}
\end{aligned}
$$

Note that

$$
\begin{aligned}
R\left(e_{j}^{(N)}\right) & =R\left(e_{j}^{(N+1)}\right)+R\left(e_{2}^{(N+1)}\right) \\
& \leqslant R\left(e_{1}^{(N+1)}\right)+R\left(e_{2 N+1}^{(N+1)}\right)=R\left(e_{1}^{(N)}\right)=R\left(e_{j}^{(N)}\right)
\end{aligned}
$$

It follows that equality holds throughout, so $R\left(e_{i}{ }^{(N+1)}\right)=1 / 2^{N+1}$ for all i, so (5) holds.

Now

$$
\left(e_{2 N}^{(N+1)}\right)_{r}
$$

and

$$
\left(e_{2 N+1}^{(N+1)}\right)_{r}
$$

are perspective (since they have equal ranks); hence by (iii), preceding Lemma 1, there exist elements $s^{(N)}, s_{1}^{(N)}$ such that:

$$
\begin{aligned}
s^{(N)} & =e_{2 N+1}^{(N+1)} s^{(N)} e_{2 N}^{(N+1)} ; \\
s_{1}^{(N)} & =e_{2 N}^{(N+1)} s_{1}^{(N)} e_{2}^{(N+1)+1} ; \\
s^{(N)} s_{1}^{(N)} & =e_{2 N+1}^{(N+1)}, s_{1}^{(N)} s^{(N)}=e_{2 N}^{(N+1)} ; \\
\left(s^{(N)} e_{2 N}^{(N+1)}\right)_{r} & =\left(e_{2 N+1}^{(N+1)}\right)_{r}, s^{(N)} e_{2 N+1}^{(N+1)}=0 .
\end{aligned}
$$

Define $c^{(N+1)} \equiv c^{(N)}+s^{(N)}$. Then if $1 \leqslant i<2^{N}$,

$$
c^{(N+1)} e_{i}^{(N+1)}=c^{(N)} e_{i}^{(N+1)}, c^{(N+1)} e_{2 N+i}^{(N+1)}=c^{(N)} e_{2 N+i}^{(N+1)} ;
$$

if $i=2^{N}$,

$$
c^{(N+1)} e_{2 N}^{(N+1)}=s^{(N)} e_{2 N}^{(N+1)} ; c^{(N+1)} e_{2 N+1}^{(N+1)}=s^{(N)} e_{2 N+1}^{(N+1)}=0 .
$$

It follows that (6), (7), (9) also hold. Since

$$
R\left(s^{(N)}\right)=R\left(e_{2 N}^{(N+1)}\right)=\frac{1}{2^{N+1}}
$$

it follows that all of (5), (6), (7), (8), (9), (10) hold.
Conclusion from Lemmas 1 and 2. The hypotheses of Lemma 2 are satisfied, for $N=0$, if we choose $e_{1}{ }^{(0)}=1$ and $c^{(0)}=0$.

Now we can define $c^{(N)}$ and the $e_{i}{ }^{(N)}, i=1, \ldots, 2^{N}$ by induction on N as in Lemma 2. Then

$$
R\left(c^{(M)}-c^{(N)}\right)=\sum_{i=N+1}^{M} \frac{1}{2^{i}}<\frac{1}{2^{N}}
$$

so $c^{(N)}$ is a rank-convergent sequence. Since \Re is assumed to be complete in the rank metric there will exist an element c in \Re such that $R\left(c-c^{(N)}\right) \rightarrow 0$ as $N \rightarrow \infty$.

Now for any $N \geqslant 1$,

$$
c e_{i}^{(N)}=\lim _{M \rightarrow \infty} c^{(M)} e_{i}^{(N)}=e_{i+1}^{(N)} \quad \text { if } 1 \leqslant i<2^{N}
$$

Also,

$$
\begin{aligned}
\left(c e_{2 N}^{(N)}\right)_{r} & =\lim _{M \rightarrow \infty}\left(c^{(M+1)} e_{2 N}^{(N)}\right)_{r}= \\
& =\lim _{M \rightarrow \infty}\left(\left(e_{2 N+1}^{(N+1)}\right)_{r} \cup\left(e_{2 N+1+1}^{(N+2)}\right)_{r} \cup \ldots \cup\left(e_{2 M-1+1}^{(M)}\right)_{r}\right)
\end{aligned}
$$

The idempotents $e_{2^{i}+1}{ }^{(i+1)}, i=N, \ldots, M-1$ are orthogonal and $e_{2}{ }^{i}+1^{(i+1)}$ $=e_{1}{ }^{(N)} e_{2}{ }^{i}+{ }^{(i+1)}$ for $N \leqslant i<M$. Thus (see (iv) preceding Lemma 1),

$$
D\left(c e_{2 N}^{(N)}\right)_{r}=\lim _{M \rightarrow \infty} \sum_{i=N+1}^{M} \frac{1}{2^{i}}=\frac{1}{2^{N}}
$$

Since

$$
\left(c e_{2 N}^{(N)}\right)_{\tau} \subset\left(e_{1}^{(N)}\right)_{\tau}
$$

and both of these principal right ideals have the same dimension namely, $1 / 2^{N}$, they must be identical.

Thus this element c satisfies the hypotheses of the Corollary to Lemma 1 and so c must be purely transcendental.*
*Other types of transcendental elements have been constructed by I. Amemiya and the author.

References

1. Israel Halperin, Van Neumann's Arithmetics of Continuous Riugs, Acta Sci. Math. Szeged, to appear.
2. J. von Neumann, Continuous rings and their arithmetics, Proc. Nat. Acad. Sci. (U.S.A.), 23 (1937), 341-349.
3. J. von Neumann, Continuous geometry, Parts I, II, III (Princeton: Princeton University Press, 1960).

Queen's University

[^0]: Received December 1, 1960.
 \dagger An associative ring \Re with unity element is called irreducible if whenever two subrings \Re_{1}, \Re_{2} are such that: (i) each x in \Re is expressible in the form $x_{1}+x_{2}$ with x_{1} in \Re_{1} and x_{2} in \Re_{2} and (ii) $x_{1} x_{2}=x_{2} x_{1}=0$ for all x_{1} in \Re_{1}, x_{2} in \Re_{2}, then one of \Re_{1}, \Re_{2} must consist of 0 only.

