TRANSCENDENTAL ELEMENTS IN CONTINUOUS RINGS

In memory of MAURICE AUDIN

ISRAEL HALPERIN

In (2), John von Neumann introduced the concept of a continuous ring \Re as a generalization to the infinite limiting case of the total matric algebras over a division ring. Von Neumann sketched a theory of arithmetic for such continuous rings \Re and asserted:

 (\bigstar) every continuous ring \Re contains purely transcendental elements c.

This means: for every polynomial $p(t) = t^m + z_1 t^{m-1} + \ldots + z_m \ (m \ge 1)$ which has all coefficients z_i in the centre of \Re , the element p(c) has a reciprocal in \Re , that is, $(p(c))^{-1}$ exists such that $p(c) \cdot (p(c))^{-1} = (p(c))^{-1} \cdot p(c) = 1$.

A manuscript found in von Neumann's files after his death (see (1)) gives detailed proofs for all statements in (2) with one exception: no indication of proof is given for (\bigstar) . In the present note we give a proof of (\bigstar) .

Continuous rings were characterized by von Neumann in (2) as those irreducible associative regular rings which possess a unity element and are complete, continuous rank rings.

We recall some definitions of von Neumann (see 3, Part II, chapters XVII, XVIII): an associative ring \Re is called *regular* if for each a in \Re , the equation axa = a has at least one solution x in \Re . A regular ring \Re is called a *rank* ring if a real-valued function R(a) is defined for all a in \Re with the properties:

Always $0 \leq R(a) \leq 1$. R(a) = 0 if and only if a = 0. R(1) = 1. $R(ab) \leq R(a), R(ab) \leq R(b)$. For $e^2 = e$, $f^2 = f$, ef = fe = 0, always R(e + f) = R(e) + R(f).

Then necessarily R(a) = 1 if and only if a^{-1} exists, $R(a + b) \leq R(a) + R(b)$, and the function $d(a, b) \equiv R(a - b)$ determines a metric on \Re ; \Re is called a *complete* rank ring if \Re is a complete metric space under the metric R(a - b).

If \mathfrak{N} is a complete rank ring which is irreducible[†] then the values of the rank function are precisely, $0, 1/n, 2/n, \ldots, n/n$, for some positive integer n or precisely all real numbers $\geq 0, \leq 1$. In the latter case \mathfrak{N} is called *continuous*.

Received December 1, 1960.

[†]An associative ring \Re with unity element is called *irreducible* if whenever two subrings \Re_1 , \Re_2 are such that: (i) each x in \Re is expressible in the form $x_1 + x_2$ with x_1 in \Re_1 and x_2 in \Re_2 and (ii) $x_1x_2 = x_2x_1 = 0$ for all x_1 in \Re_1 , x_2 in \Re_2 , then one of \Re_1 , \Re_2 must consist of 0 only.

As von Neumann showed (3, Part II, Theorem 18.1) if \mathfrak{R} is a continuous ring then the principal right ideals $(a)_{\tau}$, and also the principal left ideals $(a)_{\tau}$, form continuous geometries $\bar{R}_{\mathfrak{R}}$, $\bar{L}_{\mathfrak{R}}$ with dimension functions D, D' respectively and:

$$D((a)_r) = D'((a)_l) = R(a).$$

We shall make use of the following facts:

(i) in a continuous geometry, for each element $r \neq 0$, there is a decomposition $r = r_1 \cup r_2$ with r_1 , r_2 perspective and $r_1 \cap r_2 = 0$ (see 3, Part I, chapters VI, VII);

(ii) if the continuous geometry is $\bar{R}_{\mathfrak{N}}$ with \mathfrak{N} a regular ring and $\mathfrak{r} = (e)_r$ with *e* idempotent then for the \mathfrak{r}_1 , \mathfrak{r}_2 in (i) it is possible to find idempotents e_1 , e_2 so that $e = e_1 + e_2$, $\mathfrak{r}_1 = (e_1)_r$, $\mathfrak{r}_2 = (e_2)_r$ and e_1 , e_2 are *orthogonal*, that is, $e_1e_2 = e_2e_1 = 0$ (see 3, Part II, chapter III);

(iii) in any regular ring \Re if $(e_1)_r$ and $(e_2)_r$ are perspective and e_1 , e_2 are orthogonal there exist elements s_{12} and s_{21} such that $s_{12}s_{21} = e_1$, $s_{21}s_{12} = e_2$, $s_{12} = e_1s_{12}s_2$, $s_{21} = e_2s_{21}e_1$ (see 3, Part II, chapter III);

(iv) in any continuous geometry with dimension function D, if $\mathfrak{r}_1, \ldots, \mathfrak{r}_m$ are independent then $D(\bigcup_{i=1}^m \mathfrak{r}_i) = \sum_{i=1}^m D(\mathfrak{r})_i$.

We now prove two lemmas from which we shall deduce (\bigstar) .

LEMMA 1. Suppose \Re is a continuous ring and e_i , i = 1, ..., N are orthogonal idempotents with $R(e_i) = 1/N$ for all i. Suppose that for some c in \Re ,

$$(ce_i)_{\tau} = (e_{i+1})_{\tau}$$
 for $1 \leq i < N$,
 $(ce_N)_{\tau} = (e_1)_{\tau}$.

Then for every polynomial $p(t) = t^m + z_1 t^{m-1} + \ldots + z_m$ with coefficients z_t in the centre of \Re and degree $m \leq N$, it is so that $R((p(c))) \geq 1 - m/N$.

Proof. Clearly $D((e_i)_r) = 1/N$ for all *i*. We shall show below:

(1) if $i \leq N - m$ then $(p(c)e_i)_{\tau} \subset (e_1 + \ldots + e_{i+m})_{\tau}$;

(2) if $i \leq N - m$ then $(p(c)e_i)_r \cap (e_1 + \ldots + e_{i+m-1})_r = 0;$

(3) $(p(c)e_i)_r, i = 1, \dots, N - m \text{ are independent};$

(4) $(p(c)e_i)_r$ is perspective to $(e_{i+m})_r$ if $i \leq N - m$.

Then (3) and (4) will imply that

$$R(p(c)) = D((p(c))_{\tau}) \ge D\left(\bigcup_{i=1}^{N-m} (p(c)e_i)_{\tau}\right) = \sum_{i=1}^{N-m} D((p(c)e_i)_{\tau})$$
$$= \sum_{i=1}^{N-m} D((e_{i+m})_{\tau}) = \sum_{i=1}^{N-m} \frac{1}{N} = 1 - \frac{m}{N},$$

that is, $R(p(c)) \ge 1 - m/N$, as required.

To prove (1): note that if $i + m \leq N$ then

$$p(c)e_i = c^m e_i + z_1 c^{m-1} e_i + \ldots + z_m e_i$$

$$\in (e_{i+m})_r \cup (e_{i+m-1})_r \cup \ldots \cup (e_i)_r$$

$$\leqslant (e_1 + \ldots + e_{i+m})_r.$$

Thus $(p(c)e_i)_r \subset (e_1 + \ldots + e_{i+m})_r$ as required.

To prove (2): note first that $(c)_r \supset (e_i)_r$ for $1 \leq i \leq N$ so $(c)_r = \Re$. Thus c^{-1} exists.

Now if $x \in (p(c)e_i)_r \cap (e_1 + \ldots + e_{i+m-1})_r$ then

$$x = (c^{m}e_{i} + z_{1}c^{m-1}e_{i} + \ldots + z_{m}e_{i})y = (e_{1} + \ldots + e_{i+m-1})x$$

for some y in \mathfrak{R} . Since $c^{j}e_{i} \in (e_{i+j})_{\tau}$ for $i+j \leq N$ and $(e_{1})_{\tau}, \ldots, (e_{N})_{\tau}$ are independent, so $c^{m}e_{i}y = 0$. Since c^{-1} exists, so $e_{i}y = 0$. Now it follows that x = 0. This proves:

$$(p(c)e_i)_r \cap (e_1 + \ldots e_{i+m-1})_r = 0$$
, that is, (2).

To prove (3): This follows from (1) and (2) since

$$(p(c)e_i)_r \cap \bigcup_{j < i} (p(c)e_j)_r \subset ((p(c)e_i)_r \cap \bigcup_{j < i+m} (e_j)_r = 0$$

for i = 2, ..., N - m.

To prove (4): note (with the help of (2)) that:

$$(p(c)e_i)_{\tau} \cap (e_1 + \ldots + e_{i+m-1})_{\tau} = 0 = (e_{i+m})_{\tau} \cap (e_1 + \ldots + e_{i+m-1})_{\tau}$$

and

$$(p(c)e_i)_{\tau} \cup (e_1 + \ldots + e_{i+m-1})_{\tau} = (c^m e_i)_{\tau} \cup (e_1 + \ldots + e_{i+m-1})_{\tau} = (e_{i+m})_{\tau} \cup (e_1 + \ldots + e_{i+m-1})_{\tau}.$$

This shows that $(p(c)e_i)_{\tau}$ is perspective to $(e_{i+m})_{\tau}$ with axis of perspectivity $(e_1 + \ldots + e_{i+m-1})_{\tau}$. This proves (4).

COROLLARY TO LEMMA 1. The element c is purely transcendental, if for every integer $N = 1, 2, \ldots$ there exists an integer $M \ge N$ and orthogonal indempotents e_1, \ldots, e_M with $R(e_i) = 1/M$ for $1 \le i \le M$ and

$$(ce_i)_r = (e_{i+1})_r$$
 for $1 \leq i < M$,
 $(ce_M)_r = (e_1)_r$.

Proof. Let p(t) be any polynomial $t^m + z_1 t^{m-1} + \ldots + z_m$ with coefficients in the centre of \mathfrak{N} . Then Lemma 1 shows that for every $N \ge m$, we have $R(p(c)) \ge 1 - m/M \ge 1 - m/N$. Hence R(p(c)) = 1 and so $p(c)^{-1}$ exists. This means that c is purely transcendental.

LEMMA 2. Suppose N is a positive integer and $e_i^{(N)}$, $i = 1, ..., 2^N$ are orthogonal idempotents such that $R(e_i^{(N)}) = 1/2^N$ for all i. Suppose also that $c^{(N)}$ is an element in \Re such that

https://doi.org/10.4153/CJM-1962-003-5 Published online by Cambridge University Press

I. HALPERIN

$$(e^{(N)}e^{(N)}_i)_{\tau} = (e^{(N)}_{i+1})_{\tau} \text{ for } 1 \leq i < 2^N,$$

 $e^{(N)}e^{(N)}_{2^N} = 0.$

Then there exist orthogonal idempotents $e_i^{(N+1)}$, $i = 1, \ldots, 2^{N+1}$ and an element $c^{(N+1)}$ such that:

(5)
$$R(e_i^{(N+1)}) = \frac{1}{2^{N+1}} \text{ for all } i,$$

(6)
$$(c^{(N+1)}e_i^{(N+1)})_{\tau} = (e_{i+1}^{(N+1)})_{\tau}$$
 for $1 \le i < e^{N+1}$,

(7)
$$c^{(N+1)}e_{2N+1}^{(N+1)} = 0,$$

(8)
$$e_i^{(N)} = e_i^{(N+1)} + e_{2N+i}^{(N+1)},$$

(9)
$$c^{(N+1)}e_i^{(N)} = c^{(N)}e_i^{(N)}$$
 for $1 \le i < 2^N$,

(10)
$$R(c^{(N+1)} - c^{(N)}) = \frac{1}{2^{N+1}}.$$

Proof. We can suppose $e_1^{(N)} = e_1 + e_2$ with e_1 , e_2 orthogonal idempotents and

$$R(e_1) = R(e_2) = \frac{1}{2}R(e_1^{(N)})$$

(see (i) and (ii), preceding Lemma 1). Define

$$e_1^{(N+1)} \equiv e_1 \qquad e_{2N+1}^{(N+1)} \equiv e_2.$$

Now for $1 < j \leq 2^N$,

$$(e_{j}^{(N)})_{\tau} = ((c^{(N)})^{j} e_{1}^{(N)})_{\tau} = ((c^{(N)})^{j} e_{1}^{(N+1)})_{\tau} \cup ((c^{(N)})^{j} e_{2N+1}^{(N+1)})_{\tau} ((c^{(N)})^{j} e_{1}^{(N+1)})_{\tau} \cap ((c^{(N)})^{j} e_{2N+1}^{(N+1)})_{\tau} = 0.$$

Hence (see (ii) preceding Lemma 1) there exist orthogonal idempotents $a^{(N+1)} a^{(N+1)}$

$$e_j$$
, e_{2N+j}

such that their sum is $e_j^{(N)}$ (so (8) holds) and

$$(e_j^{(N+1)})_r = ((c^{(N)})^j e_1^{(N+1)})_r, (e_{2N+j}^{(N+1)})_r = ((c^{(N)})^j e_{2N+1}^{(N+1)})_r.$$

Note that

$$\begin{aligned} R(e_j^{(N)}) &= R(e_j^{(N+1)}) + R(e_{2N+1}^{(N+1)}) \\ &\leqslant R(e_1^{(N+1)}) + R(e_{2N+1}^{(N+1)}) = R(e_1^{(N)}) = R(e_j^{(N)}). \end{aligned}$$

It follows that equality holds throughout, so $R(e_i^{(N+1)}) = 1/2^{N+1}$ for all *i*, so (5) holds.

Now

$$(e_{2N}^{(N+1)}),$$

and

 $(e_{2N+1}^{(N+1)})_r$

are perspective (since they have equal ranks); hence by (iii), preceding Lemma 1, there exist elements $s^{(N)}$, $s_1^{(N)}$ such that:

$$s^{(N)} = e_{2N+1}^{(N+1)} s^{(N)} e_{2N}^{(N+1)} ;$$

$$s_1^{(N)} = e_{2N}^{(N+1)} s_1^{(N)} e_{2(N+1)}^{(N+1)} ;$$

$$s^{(N)} s_1^{(N)} = e_{2N+1}^{(N+1)} , s_1^{(N)} s^{(N)} = e_{2N}^{(N+1)} ;$$

$$(s^{(N)} e_{2N}^{(N+1)})_r = (e_{2N+1}^{(N+1)})_r , s^{(N)} e_{2N+1}^{(N+1)} = 0.$$

Define $c^{(N+1)} \equiv c^{(N)} + s^{(N)}$. Then if $1 \leq i < 2^N$,

$$c^{(N+1)} e_i^{(N+1)} = c^{(N)} e_i^{(N+1)}, c^{(N+1)} e_{2N+i}^{(N+1)} = c^{(N)} e_{2N+i}^{(N+1)};$$

if $i = 2^N$,

$$c^{(N+1)} e_{2N}^{(N+1)} = s^{(N)} e_{2N}^{(N+1)}; c^{(N+1)} e_{2N+1}^{(N+1)} = s^{(N)} e_{2N+1}^{(N+1)} = 0$$

It follows that (6), (7), (9) also hold. Since

$$R(s^{(N)}) = R(e_{2N}^{(N+1)}) = \frac{1}{2^{N+1}}$$

it follows that all of (5), (6), (7), (8), (9), (10) hold.

Conclusion from Lemmas 1 and 2. The hypotheses of Lemma 2 are satisfied, for N = 0, if we choose $e_1^{(0)} = 1$ and $c^{(0)} = 0$.

Now we can define $c^{(N)}$ and the $e_i^{(N)}$, $i = 1, ..., 2^N$ by induction on N as in Lemma 2. Then

$$R(c^{(M)} - c^{(N)}) = \sum_{i=N+1}^{M} \frac{1}{2^{i}} < \frac{1}{2^{N}}$$

so $c^{(N)}$ is a rank-convergent sequence. Since \mathfrak{R} is assumed to be complete in the rank metric there will exist an element c in \mathfrak{R} such that $R(c - c^{(N)}) \to 0$ as $N \to \infty$.

Now for any $N \ge 1$,

$$c e_i^{(N)} = \lim_{M \to \infty} c^{(M)} e_i^{(N)} = e_{i+1}^{(N)} \text{ if } 1 \leq i < 2^N.$$

Also,

$$(c \ e_{2N}^{(N)})_{\tau} = \lim_{\substack{M \to \infty}} \ (c^{(M+1)} \ e_{2N}^{(N)})_{\tau} = \\ = \lim_{\substack{M \to \infty}} \ ((e_{2N+1}^{(N+1)})_{\tau} \cup \ (e_{2N+1+1}^{(N+2)})_{\tau} \cup \ \dots \cup \ (e_{2M-1+1}^{(M)})_{\tau}).$$

The idempotents $e_{2^{i}+1}^{(i+1)}$, $i = N, \ldots, M-1$ are orthogonal and $e_{2^{i}+1}^{(i+1)} = e_1^{(N)} e_{2^{i}+1}^{(i+1)}$ for $N \leq i < M$. Thus (see (iv) preceding Lemma 1),

$$D(ce_{2^N}^{(N)})_{\tau} = \lim_{M \to \infty} \sum_{i=N+1}^M \frac{1}{2^i} = \frac{1}{2^N}.$$

I. HALPERIN

Since

$$(ce_{2N}^{(N)})_{\tau} \subset (e_1^{(N)})_{\tau}$$

and both of these principal right ideals have the same dimension namely, $1/2^{N}$, they must be identical.

Thus this element c satisfies the hypotheses of the Corollary to Lemma 1 and so c must be purely transcendental.*

References

- 1. Israel Halperin, Van Neumann's Arithmetics of Continuous Riugs, Acta Sci. Math. Szeged, to appear.
- J. von Neumann, Continuous rings and their arithmetics, Proc. Nat. Acad. Sci. (U.S.A.), 23 (1937), 341-349.
- 3. J. von Neumann, *Continuous geometry*, Parts I, II, III (Princeton: Princeton University Press, 1960).

Queen's University

44

 $[\]ensuremath{^*\!Other}$ types of transcendental elements have been constructed by I. Amemiya and the author.