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1. Introduction

The results in this paper are consequences of an attempt many years ago to
extend to loops some form of the theorem of Lyndon [12] that any nilpotent
group has finitely based identities. Having failed in this, we looked for other
algebras for which a similar approach might work. The algebra has to belong to
a variety in which finitely generated algebras are finitely related and we must be
able to bound the number of variables needed in a basis. Commutative Moufang
loops, because of the extensive commutator calculus available (Bruck, [4]), pro-
vide one example (Evans, [6]). Here we give two examples from rings, namely
associative rings satisfying x® = x (more generally, satisfying an identity x? - p(x)
= x) and nilpotent (non-associative) rings. We are also able to extend some re-
sults of Higman [9] on product varieties and we show that for associative rings

_ the product of a nilpotent variety and a finitely based bariety is finitely based.

Our result on rings satisfying x" = x has been obtained recently (using a
different approach) by Werner and Wille [15] and the nilpotent rings result (in
the associative case) is given by Kruse [11] in a paper in which he proves for
finite rings the analogue of the Oates-Powell finite basis theorem for the identities
of a finite group. However, the elementary nature of our proof for (x" = x)-rings
and the extension of Higman’s ideas to nilpotent rings may be of interest.

2. A universal algebra observation

If a finite algebra with finitary operations is such that its identities are
consequences of identities in some bounded number of variables, then its identities

This work was supported in part by an NSF Grant.
246

https://doi.org/10.1017/51446788700016803 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700016803

[2] Finitely based varieties of rings 247

are finitely based (Birkhoff [2], Neumann [14]). The following observation is a
mild extension of this result.

LeMMA. Let B be a variety of algebras with the property that any
finitely generated B-algebra is finitely presented. Then any subvariety W of B
which can be defined by a set of identities involving a bounded number k of
variables is finitely based (relative to B).

Proor. Let F(B) be the free B-algebra on a countably infinite set of generators
d1,92,93, . Let 0 be the fully invariant congruence in F(B) such that F(B)/0
2~ F(W), the free U-algebra on an infinite of number of generators. By hypothesis,
0 may be generated, as a fully invariant congruence, by pairs of words (u,u’)
where u and u’ involve only the generators g,,9,, >+, gs- Let F,(B) be the sub-
algebra of F(B) generated by g,,g,,*-, g, and 8, the restriction of 0 to F('B).
Then 0 is generated, as a fully invariant congruence on F(B), by 6. Since F,(B)/6,
is a finitely generated B-algebra, 6, is a finitely generated congruence on F,(B).
Hence, 0, as a fully invariant congruence on F(B), may be generated by a finite
set of pairs of words in ¢,,g,,-*, g In other words, i may be defined, as a
subvariety of B, by a finite set of identities.

Familiar varieties for which it is known that any finitely generated algebra
is finitely related include varieties generated by a finite algebra, abelian groups,
commutative semigroups, commutative rings, commutative Moufang loops, nil-
potent groups, nilpotent rings. The property fails to hold for groups, rings, lattices
and loops.

3. Identities in rings satisfying x® = x

In this section all rings will be assumed to be associative. The variety of commu-
tative rings satisfies the condition for B in the lemma given in Section 2 since a
finitely generated commutative ring is finitely related (the Hilbert Basis Theorem).
A ring satisfying an identity x* = x (n > 1) is commutative (Jacobson, [10]) and
we will show that in such a ring any identity is equivalent to a set of identities in
at most n variables. Thus the variety generated by the ring satisfies the conditions
for U in the lemma in Section 2.

THEOREM 1. Any ring satisfying an identity x" = x (n > 1) has finitely
based identities.

The proof consists of the above remarks and the following lemmas.

LEMMA 1. A ring which satisfies an identity x" = x also satisfies the follow-
ing identity in n + 1 variables

® [TGxi=x)=0

where the product is taken over all i,j satisfying 1l Si<j<n+1.
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Proor. We operate in the free commutative ring over the integers generated
by x;, X5, X3, . Consider the Vandermonde determinant in x, x,, -, X,

Xy X3 ot Xy | = (xlxz"'xn)n(xi—xj)’
where the product is
I P

over all i,j satisfying
..................... 1<i<j=<n.

Hence, in any commutative ring satisfying x" = x, the identity
(xy%5 - xn)H (x;—x;) =0

will be satisfied. If we write x; — x,,,. 1 for x; in this we obtain the identity described
in the lemma.

LEMMA 2. Any identity in a ring R satisfying x" = x is equivalent to a
Jfinite collection of identities involving at most n variables.

ProOF. We prove the lemma by showing that any identity in a ring satisfying
x" = x is equivalent to a collection of identities in at most n variables together
with a collection of identities of the form

(i) {H (x; — xj)} w(xy,Xxz,X3,°0) =0

where the product is over all i, j satisfying 1 £ i<j<n+1. By Lemma 1,
such identities (ii) are consequences of x” = x.

Consider an identity w(x;,x,,+-,x,) = 0 in ¢ variables where ¢ > n. Using
the Remainder Theorem of elementary algebra to write w(x,x,,",x,)
= (x; — x;) q(x(, X2, , X)) + 1%y, %2, , X,) Where r is w with x; substituted for
x;, we see that, as an identity in a commutative ring, w = 0 is equivalent to iden-
tities (x; — x;) q(x;,%3,--+,%) = 0 and r(x;,x;,-:+,x) = 0, where r = 0 con-
tains fewer than ¢ variables. Now consider an identity in x,, x,, ---, x, of the form

(iii) {IT G — xp}wxy, x5,-+,%) =0

where the product is over some pairs i <j in {1,2,---,1}.

If x,, x, both occur in the left-hand side of (iii) and x, — x, does not, we apply
the Remainder Theorem to the left-hand side of (iii) and obtain an identity holding
in all commutative rings
(iv) {H (x; — xj)} W(Xy, Xz, X3,") = (xp - xq) u(xq, X5, X3,+++) + 0v(xg, Xz, X3,"*)

where v does not involve x,.
Abbreviate (iv) to A = B + C. Now multiply both sides by {[] (x; — x)}"~*.
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We obtain an identity holding in all commutative rings
(V) {H (xi - j)}" w(xlx X2, X3, ) = {(xp - xq)l—[ (xi - xj)} ul(xl’ X325 X3, )
+ {I1 G = x)}"= 1 o(xy, X2, %3, ++7)

Abbreviate (v) to A’ = B’ 4+ C’. In any commutative ring we will have the
following implications between the identities 4 =0, B =0, .-, C’' = 0.

A=0<«{B =0) and (C =0)}
¢ Y
A'=0<«{B =0) and (C' =0)}

In a ring satisfying x” = x, the identities 4 = 0 and 4’ = 0 are equivalent. Hence,
in such a ring the identity A = 0 is equivalent to the identities B’ = 0 and C = 0.
But B’ has one more linear factor than A4 in the product and C involves fewer
variables than A.

If we begin with an identity in ¢ variables in R, where t > n, by repeating the
above procedure we obtain an equivalent collection of identities some of which
involve n or fewer variables and the others are of the form (ii). This completes
the proof of the lemma and also of the theorem.

REMARKS. Any commutative ring satisfying a non-trivial monic identity will
satisfy a polynomial identity in one variable and hence satisfies the Vandermonde
identity [] (x; — x;) = 0,1 < i < j < n, for some n. If a ring satisfies an identity
x2p(x) = x, then it is in fact commutative (Herstein, [8]) and the proof of Theorem
1 may easily be adapted to show that such a ring has finitely based identities.
This result is also included in the paper by Werner and Wille [15], mentioned in
the introduction. Their proof depends on the lattice of ideals of rings in the variety
being distributive and this condition is powerful enough to imply that in any
variety of algebras whose lattices of congruences are distributive, the finite algebras
have finitely based identities (Baker, [1]).

Although he does not state the theorem explicitly, Cohen [5] has shown (in
the course of a study of identities inEmetabelian groups) that any commutative
ring has finitely based identities. I am indebted to R. McKenzie for bringing this
to my attention. McKenzie also informs me that he has obtained a different proof
of this result. Recently, Bang and Mandelberg [3] have used Cohen’s approach
to obtain a finite basis theorem for the identities of any ring R (not necessarily
associative), such that R” lies on the center of R.

4. Identities in nilpotent rings

Let B be the variety of rings (associativity not assumed). By the nilpotency
law of class ¢, (for ¢ = 1), we mean the set of identities x4 x; x, --- x, = 0 where
the non-associative product is taken in all possible bracketings. The subvariety of
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B defined by the nilpotency laws of class ¢ will be denoted by N.. A ring is nil-
potent of class ¢ if it belongs to R, but not to N, ;.

Let F be the free ring in B on a countably infinite set of generators g¢,,¢,,
g3, and F, the free B-ring on g,, g5, ", gy We denote by F(, ¢ =0,1,2,--- the
ideal of F generated by all monomials of length ¢ 4+ 1 or greater and write
F for F©) N F,. Then F/F) and F,JF{” are free rings in the variety 9%t,. We
note that F{ is a finitely generated ideal of F, generated by all momonials of
length ¢ + 1 to 2¢, inclusive.

If B is a subvariety of B defined by identities {ux,,x,,x3,--) = 0;
i =1,2,3,---} and I is the fully invariant ideal of F generated by all values of
the u; in F, then F/I and F,/I,, where I, = I NF,, are free U-rings. U is a sub-
variety of N, if and only if I 2 F©. The following theorem is equivalent to the
statement that any subvariety of R, is finitely based.

THEOREM 2. Any nilpotent ring has a finite basis for its identities.

The proof is a consequence of the following lemma, the first of which is a
direct analogue of the corresponding theorem for groups (Lyndon, [12]).

LemMma 1. If S is a subring of F,, then for each ¢ = 0,1,2,3,.--, S is gen-
erated by a finite set and S NF{).

Proor. We use induction on c. It is trivially true for ¢ = 0. By the 2nd iso-
morphism theorem

S nF’(‘c)/S nF’Er:-l-l) ~ {(S nF‘(‘C))’ F,(‘C+l)}/F](‘c+ 1) = Féc)/F’Ec+1)
and this is a zero-ring which additively is a finitely generated free abelian group.

Hence, so is SNFEOISNFEY D IF S, + (SNFEYY), i=1,2,-, t are gener-

ators of this additive group, then SN F,is generated by the union of {51,582, 51}
and S NFEHD,

LEMMA 2. Any subring of a finitely generated nilpotent ring is finitely
generated.

PROOF. If Re N, represent R as the quotient ring F,/I where I = F©. If
T is a subring of R, then Tis a homomorphic image of a subring S of F, and by
Lemma 1, S is generated by a set of elements, all but a finite number of which lie
in F{©.

LEMMA 3. A finitely generated nilpotent ring is finitely related.

Proor. Immediate from Lemma 2. However, we can say more. A finitely gen-

erated nilpotent ring is actually finitely presented as a ring since F{? is a finitely
generated ideal of F,.

The theorem will follow from Lemma 3 and the universal algebra observation
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of Section 2 once we have shown that we can bound the number of variables
in the identities satisfied by a nilpotent ring. But this is easy to do.

LEMMA 4. The identities of a nilpotent ring of class ¢ are equivalent to a
set of identities in at most ¢ + 1 variables.

PRrOOF. Any ring identity is equivalent to a set of identities, each of which is
a sum of monomials which involve the same variables. This follows by appropriate
substitutions of zero for variables in the original ring identity. Using the nilpotency
laws of class ¢, these sums of monomials may be taken to involve at most ¢ vari-
ables. The nilpotency laws of course involve ¢ + 1 variables.

In order to obtain more information about the identities in a nilpotent ring
we give an alternative development leading up to Lemma 4. This approach is
similar to that of Higman for nilpotent groups and will enable us to show for
nilpotent rings (as Higman did for nilpotent groups) that a finitely generated nil-
potent ring satisfies the equation w(x,, x,,x3,---) = 0 identically, provided that
its elements of ‘‘small’’ length in the generators satisfy it.

Let g, i =1,2,3,--- be the endomorphism of F given by ¢;:9; 0,9, > g,
Jj # i. The kernel K; of ¢; is the ideal generated by g; and every element in K; can
be written as a sum of monomials each of which has g; as a factor. By a simple
induction on ¢, it follows that K, " K, N --- N K, is the kernel of &¢,:--¢ and
every non-zero element in it can be written as a sum of monomials each of which
involves the generators g,,9,,*,d..

LEMMA 5. Let w be a polynomial in F involving generators gi,g2,*** 9,
Then w can be written in the form

w= Z +(wa;) + w*

where each ; is a product of some of the endomorphisms ¢y,¢&,,-,¢ and w* is
zero or sum of monomials each of which involves the generators g,,4g,"**,9:

Proor. This is of course basically a restatement of the proof of Lemma 4.
We may prove it, following Higman [9] by defining w* = w(l — &)(1 —&,)
++(1 —¢g). This is in the kernel of ¢, :-- ¢ since w*g; = O for each i. Hence
w¥e FU~ 1,

By the length I(m) of a monomial m(g,,d,,d3,--) in F we mean its length
as a groupoid word in the generators and by the length of a polynomial % d;m;,
where the d, are integers and the m, are distinct monomials, we mean X l d; I I(m,).

THEOREM 3. If R is a nilpotent ring of class ¢ generated by a,,a,,as,--- and
if the equation w(xy,x,,*-,%) = 0 is satisfied by all sequences of elements
Uy, Uy, s, U, 0f Rsuch that TE ,I(u) < c, then R satisfies w(x,, %, ,%;) = 0
identically.

https://doi.org/10.1017/51446788700016803 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700016803

252 Trevor Evans [71

PrOOF. Let n be any positive integer greater than ¢ and assume that
w(xq, X2, -+, X,) = 0 is satisfied by any sequence u,, u,, -+, u, of polynomials in R
such that XI(u;) < h. Consider a set of elements u;,u,,---,4, in R such that
2lu) = n.

Let each u; be written as a sum of monomials X; + mJa,, a,,d,,---) with
coefficients + 1 or — 1. Let #; be an element of F obtained from u; by replacing
each occurrence of each g, in u; by a generator of F so that @; is of degree one
in each generator. Furthermore, let the sets of generators of F used for different
u; be disjoint. Then Xi(i@;) = n and g4, g5, , 9, all occur in w(iy, iy, -+, @i;).

By Lemma 5, we can write w(i,, iy, «+- , if;) as

E + {w(gls ﬁz,"' ’ﬁk)a} + w*

where w* € F©, and each « is an endomorphism of F consisting of a product of
endomorphisms g;. Now w(ii,, i1y, -, i )e = w(ii o, .0, -, i,x) and X [@0) <n
since the effect of each « is to replace some generators by zero.

Consider the homomorphism f: F — R in which for each generator a; of R,
every generator of F which replaced a; in constructing #; from the u; is mapped
on a,. Then w(idy, iy, -, 4 ) = w(uy,us, -, u;). But

w(iy, iy, o, 0 )= X + {W(ﬁla’ iy, -, B} + w*p

and the right-hand side is zero by the combination of our inductive hypotheses
and the nilpotence of R.

REMARKS. Theorem 3 suggests the universal algebraic problem of finding
some kind of characterization of varieties for which a similar theorem holds. Of
course, for varieties in which finitely generated algebras are finitely related, we can
always force a finitely generated algebra to satisfy an identity by imposing a finite
set of defining relations consisting of instances of the identity.

5. Nilpotent by finitely based varieties

We work in this section entirely within the variety of associative rings and by
“ring”’ we will always mean ‘‘associative ring’’. The results of Section 4 remain
valid and we will need in particular Lemma 5 and some of the ideas in the proof
of Theorem 3. There is an extensive discussion of products of group varieties in
Neumann [14] but since there are some differences on the basic properties of
products for group and ring varieties we begin with a summary of these results.

Let U, B be varieties of rings. The product U o B is the class of all rings which
are extensions of a ring in U by a ring in B. That is, A€ W o B if and only if
there is an ideal B < A such that Bell and A/Be B.U o B is a variety since the
proof that it is closed under quotients, cartesian products and subalgebras depends
only on the isomorphism theorems and is as valid for rings as it is for group
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Let F be the free ring on a countably infinite set of generators gy, 95,93, - .
Let U be the fully invariant ideal of F corresponding to the variety ! and let B
be the fully invariant ideal of F corresponding to the variety 8. Let U(V) denote
the set of elements obtained by substituting for g;,d,,91,--- in any element
u(g,,92,93, ) of U any elements v(g,,d,,93, ) of V. Then U(V) is a fully
invariant ideal of U. For groups, U(V) is a fully invariant subgroup of F and
FJU(V) is free in the variety Y o B. For rings, all we can say is that U(V) is a
fully invariant subring of F and that if U(V) is the ideal of F generated by U(V),
then F /U(T/—) is free in the variety 2 o B. The difference arises from the fact that
if we have rings A = B <& C where A is a fully invariant ideal in B and B is a fully
invariant ideal in C, then A is a fully invariant subring of C but not necessarily an
ideal. For the same reason, the associative law for the product W o B fails for
rings. There are corresponding results for loops. The product of varieties of loops
may be defined as for groups but *“fully invariant’’ does not imply ‘‘normal’’ and
again the product is not an associative operation (Evans [7]).

However, we can state the following result for rings which is completely
analogous to that for groups, and proved in the same way (Neumann, [14]).

LEMMA 1. The product W o B of two varieties of rings may be defined by
the set of all identities

U (01 (X1 15, X125 X135 )5 U2(X215 X22, X235+ )0+ ) = 0,0 = 1,2,3, .+

where the u; = 0 are some defining set for W and v, = 0, v, = 0, run through
all identities of B.

THEOREM 4. Let U be a nilpotent variety and B a finitely based variety.
Then W o B is finitely based.

ProoF. U may be defined by a single identity u(x, x,,:+,x,,) = 0 and so by
Lemma 1, M o B may be defined by the set of all identities

u(vy(x115 X125 X135+ ), 02(X215 X225 X23,°),*+-) = 0

where the v; = 0 run through all identities of 2. Since B is finitely based it may
be defined by a single identity v(x;, x,,-,x,) = 0. If we consider the fully invari-
ant ideal of F generated by v we see that every identity of B is of the form
Zp(Wiy, Wiz, -, Wy,)q; = O where the p;,q; are monomials and the w,’s are
polynomials in the x,’s. It follows that B may be defined by the set of all identities
of the form Zixv(yi1, ¥iz,***» Vin)z; = O where the x;, z;, y; are distinct variables,
since any identity of B may be obtained from one of there by substitution.
Similarly, it follows from Lemma 1, that il o 88 may be defined by identities of
the form
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* u( 2 oYz 2 ooV 3 3 v(---)zn,) ~ 0
i=1 i= i=1

where each argument place in an occurrence of u(---) is occupied by a single vari-
able and distinct blocks of variables are used for the t, + t, + -+ + ¢, occurrences
of v(-+).

There are an infinite number of identities of this form but for any number ¢,
only a finite number which involve no more than t occurrences of «(-+-) since this
is equivalent to t; +t, + .- +t, = t. Let U be nilpotent of class ¢ so that it
satisfies the identity xox;x, -+ x, = 0. Then U o B will satisfy all identities of the
form

** XoU(>+)x 0( )X « =Xy 0+ )X ()X, 4y = O

where xg, x4, **+, X+ Tepresent either single variables of the empty word and the
occurrences of v(---) contain blocks of distinct variables.
The theorem will follow from the next lemma.

LemMA 2. The identities (*) are equivalent to the finite set of identities of
the same form with t; + t, + .- + t, < c together with the finite set of identities
(**)-

PrROOF OF LEMMA. We use Lemma 5 of Section 3 where we regard the x,, z;;
and the 7 v’s as generators of a free ring with the v’s corresponding to g,,9,,**, g,
in Lemma 5. For t; + ¢, + .- + ¢, > ¢ in (*) repeated applications of Lemma 5
yield the result stated.

The idea of the proof is of course exactly the same as that used by Higman to
prove the corresponding theorem for groups. We remark that there seem to be
difficulties in pushing through this proof for the non-associative case and, in fact,
the difficulties are such that it suggests that W o B may not be finitely based if
U is non-associative. The finite set of identities (**) reflecting the nilpotence of
U needs to be replaced by an infinite set if they are to imply the vanishing of any
product involving ¢ occurrences of v(--+).
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