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1. Introduction

We consider the following integro-differential equation with infinite delay:

u′′(t) + αu′(t) = Au(t) +
∫ t

−∞
c(t − s)Au(s) ds + f(t), 0 � t � 2π,

u(0) = u(2π),

u′(0) = u′(2π),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)

where A is a closed linear operator defined on a Banach space X, c ∈ L1(R+) is a
scalar-valued kernel, f is an X-valued function defined on [0, 2π] and α is a real number.

We will study existence and uniqueness of solutions for (1.1) in the space of 2π-periodic
vector-valued functions Bs

pq(T; X) (Besov spaces), where T denotes the one-dimensional
torus R/Z. Below, we briefly recall the definition of periodic Besov spaces in vector-valued
case introduced in [3]. For the scalar case, see [10, Chapter 9] and [9]. An approach to
periodic Besov spaces based on semigroup theory and abstract interpolation is presented
in [5, Chapter 4].

In this work we study directly the full problem (1.1) by a method based on operator-
valued Fourier multiplier theorems, which was initiated by Weis in [12] (see also [4,11])
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in the investigation of maximal regularity for abstract differential equations. Fourier
multiplier theorems on Bs

pq(T; X) were recently studied in [3] motivated by the maximal
regularity of periodic solutions for the Cauchy problems of first and second order.

In this paper we are able to obtain a very simple characterization of maximal regularity
for (1.1) only in terms of the boundedness of {dk(bk − A)−1}k∈Z, where

dk =
−k2

1 + c̃(ik)
, bk =

αik − k2

1 + c̃(ik)

and c̃ denotes the Laplace transform of c. We remark that the conditions that we impose
on the kernel c are satisfied by a large class of functions.

In the second part, we study a resonance case: we assume that there are k1, . . . , kN ∈ Z

such that ikj is a simple pole of F (λ) = (λ2 + αλ − (1 + c̃(λ))A)−1 for j = 1, . . . , N . In
this case, we will show that equation (1.1) has a Bs

p,q-periodic strong solution if and only
if f satisfies suitable compatibility conditions (Theorem 4.3). Also in this case we give a
representation formula for all the solutions, which allows us to study their regularity. We
remark that a similar case was studied in [7] when A generates an analytic semigroup, and
in [8] in the case of first-order integro-differential equations for a general linear unbounded
operator A. However, in [8] the resonance case was not considered. Our results extend
those in [3, Theorem 5.3], where the case for α = 0 and c ≡ 0 was presented.

The paper is organized as follows. In § 2, we recall some useful properties of Besov
spaces and Marcinkiewicz’s condition of second order to establish results on Bs

pq-Fourier
multipliers. Section 3 is devoted to maximal regularity in Bs

pq(T; X), where the appro-
priate notion of the strong solution is defined. In § 4 we study the resonance case.

2. Preliminaries

Besov spaces form one class of function spaces that are of special interest. The relatively
complicated definition is recompensed by useful applications to differential equations
(see [1] for a concrete model).

Let D(T) be the space of all complex-valued infinitely differentiable functions on T.
The usual locally convex topology in D(T) is generated by the seminorms ‖f‖n =
supt∈T

‖f (n)(t)‖, where n ∈ N ∪ {0}. We let D′(T; X) := B(D(T); X). Elements in
D′(T; X) are called X-valued distributions on T.

Let S be the Schwartz space on R and let Φ(R) be the set of all systems φ = {φj}j�0 ⊂
S satisfying

supp(φ0) ⊂ [−2, 2],

supp(φj) ⊂ [−2j+1,−2j−1] ∪ [2j−1, 2k+1], j � 1,∑
j�0

φj(t) = 1, t ∈ R,

and for n ∈ N ∪ {0}, there exists Cn > 0 such that

sup
j�0, x∈R

2nj‖φ
(n)
j (x)‖ � Cn. (2.1)
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Let 1 � p, q � ∞, s ∈ R and φ = (φj)j�0 ∈ Φ(R). The X-valued periodic Besov spaces
are defined by

Bs,φ
p,q (T; X) =

{
f ∈ D′(T; X) : ‖f‖Bs,φ

p,q
=

( ∑
j�0

2sjq

∥∥∥∥ ∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥∥

q

p

)1/q

< ∞
}

,

where, for x ∈ X, we denote by ek ⊗ x the X-valued function (ek ⊗ x)(t) = eiktx.
We make the usual modification if q = ∞. Note also that the space Bs

∞,∞ is the
familiar space of all Hölder continuous functions of index s if s ∈ (0, 1).

We remark that the spaces Bs,φ
p,q are independent of φ ∈ Φ(R), and the norms ‖ · ‖Bs,φ

p,q

are equivalent. We will simply denote ‖ · ‖Bs,φ
p,q

by ‖ · ‖Bs
p,q

for some φ ∈ Φ(R).

Remark 2.1. For some useful properties of Bs
p,q(T; X) see [3, Theorem 2.3].

For a function f ∈ Bs
pq(T; X), s > 0, denote by f̂(k), for k ∈ Z, the kth Fourier coeffi-

cient of f , that is,

f̂(k) =
1
2π

∫ 2π

0
e−iktf(t) dt.

Let X and Y be Banach spaces. We denote by B(X, Y ) be the space of all bounded
linear operators from X to Y . When X = Y we write simply B(X).

Definition 2.2. Let X and Y be Banach spaces and let {Mk}k∈Z ⊂ B(X, Y ). We say
that {Mk}k∈Z is a Bs

pq-multiplier if, for each f ∈ Bs
p,q(T; X) there exists g ∈ Bs

p,q(T; Y )
such that

ĝ(k) = Mkf̂(k) for all k ∈ Z.

In this case, it follows from the Closed Graph Theorem that there exist C > 0 such
that, for f ∈ Bs

p,q(T; X), we have∥∥∥∥ ∑
k∈Z

ek ⊗ Mkf̂(k)
∥∥∥∥

Bs
p,q

� C‖f‖Bs
p,q

.

Remark 2.3. Let X, Y and Z be Banach spaces. If {Mk}k∈Z ⊂ B(X, Y ) and
{Nk}k∈Z ⊂ B(Y, Z) are Bs

pq-multipliers, then {NkMk}k∈Z is a Bs
pq-multiplier. This fol-

lows directly from the definition.

The following condition on sequences {Mk}k∈Z ⊂ B(X, Y ) was introduced in [2] to
study Fourier multipliers in the Lp-context. It is also used in the study of multipliers of
Besov spaces.

Definition 2.4. We say that a sequence {Mk}k∈Z ⊂ B(X, Y ) is M -bounded if

sup
k∈Z

‖Mk‖ < ∞, sup
k∈Z

‖k(Mk+1 − Mk)‖ < ∞, (2.2)

sup
k∈Z

‖k2(Mk+1 − 2Mk + Mk−1)‖ < ∞. (2.3)

The following general multiplier theorem is due to Arendt and Bu [3, Theorem 4.5].

Theorem 2.5. Let X and Y be Banach spaces and let {Mk}k∈Z ⊂ B(X, Y ) be M -
bounded. Then for 1 � p, q � ∞, s ∈ R, {Mk}k∈Z is a Bs

pq-multiplier.
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3. Maximal regularity on Bs
pq(T; X)

For a linear operator A on X, we denote the domain by D(A) and its resolvent set by
ρ(A), and for λ ∈ ρ(A) we write R(λ, A) = (λI − A)−1.

We denote by c̃ the Laplace transform of c ∈ L1(R+). In what follows, we always
assume that c̃(ik) exists for all k ∈ Z and that c̃(ik) �= −1 for all k ∈ Z.

We adopt throughout the following notation:

dk =
1
ak

=
−k2

1 + c̃k
for all k ∈ Z \ {0}, d0 = 0, (3.1)

bk =
αik − k2

1 + c̃k
for all k ∈ Z, (3.2)

where c̃k := c̃(ik).

Remark 3.1. Note that by the Riemann–Lebesgue lemma the sequences {c̃(ik)} and
{1/(1 + c̃(ik))} are bounded.

Let {ck}k∈Z ⊂ C be a sequence. We say that {ck} verifies the following conditions:

{k(ck+1 − ck)}k∈Z and {k2(ck+1 − 2ck + ck−1)}k∈Z are bounded. (H1)

Proposition 3.2. If {c̃(ik)}k∈Z verifies the condition (H1), then {ak} and {bk} defined
by (3.1) and (3.2) verify that

{kak(bk+1 − bk)}k∈Z\{0} and {k2ak(bk+1 − 2bk + bk−1)}k∈Z\{0} are bounded.

Proof. We have the identity

kak(bk+1 − bk) =
−1

1 + c̃k+1
k(c̃k+1 − c̃k) − αi

1 + c̃k+1
(c̃k − c̃k+1) +

−2k − 1 + αi
k

1 + c̃k

1 + c̃k+1
.

By hypothesis and Remark 3.1 we obtain the first assertion of the proposition. In order
to prove the assertion, we have the identity

k2ak(bk+1 − 2bk + bk−1)

=
−1

(1 + c̃k+1)(1 + c̃k−1)

× [(1 + c̃k+1)k2(c̃k−1 − 2c̃k + c̃k+1) − k(c̃k+1 − c̃k−1)k(c̃k+1 − c̃k)

+ 2(1 + c̃k)k(c̃k+1 − c̃k−1) + αi(1 + c̃k−1)k(c̃k − c̃k+1)

+ αi(1 + c̃k+1)k(c̃k − c̃k−1) + αi(1 + c̃k)(c̃k−1 − c̃k+1)

− (1 + c̃k−1)(1 + c̃k) − (1 + c̃k+1)(1 + c̃k)].

Hence, by hypothesis and Remark 3.1 we obtain the desired conclusion. �

Proposition 3.3. Let A be a closed linear operator defined on the Banach space X.
Let {dk}k∈Z and {bk}k∈Z be defined by (3.1) and (3.2), respectively. Assume that {c̃k}k∈Z

satisfies (H1). If bk ∈ ρ(A) for all k ∈ Z and {dk(bk − A)−1}k∈Z is bounded, then
{dk(bk − A)−1}k∈Z is a Bs

p,q-multiplier, 1 � p � ∞.
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Proof. Set Mk = dk(bkI − A)−1. Note that M0 is the null operator.
We will verify that the sequence {Mk} is M -bounded. The result then follows from

Theorem 2.5. In fact, first we prove (2.2). We have the identity

k[Mk+1 − Mk] = Mk+1kak+1[bk − bk+1]Mk + Mk+1k

[
1 − ak+1

ak

]
.

Note that
ak+1

ak
=

1 + c̃k+1

1 + c̃k

(
k

k + 1

)2

.

Hence, for each k ∈ Z \ {−1}, we see that

k

[
1 − ak+1

ak

]
=

[
2k2 + k

(k + 1)2
+

k2

(k + 1)2
1

1 + c̃k
k(c̃k − c̃k+1)

]

is bounded, since {c̃k} verifies (H1).
Moreover, for all k ∈ Z \ {−1}, by Proposition 3.2 we find that {kak+1(bk − bk+1)} is

bounded. This, together with the boundedness of {Mk}, implies that

sup
k∈Z

‖k(Mk+1 − Mk)‖ < ∞.

In order to verify condition (2.3), with an analogous calculation to that above we
obtain

k2(Mk+1 − 2Mk + Mk−1) = k2
(

1
ak+1

− 2
ak

+
1
ak−1

)
ak+1Mk+1

− 2k

[
1 − ak

ak−1

]
kak−1(bk+1 − bk)MkMk−1

− k2ak(bk+1 − 2bk + bk−1)MkMk−1

+ 2kak+1(bk+1 − bk)kak−1(bk+1 − bk−1)Mk+1MkMk−1

− kak(bk+1 − bk)kak+1(bk+1 − bk−1)Mk+1MkMk−1,

where, with a direct calculation, we find that

k2
(

1
ak+1

− 2
ak

+
1

ak−1

)
ak+1 =

k2

(k + 1)2(1 + c̃k)(1 + c̃k−1)

× [−(1 + c̃k+1)k2(c̃k+1 − 2c̃k + c̃k−1)

+ k(c̃k−1 − c̃k+1)k(c̃k − c̃k+1)

+ 2(1 + c̃k)k(c̃k−1 − c̃k+1)

+ (1 + c̃k−1)(1 + c̃k) + (1 + c̃k+1)(1 + c̃k)].

Since {c̃k} verifies (H1) we conclude that the sequence {k2(1/ak+1−2/ak +1/ak−1)ak+1}
is bounded for all k ∈ Z\{−1}. Hence, by Proposition 3.2 together with the boundedness
of {Mk}, we find that k2(Mk+1 − 2Mk + Mk−1) is bounded for all k ∈ Z \ {−1, 0, 1}.
Finally, since M−2, M2, M−1, M1 are well-defined operators we prove the claim. �

https://doi.org/10.1017/S0013091505001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001057


482 V. Poblete

Lemma 3.4. Let X be a Banach spaces. Assume that the Laplace transform {c̃k}k∈Z

verifies condition (H1). Then the sequences {(1 + c̃k)I}k∈Z and {1/(1 + c̃k)I} are Bs
p,q-

multipliers.

Proof. It is clear, directly from (H1) and Theorem 2.5, that the sequence {mk :=
(1 + c̃k)I} is a Bs

p,q-multiplier.
Now, let nk := 1/(1 + c̃k). The sequence {nk} is bounded and satisfies the identities

k(nk+1 − nk) = k[c̃k − c̃k+1]
1

1 + c̃k

1
1 + c̃k+1

and

k2(nk+1 − 2nk + nk−1) =
−1

(1 + c̃k)
1

(1 + c̃k−1)
k2[c̃k+1 − 2c̃k + c̃k−1]

+
1

1 + c̃k+1

1
1 + c̃k

1
1 + c̃k−1

k[c̃k+1 − c̃k−1]k[c̃k+1 − c̃k].

Hence, the sequence is M -bounded, proving the lemma. �

Definition 3.5. Let 1 � p, q � ∞ and s > 0. A function u ∈ Bs+2
p,q (T; X), is called a

strong Bs
p,q-solution of (1.1) if u(t) ∈ D(A) and (1.1) holds for almost every t ∈ [0, 2π].

Theorem 3.6. Let 1 � p, q � ∞ and s > 0. Let A be a closed linear operator
defined on a Banach space X. If {c̃k}k∈Z satisfies (H1), then the following assertions are
equivalent:

(i)
{

αik − k2

1 + c̃k

}
k∈Z

⊂ ρ(A) and sup
k

∥∥∥∥ −k2

1 + c̃k

(
−k2 + αik

1 + c̃k
− A

)−1∥∥∥∥ < ∞;

(ii) for every f ∈ Bs
p,q(T; X), there exists a unique strong Bs

p,q-solution of (1.1) such
that u′′, u′, Au ∈ Bs

p,q(T; X).

Proof. (ii) ⇒ (i). Let x ∈ X be fixed. Define f = ek ⊗ x. Note that f ∈ Bs
p,q(T; X).

Hence, there exists u ∈ Bs+2
p,q (T; X) such that u(t) ∈ D(A) and (1.1) holds for almost

every t ∈ [0, 2π].
Taking Fourier transforms on both sides we obtain that û(k) ∈ D(A) and

−k2û(k) + αikû(k) = Aû(k) + c̃kAû(k) + f̂(k),

where c̃k is the Laplace transform of c. Thus, (−k2 + αik − A − c̃kA)û(k) = f̂(k) = x,
proving that −k2 + αik − A − c̃kA is surjective.

Let x ∈ D(A). If (−k2 + αik − A − c̃kA)x = 0, that is Ax = (−k2 + αik)Ix/(1 + c̃k),
then u(t) = eiktx defines a periodic solution of

u′′(t) + αu′(t) = Au(t) +
∫ t

−∞
c(t − s)Au(s) ds.
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Hence, u = 0 by the assumption of uniqueness, and thus x = 0. Since A is closed,
by [6, Proposition 1.15] we conclude that

αik − k2

1 + c̃k
⊂ ρ(A) for all k ∈ Z.

Next we claim that
−k2

1 + c̃k

(
−k2 + αik

1 + c̃k
− A

)−1

is a Bs
p,q-multiplier. Let f ∈ Bs

p,q(T; X). By hypothesis, there exists a unique u ∈
Bs+2

p,q (T; X) such that

u′′(t) + αu′(t) = Au(t) +
∫ t

−∞
c(t − s)Au(s) ds + f(t).

Taking Fourier transforms of both sides, we find that û(k) ∈ D(A) and

û(k) = (−k2 + αik − (1 + c̃k)A)−1f̂(k)

or

−k2û(k) = − k2

1 + c̃k

(
−k2 + αik

1 + c̃k
− A

)−1

f̂(k).

By [3, Theorem 1.3], if u ∈ Bs+2
p,q (T; X), then u′ is differentiable almost everywhere

(a.e.) and u′′ ∈ Bs
p,q(T; X). Define v = u′′. We then obtain

v̂(k) = − k2

1 + c̃k

(
−k2 + αik

1 + c̃k
− A

)−1

f̂(k),

proving the claim. It follows from the Closed Graph Theorem that there exist C > 0
such that, for f ∈ Bs

p,q(T; X), we have∥∥∥∥ ∑
k∈Z

ek ⊗ Mkf̂(k)
∥∥∥∥

Bs
p,q

� C‖f‖Bs
p,q

.

Let x ∈ X and define f(t) = en ⊗ x for n ∈ Z fixed. Then the above inequality implies
that ‖en‖Bs

p,q
‖Mnx‖ = ‖enMnx‖ � C‖en‖Bs

p,q
‖x‖. Hence, ‖Mn‖ � C.

(i) ⇒ (ii). Let

Mk = − k2

1 + c̃k

(
−k2 + αik

1 + c̃k
− A

)−1

.

By assumption we see that {Mk}k∈Z is a bounded sequence. We define

Nk =
1

1 + c̃k

(
−k2 + αik

1 + c̃k
− A

)−1

.

First, we claim that the families {ikNk}k∈Z and {Nk}k∈Z are Bs
pq-multipliers. In order

to see this, we will apply Theorem 2.5.
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In fact, in order to verify the condition (2.2), observe that ‖ikNk‖ � ‖k2Nk‖ = ‖Mk‖
for all k ∈ Z and hence that supk∈Z

‖ikNk‖ < ∞.
Moreover, we have the identity

k[(k + 1)Nk+1 − kNk] = −Mk+1 + Mk − (k + 1)Nk+1,

and hence the condition (2.2) holds, since {Mk} is bounded.
To verify the condition (2.3), note that

k2[(k + 1)Nk+1 − 2kNk + (k − 1)Nk−1]

= k[Mk − Mk+1] + k[Mk − Mk−1] − k[(k + 1)Nk+1 − kNk] + k[(k − 1)Nk−1 − kNk].

Since supk∈Z
‖Mk‖ < ∞, from the proof of Proposition 3.3 we see that the sequence

{Mk} verifies the condition (2.2) of Definition 2.4. Using this in the above identity, we
conclude that the condition (2.3) holds for {ikNk}. We have the claim.

Second, we will prove that {Nk} is a Bs
pq-multiplier. In fact, to verify the condition (2.2)

observe that ‖Nk‖ � ‖k2Nk‖ = ‖Mk‖ for all k ∈ Z \ {0} and hence that supk∈Z
‖Nk‖ <

∞. Moreover, we have

k[Nk+1 − Nk] = (k + 1)Nk+1 + Nk − Nk+1,

and since {kNk} and {Nk} are bounded sequences we obtain condition (2.2).
In order to verify the condition (2.3), note that

k2[Nk+1 − 2Nk + Nk−1]

= −Mk+1 + 2Mk − Mk−1 − (k + 1)Nk+1 + (k − 1)Nk−1 + Nk−1 − Nk+1,

and, since {Mk}, {kNk} and {Nk} are bounded sequences, we obtain condition (2.3) and
the claim follows.

Now, let f ∈ Bs
p,q(T; X). Since {Nk} is a Bs

pq-multiplier, there exists u ∈ Bs
p,q(T; X)

such that
û(k) = Nkf̂(k) for all k ∈ Z, (3.3)

where we observe that û(k) ∈ D(A).
Since {ikNk} is a Bs

pq-multiplier, there exists v ∈ Bs
p,q(T; X) such that v̂(k) = ikNkf̂(k)

for all k ∈ Z. From (3.3) we obtain

ikû(k) = v̂(k). (3.4)

By [2, Lemma 2.1], u is differentiable a.e. with u′ = v and u(0) = u(2π). By [3, Theorem
2.3] this implies that u ∈ Bs+1

p,q (T; X).
Since {Mk} is a Bs

pq-multiplier, there exists w ∈ Bs
p,q(T; X) such that ŵ(k) = Mkf̂(k)

for all k ∈ Z. Again using the equalities (3.3) and (3.4), we have

−k2û(k) = ikv̂(k) = ŵ(k).

By [2, § 6] u′ is differentiable a.e. with w = u′′, u′(0) = u′(2π) and w = v′ = u′′.
By [3, Theorem 2.3] this implies that u ∈ Bs+2

p,q (T; X).
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We show that u(t) ∈ D(A). By (3.3), we have the identity

(−k2 + αik − (1 + c̃k)A)û(k) = f̂(k) (3.5)

for all k ∈ Z, or, equivalently,

Aû(k) =
−k2 + αik

1 + c̃k
û(k) − 1

1 + c̃k
f̂(k)

=
1

1 + c̃k
ŵ(k) +

α

1 + c̃k
v̂(k) − 1

1 + c̃k
f̂(k). (3.6)

Since f, v, w ∈ Bs
p,q(T; X) and by Corollary 3.4 the family {I/(1+c̃k)} is a Bs

p,q-multiplier,
there exists g ∈ Bs

p,q(T; X) such that

Aû(k) = ĝ(k).

Then [2, Lemma 3.1] implies that u(t) ∈ D(A) and Au(t) = g(t). Hence, Au ∈ Bs
p,q(T; X).

Finally, from (3.5), we have

(−k2 + αik)û(k) = Aû(k) + Ac̃kû(k) + f̂(k).

Since A is closed, from [2, Lemma 3.1] we deduce that

u′′(t) + αu′(t) = Au(t) +
∫ t

−∞
c(t − s)Au(s) ds + f(t).

It remains to show uniqueness. Let u ∈ Bs
p,q(T; X) be such that

u′′(t) + αu′(t) − Au(t) −
∫ t

−∞
c(t − s)Au(s) ds = 0.

Then û(k) ∈ D(A) and [−k2 + αik − (1 + c̃k)A]û(k) = 0. Since

−k2 + αik
1 + c̃k

∈ ρ(A),

this implies that û(k) = 0 for all k ∈ Z and thus that u = 0. �

In the case where p = q = ∞ and 0 < s < 1 we find that Bs
∞,∞(T; X) corresponds to

the space Cs(T; X) of Hölder continuous functions. We state the corresponding result.

Corollary 3.7. Let 0 < s < 1. Let A be a closed linear operator defined on a Banach
space X. Assume that {c̃k}k∈Z satisfies (H1). The following assertions are equivalent:

(i)
{

αik − k2

1 + c̃k

}
k∈Z

⊂ ρ(A) and sup
k

∥∥∥∥ −k2

1 + c̃k

(
αik − k2

1 + c̃k
− A

)−1∥∥∥∥ < ∞;

(ii) for every f ∈ Cs(T; X), there exists a unique strong Cs-solution of (1.1) such that
u′′, u′, Au ∈ Cs(T; X).

https://doi.org/10.1017/S0013091505001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001057


486 V. Poblete

Remark 3.8. Setting α = 0 and c = 0 in equation (1.1) we obtain the second-order
problem with periodic boundary conditions

u′′(t) = Au(t) + f(t), 0 � t � 2π,

u(0) = u(2π),

u′(0) = u′(2π),

⎫⎪⎬
⎪⎭ (3.7)

and we may apply Theorem 3.6 to obtain a necessary and sufficient condition in order for
such a problem to have maximal regularity in Besov spaces. In [2] Arendt and Bu studied
the problem (3.7) for A a closed linear operator defined on Banach space X with the
unconditional martingale difference property. They established conditions for maximal
regularity in Lp

2π(R; X) in terms of R-boundedness. In [3], the authors obtained maximal
regularity for (3.7) in periodic vector-valued Besov spaces.

4. The resonance case

We define

ρd,e(A) = {λ ∈ C : d(λ)I − e(λ)A is invertible and (d(λ) − e(λ)A)−1 ∈ B(X, [D(A)])}.

In what follows we will assume that d(ik) and e(ik) exist for all k ∈ Z. We suppose
that λ → d(λ) (respectively, e(λ)) admits an analytical extension to a sector containing
the imaginary axis, and still denote this extension by d (respectively, e).

Denote by σd,e(A) the complementary set C \ ρd,e(A).
Now, we consider a resonance case. We assume that there are k1, . . . , kN ∈ Z such that

ikj ∈ σd,e(A) for j = 1, . . . , N,

ik /∈ σd,e(A) for k ∈ Z, k �= k1, . . . , kN ,

ikj is a simple pole of F (·) for j = 1, . . . , N,

⎫⎪⎬
⎪⎭ (4.1)

where F : ρd,e(A) ⊂ C → B(X, [D(A)]) is defined by F (λ) = (d(λ)I − e(λ)A)−1.
We now give some preliminary results about the solvability of the equation

(d(λ0)I − e(λ0)A)x = y (4.2)

where λ0 is a simple pole of F (·).
We denote by Q the residue of F (·) at λ0, that is,

Q = lim
λ→λ0

(λ − λ0)F (λ) =
1

2πi

∫
B(λ0,ε)

F (λ) dλ, (4.3)

where ε > 0 and B(λ0, ε) := {λ ∈ C : |λ − λ0| < ε}.
We define

G(λ) =

{
(λ − λ0)F (λ), 0 < |λ − λ0| < ε,

Q, λ = λ0.
(4.4)

We note that Q ∈ B(X, [D(A)]) is a non-zero operator which verifies the following
property.

https://doi.org/10.1017/S0013091505001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001057


Solutions of second-order integro-differential equations 487

Lemma 4.1. With the notation as above, we have

Q = Q[d′(λ0)I − e′(λ0)A]Q.

Proof. For each λ, µ belonging to B(λ0, ε) \ {λ0} with |λ − λ0| > |µ − λ0| we have

F (λ) − F (µ) = F (λ)[d(µ)I − e(µ)A − d(λ)I + e(λ)A]F (µ)

= F (λ)[(d(µ) − d(λ))I + (e(λ) − e(µ))A]F (µ).

Hence,

F (λ) − F (µ)
λ − µ

(λ−λ0)(µ−λ0) = (λ−λ0)F (λ)
[
d(µ) − d(λ)

λ − µ
I+

e(λ) − e(µ)
λ − µ

A

]
(µ−λ0)F (µ)

and, using (4.4), we have

G(λ)
µ − λ0

λ − µ
− G(µ)

λ − λ0

λ − µ
= G(λ)

[
d(µ) − d(λ)

λ − µ
I +

e(λ) − e(µ)
λ − µ

A

]
G(µ).

Since A ∈ B([D(A)], X), letting µ → λ0, we obtain

−Q = G(λ)
[
d(λ0) − d(λ)

λ − λ0
I +

e(λ) − e(λ0)
λ − λ0

A

]
Q.

Letting λ → λ0, we get
Q = Q[d′(λ0)I − e′(λ0)A]Q.

This proves the lemma. �

The following result is the key for results on the existence of solutions in the resonance
case.

Proposition 4.2. Let λ0 be a simple pole of F (·) and let Q ∈ B(X, [D(A)]) be defined
by (4.3). Then

Ker(d(λ0)I − e(λ0)A) = Q(X). (4.5)

Moreover, for any y ∈ X such that Qy = 0, all solutions of (4.2) are given by

x = G′(λ0)y − QA(e′G)′(λ0)y + Q(d′G)′(λ0)y. (4.6)

Proof. First we prove (4.5). For any sufficiently small ε > 0 and 0 < |λ − λ0| < ε we
have

(d(λ0)I − e(λ0)A)G(λ) = (λ − λ0) − (d(λ)I − e(λ)A)G(λ) + (d(λ0)I − e(λ0)A)G(λ)

= (λ − λ0) + (d(λ0) − d(λ))G(λ) + (e(λ) − e(λ0))AG(λ).

Since A ∈ B([D(A)], X), letting λ → λ0, we obtain (d(λ0)I−e(λ0)A)Q = 0, so that Q(X)
is contained in Ker(d(λ0)I−e(λ0)A). Now let x ∈ D(A) be such that (d(λ0)I−e(λ0)A)x =
0. Then, for 0 < |λ − λ0| < ε with ε small, we have

F (λ)(d(λ0)I − e(λ0)A)x = 0. (4.7)
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For each x ∈ X we have the identity x − F (λ)(d(λ)I − e(λ)A)x = 0 or, equivalently,

x + F (λ)[d(λ0) − d(λ)]x + F (λ)[e(λ) − e(λ0)]Ax − F (λ)[d(λ0)I − e(λ0)A]x = 0.

It follows from (4.7) that

x − (λ − λ0)F (λ)
d(λ) − d(λ0)

λ − λ0
x + (λ − λ0)F (λ)

e(λ) − e(λ0)
λ − λ0

Ax = 0,

that is, using (4.4),

x − G(λ)
d(λ) − d(λ0)

λ − λ0
x + G(λ)

e(λ) − e(λ0)
λ − λ0

Ax = 0.

Letting λ → λ0, we get
x − Qd′(λ0)x + Qe′(λ0)Ax = 0,

so that x belongs to Q(X), proving (4.5).

Let us now prove (4.6). First we claim that

lim
λ→λ0

F (λ)[I + (e′(λ0)A − d′(λ0)I)Q] = G′(λ0) − QA(e′G)′(λ0) + Q(d′G)′(λ0). (4.8)

In fact,

G′(λ) = F (λ) − (λ − λ0)F (λ)[d′(λ)I − e′(λ)A]F (λ)

= F (λ) − (λ − λ0)F (λ)d′(λ)F (λ) + (λ − λ0)F (λ)e′(λ)AF (λ)

= F (λ)[I + (e′(λ0)A − d′(λ0)I)Q] − F (λ)e′(λ0)AQ + F (λ)d′(λ0)Q
− F (λ)d′(λ)(λ − λ0)F (λ) + F (λ)e′(λ)A(λ − λ0)F (λ)

= F (λ)[I + (e′(λ0)A − d′(λ0)I)Q] + F (λ)A[e′(λ)G(λ) − e′(λ0)Q]
− F (λ)[d′(λ)G(λ) − d′(λ0)Q]

= F (λ)[I + (e′(λ0)A − d′(λ0)I)Q] + (λ − λ0)F (λ)A
[
e′(λ)G(λ) − e′(λ0)Q

λ − λ0

]

− (λ − λ0)F (λ)
[
d′(λ)G(λ) − d′(λ0)Q

λ − λ0

]
.

Since A ∈ B([D(A)], X), letting λ → λ0 in the above identity we obtain the claim.

On the other hand, using Lemma 4.1 we obtain

lim
λ→λ0

[d(λ0)I − e(λ0)A]F (λ)[I + (e′(λ0)A − d′(λ0)I)Q]

= lim
λ→λ0

[d(λ)I − e(λ)A + e(λ)A − d(λ)I + d(λ0)I − e(λ0)A]

× F (λ)[I + (e′(λ0)A − d′(λ0)I)Q]

= lim
λ→λ0

[
I +

{
e(λ) − e(λ0)

λ − λ0
A − d(λ) − d(λ0)

λ − λ0
I

}
(λ − λ0)F (λ)

]
× [I + (e′(λ0)A − d′(λ0)I)Q]
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= [I + (e′(λ0)A − d′(λ0)I)Q][I + (e′(λ0)A − d′(λ0)I)Q]

= I + 2(e′(λ0)A − d′(λ0)I)Q + (e′(λ0)A − d′(λ0)I)Q(e′(λ0)A − d′(λ0)I)Q

= I + 2(e′(λ0)A − d′(λ0)I)Q − (e′(λ0)A − d′(λ0)I)Q

= I + (e′(λ0)A − d′(λ0)I)Q.

Due to (4.8) and the fact that A belongs to B([D(A)], X) we have

[d(λ0)−e(λ0)A][G′(λ0)−QA(e′G)′(λ0)+Q(d′G)′(λ0)] = I+(e′(λ0)A−d′(λ0)I)Q. (4.9)

Therefore, if y ∈ X is such that Qy = 0, equation (4.2) is solvable, and the solution is
given by

w = G′(λ0)y − QA(e′G)′(λ0)y + Q(d′G)′(λ0)y.

�

Now, arguing as in the proof of Theorem 3.6, we find that, if f ∈ Bs
p,q(T; X) and

u ∈ Bs+2
p,q (T; X) is a strong Bs

p,q-solution of (1.1), then

(−k2 + αik − (1 + c̃k)A)û(k) = f̂(k), k ∈ Z. (4.10)

We suppose that λ → c̃(λ) admits an analytical extension to a sector containing the
imaginary axis, and still denote this extension by c̃.

Substituting d(λ) := λ2 + αλ and e(λ) := 1 + c̃(λ), we have

F (λ) = (λ2 + αλ − (1 + c̃(λ))A)−1 for all λ ∈ ρd,e(A).

Now, we assume that there are k1, . . . , kN ∈ Z such that (4.1) holds.
For each k �= kn, n = 1, . . . , N , equation (4.10) can be uniquely solved, with

û(k) = (−k2 + αik − (1 + c̃k)A)−1f̂(k).

For kn, n = 1, . . . , N , by Proposition 4.2, equation (4.10) is solvable if and only if

Qnf̂(kn) = 0, (4.11)

where Qn is the residue of F (·) at λ = ikn. If (4.11) holds, then, by (4.6), the Fourier
coefficients of the solution to (4.10) in kn, n = 1, . . . , N are given by

û(kn) = [G′
n(ikn) − QnA(c̃′Gn)′(ikn) + Qn(d′Gn)′(ikn)]f̂(kn), (4.12)

where Gn : B(ikn, ε) → B(X, [D(A)]) is the analytic function defined by

Gn(λ) =

{
(λ − ikn)F (λ), 0 < |λ − ikn| < ε,

Qn, λ = ikn,
(4.13)

for any ε > 0 sufficiently small.
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Now, define the family operators

Nk =

{
(−k2 + αik − (1 + c̃k)A)−1, k ∈ Z \ {k1, . . . , kN},

G′
j(ikj) − QjA(c̃′Gj)′(ikj) + Qj(d′Gj)′(ikj), j = 1, . . . , N,

(4.14)

where ik ∈ ρd,e(A) for all k ∈ Z \ {k1, . . . , kN}. Note that {Nk}k∈Z ⊂ B(X).
The following main theorem gives compatibility conditions on f that are necessary and

sufficient for the existence of a strong Lp-solution of (1.1).

Theorem 4.3. Let 1 � p, q � ∞ and let s > 0. Let c ∈ L1(R+) function such that the
Laplace transform c̃k satisfies (H1). Suppose that (4.1) holds. Let A be a closed linear
operator defined on a Banach space X. If supk∈Z

‖k2Nk‖ < ∞ is bounded, then, for every
f ∈ Bs

p,q(T; X), equation (1.1) has a strong Bs
p,q-solution if and only if Qnf̂(kn) = 0, for

every n = 1, . . . , N .
In this case, all the strong solutions of (1.1) are given by

u(t) = lim
n→∞

n∑
k=−n,

k �=k1,...,kN

(
1 − |k|

n + 1

)
eikt(−k2 + αik − (1 + c̃k)A)−1f̂(k)

+
N∑

j=1

eikjt[G′
j(ikj) − QjA(c̃′Gj)′(ikj) + Qj(d′Gj)′(ikj)]f̂(kj). (4.15)

Proof. First we assume that, for every f ∈ Bs
p,q(T; X), there exists v ∈ Bs+2

p,q (T; X),
a strong Bs

p,q-solution of the equation (1.1). Taking Fourier transforms on both sides
of (1.1), we find that v̂(k) ∈ D(A) and

(−k2 + αik − (1 + c̃k)A)v̂(k) = f̂(k) for all k ∈ Z.

For λ ∈ ρd,e(A) and k1, k2, . . . , kN , we have

(λ − ikj)F (λ)[λ2 + αλ − (1 + c̃(λ))A]v̂(kj) = (λ − ikj)v̂(kj).

Setting λ → ikj it follows that

lim
λ→ikj

(λ − ikj)F (λ)[λ2 + αλ − (1 + c̃(λ))A]v̂(kj) = 0.

Since both limits limλ→ikj
(λ − ikj)F (λ) and limλ→ikj

[λ2 + αλ − (1 + c̃(λ))A]v̂(kj) exist,
we obtain

Qj(−k2
j + αikj − (1 + c̃(ikj))A)v̂(kj) = 0,

or, equivalently, Qj f̂(kj) = 0, for all kj , j = 1, . . . , N . Hence, by Proposition 4.2, equa-
tion (4.10) is solvable and

v̂(k) =

{
(−k2 + αik − (1 + c̃k)A)−1f̂(k), k ∈ Z \ {k1, . . . , kN},

[G′
j(ikj) − QjA(c̃′Gj)′(ikj) + Qj(d′Gj)′(ikj)]f̂(k), j = 1, . . . , N,

(4.16)
from which (4.15) follows.
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Conversely, assume that f ∈ Bs
p,q(T; X) and Qnf̂(kn) = 0 for n = 1, . . . , N . We define

u(t) by (4.15). Then
û(k) = Nkf̂(k) (4.17)

for all k ∈ Z, where Nk is defined by (4.14). Note that û(k) ∈ D(A) for all k ∈ Z.
For each k ∈ Z, we define Mk := −k2Nk. By hypothesis, {Mk}k∈Z is bounded.

We observe that {k(Mk+1 − Mk)}k∈Z and {k2(Mk+1 − 2Mk + Mk−1)}k∈Z are bounded,
which can be proved following the same method as the proof of Proposition 3.3. Then,
by Theorem 2.5, we see that {Mk}k∈Z is a Bs

pq-multiplier.

Analogously to the proof of Theorem 3.6, it follows that the family {ikNk}k∈Z is a
Bs

pq-multiplier. Hence, there exist v, w ∈ Bs
p,q(T; X) such that

−k2û(k) = ikv̂(k) = ŵ(k).

By [2, Lemma 2.1] and [2, § 6], u, u′ are differentiable a.e. with u′ = v, w = v′ = u′′ and
u(0) = u(2π), u′(0) = u′(2π). By [3, Theorem 2.3] this implies that u ∈ Bs+2

p,q (T; X).
Now, we show that u(t) ∈ D(A). Since Qnf̂(kn) = 0 for all n = 1, . . . , N , by Proposi-

tion 4.2 we have
(−k2 + αik − (1 + c̃k)A)Nkf̂(k) = f̂(k) (4.18)

for all k ∈ Z, or, equivalently,

ANkf̂(k) =
−k2 + αik

1 + c̃k
Nkf̂(k) − 1

1 + c̃k
f̂(k)

=
1

1 + c̃k
(−k2Nk)f̂(k) +

α

1 + c̃k
ikNkf̂(k) − 1

1 + c̃k
f̂(k)

=
1

1 + c̃k
ŵ(k) +

α

1 + c̃k
v̂(k) − 1

1 + c̃k
f̂(k). (4.19)

Since f, v, w ∈ Bs
p,q(T; X) and by Corollary 3.4 the family {I/(1 + c̃k)} is a Bs

p,q-multi-
plier, there exists g ∈ Bs

p,q(T; X) such that

ANkf̂(k) = ĝ(k).

From (4.17) we obtain Aû(k) = ĝ(k). By [2, Lemma 3.1] this implies that u(t) ∈ D(A).
By (4.18) we have

ŵ(k) = −k2û(k) = −αv̂(k) + [1 + c̃k]ANkf̂(k) + f̂(k)

= −αikû(k) + [1 + c̃k]Aû(k) + f̂(k)

= −αikû(k) + Aû(k) + c̃kAû(k) + f̂(k). (4.20)

It follows from the uniqueness theorem of Fourier coefficients that u(t) defined by (4.15)
satisfies (1.1) for almost all t ∈ [0, 2π]. �
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