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Abstract

For each prime p we construct a family {G i } of finite p-groups such that |Aut(G i )|/|G i | tends to
zero as i tends to infinity. This disproves a well-known conjecture that |G| divides |Aut(G)| for
every nonabelian finite p-group G.
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1. Introduction

A well-known question (see, for example, [23, Problem 12.77]) asks whether it
is true that |G| divides |Aut(G)| for every nonabelian finite p-group G. It is not
clear who raised this question first explicitly; the first result in this direction that
we have found in the literature is due to Schenkman [28], and it is more than 50
years old. In that paper, Schenkman showed that this is true for finite nonabelian
p-groups of class 2 (the proof has a gap, which is corrected by Faudree in [13]).
Later, it was also established for p-groups of exponent p in [26], for p-groups of
maximal class in [25], for p-groups with center of order p in [15], for metacyclic
p-groups when p is odd in [4], for central-by-metacyclic p-groups when p is odd
in [7], for p-abelian p-groups in [5] (see also [30]), for finite modular p-groups
in [8], for some central products in [3, 18], for p-groups with center of index at
most p4 in [6], for p-groups with cyclic Frattini subgroup in [11], for p-groups of
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order at most p6 in [6, 12], for p-groups of order at most p7 in [16], for p-groups
of coclass 2 in [14] (see also a related result in [10]), and for p-groups G such
that (G, Z(G)) is a Camina pair in [31].

All these partial results indicate that a counterexample to the problem should
have a large size, and that it will be difficult to present it explicitly. In this paper
we use pro-p techniques, and we are able to show the following.

THEOREM 1.1. For each prime p there exists a family of finite p-groups {Ui}

such that

lim
i→∞
|Ui | = ∞ and lim sup

i→∞

|Aut Ui |

|Ui |
40/41

<∞.

In particular, for every prime p, there exists a nonabelian finite p-group G such
that |Aut(G)| < |G|.

Let us briefly explain our construction. It consists of two parts.

(1) First, we take an infinite finitely generated pro-p group U such that Aut(U )
is ‘smaller’ than U . Of course, to be smaller for infinite groups does not refer
to the order. In our construction, U will be a uniform p-adic pro-p group, and
so we can speak about dim U . Recall that dim U is defined as dimQp L(U ),
where L(U ) is the Lie Qp-algebra associated with U . Since U is compact
p-adic analytic, Aut(U ) is also a p-adic analytic profinite group. Thus,
saying that Aut U is ‘smaller’ than U will simply mean that dim Aut(U ) <
dim(U ).

(2) Second, U can be written as an inverse limit U = lim
←−

Ui of finite p-groups
Ui = U/Upi . Since Aut(U ) = lim

←−
Aut(Ui), we may hope that Aut(Ui) is

smaller than Ui when i is large (compare with Lemma 2.2).

In order to construct U from the first step, we notice that, if U is a uniform pro-p
group, then

dim Aut(U ) = dimQp Der(L(U )),

where Der(L(U )) is the algebra of Qp-derivations of L(U ). Examples of Lie
algebras L with dim Der(L) < dim L are known to exist, and they were first
constructed by Luks [22] and Sato [27]. In Sato’s example, the algebra is
constructed over Q, it has dimension 41, its center has dimension 1, and its derived
algebra consists only of inner derivations (and so it has dimension 40). This is the
explanation for the numbers which appear in Theorem 1.1.

The realization of the second step of our proof is based on an analysis of the first
cohomology groups H 1(U, L i), where L i = log(U )/pi log(U ) and log(U ) is the
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Lie ring corresponding to a uniform pro-p group U by Lazard’s correspondence.
It turns out that, since Der(L(U )) = Inn(L(U )), Der(log(U )) is finite, and so

H 1
cts(U, log(U )) ∼= Der(log(U ))

is finite. This implies the existence of a uniform upper bound for |H 1(U, L i)|. As
a consequence, we obtain a uniform upper bound for |Aut(Ui) : Inn(Ui)|, where
Ui = U/Upi , that finishes the proof.

The organization of the paper is as follows. In Section 2, we describe the basic
facts about p-adic analytic groups, introduce continuous cohomology groups
of pro-p groups, and establish the uniform upper bound for |H 1(U, L i)|. In
Section 3, we present the proof of Theorem 1.1. We discuss a possible direction
for future work in Section 4.

2. Uniform pro- p groups and their cohomology groups

2.1. Uniform pro- p groups. Let L be a Lie Zp-algebra. We say that L is
uniform if, for some k, L ∼= Zk

p as a Zp-module and [L , L] ⊆ 2pL . Analogously,
we say that a pro-p group U is uniform if it is torsion free, finitely generated, and
[G,G] ⊆ G2p.

One can define the functors exp and log between the categories of uniform Lie
Zp-algebras and uniform pro-p-groups which are isomorphism of categories (see
[9, Section 4]). There is a relatively easy way to define the functor log. If U is
a uniform pro-p group, then log(U ) is the Lie Zp-algebra, whose underlying set
coincides with U , and the Lie operations are defined as follows:

a + b = lim
i→∞

(a pi
bpi
)1/pi

, [a, b]L = lim
i→∞
[a pi

, bpi
]

1/p2i
, a, b ∈ U. (1)

If f : U → V is a homomorphism between two uniform pro-p groups, then
log( f ) = f is a homomorphism of Lie Zp-algebras. In particular, the conjugation
turns log(U ) into a U -module.

LEMMA 2.1. Let U be a uniform pro-p group. Let i, j ∈ N be such that i 6 j 6
2i + 1. Then Upi

/Up j
is abelian, and

Upi
/Up j

∼= log(U )/p j−i log(U )

as U-modules (U acts on Upi
/Up j

by conjugation).

Proof. The lemma is a consequence of the definition of sum in (1).

Let G be a p-adic analytic profinite group. Then it contains a uniform open
subgroup U . The Lie algebra L(G) of G is a Lie Qp-algebra defined as L(G) =
log(U ) ⊗Zp Qp. The definition does not depend on the choice of U . We put
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dim G = dimQp L(G). For a p-adic pro-p group we have the following internal
characterization of the dimension.

LEMMA 2.2 [20, Proposition III.3.1.8], [9, Lemma 4.10]. Let G be a p-adic
analytic pro-p group. Denote by G i = G pi

the subgroup of G generated by pi th
powers of the elements of G. Then there are positive constants c1 and c2 such that

c1 pi dim G 6 |G : G i | 6 c2 pi dim G .

Moreover, if G is uniform, then |G : G i | = pi dim G .

2.2. Continuous cohomologies of pro- p groups. In this subsection, we
present the results about continuous cohomology groups of pro-p groups that
we will need in this paper. More details and omitted proofs can be found
in [24, 29].

Let G be a pro-p group. We say that A is a topological G-module if A is an
abelian Hausdorff topological group which is endowed with the structure of an
abstract left G-module such that the action G × A → A is continuous. In this
paper, A will be one the following three types: a finite abelian group, a profinite
abelian group, and a finite-dimensional vector space over Qp. We denote by G(i)

the Cartesian product of i copies of G. We put

C i
cts(G, A) = { f : G(i)

→ A | f is a continuous function}

and denote the coboundary operator ∂ i+1
A : C i

cts(G, A)→ C(i+1)
cts (G, A) by means

of

(∂ i+1
A f )(g1, . . . , gi+1) = g1 · f (g2, . . . , gi+1)

+

i∑
j=1

(−1) j f (g1, . . . , g j−1, g j g j+1, g j+2, . . . , gi+1)

+ (−1)i+1 f (g1, . . . , gi).

Now, we set

Z i
cts(G, A) = ker ∂ i+1

A and Bi
cts(G, A) = im ∂ i

A

and define the i -th continuous cohomology group H i
cts(G, A) of G with coeffi-

cients in A by
H i

cts(G, A) = Z i
cts(G, A)/Bi

cts(G, A).

If A is a finite p-group, then H i
cts(G, A) coincides with the usual definition of

H i(G, A), and it is equal to Exti
Zp[[G]](Zp, A) (see [29, Ch. 3.2]).
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If α : A→ B is a continuous homomorphism of topological G-modules, then
we have the induced homomorphism of complexes

α̃ : (C∗cts(G, A), ∂)→ (C∗cts(G, B), ∂), (α̃ f )(g1, . . . , gi) = α( f (g1, . . . , gi)).

Hence, α̃ extends to the homomorphisms of the homology groups of this
complexes α∗i : H i

cts(G, A)→ H i
cts(G, B).

By [24, Lemma 2.7.2], we have the following long exact sequence in
cohomology.

LEMMA 2.3. Let G be a pro-p group, and let

0→ A
α
−→ B

β
−→ C → 0

be a short exact sequence of left Zp[[G]]-modules with C finite. Then there exists
a canonical boundary homomorphism

δ : H 1
cts(G,C)→ H 2

cts(G, A)

such that

H 1
cts(G, A)

α∗1
−→ H 1

cts(G, B)
β∗1
−→ H 1

cts(G,C)
δ
−→ H 2

cts(G, A)
α∗2
−→ H 2

cts(G, B)

is exact.

We say that G is of type FP∞ if the trivial Zp[[G]]-module Zp has a free
resolution over Zp[[G]] whose terms are finitely generated. For example, if
G is p-adic analytic, then Zp[[G]] is Noetherian ([20, Proposition V.2.2.4],
[9, Corollary 7.25]), and so G is FP∞.

In the case when G is a FP∞ pro-p group and A is a topological pro-p
G-module, H i

cts(G, A) coincides with Exti
Zp[[G]](Zp, A) (see [29, Theorem 3.7.2]).

Hence, if A is finitely generated as a Zp-module, then H i
cts(G, A) are also finitely

generated as Zp-modules.

2.3. The first cohomology groups of a uniform group. In this subsection,
we consider a uniform pro-p group U such that L(U ) has only inner derivations,
and try to understand its first cohomology groups with coefficients in some natural
modules. First, we consider H 1

cts(U, log(U )).

PROPOSITION 2.4. Let U be a uniform pro-p group. Assume that the Lie algebra
L(U ) has only inner derivations. Then H 1

cts(U, log(U )) is finite.

Proof. Since U is a finitely generated pro-p group and log(U ) is finitely
generated as a Zp-module, H 1

cts(U, log(U )) is also finitely generated as a
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Zp-module. Hence it is enough to show that H 1
cts(U, log(U )) is a torsion module;

that is, that
H 1

cts(U, log(U ))⊗Zp Qp

is equal to 0. By [29, Theorem 3.8.2],

H 1
cts(U, log(U ))⊗Zp Qp = H 1

cts(U,L(U ))

and, by [29, Theorem 5.2.4],

H 1
cts(U,L(U )) ∼= H 1(L(U ),L(U )).

Note that, by definition of H 1(L(U ),L(U )),

H 1(L(U ),L(U )) = Der(L(U ))/Inn(L(U ))

and, by our hypotheses, it is equal to zero.

REMARK 2.5. There is an alternative way to prove the previous proposition. One
can show directly that H 1

cts(U, log(U ))∼= Der(log(U ))/Inn(log(U )) and conclude
that, since L(U ) has only inner derivations, Der(log(U ))/Inn(log(U )) is finite.

Now, we can bound |H 1
cts(U, log(U )/pi log(U ))| uniformly in i .

PROPOSITION 2.6. Let U be a uniform pro-p group. Assume that the Lie algebra
L(U ) has only inner derivations. Then there exists a constant C such that

|H 1
cts(U, log(U )/pi log(U ))| 6 C

for every i .

Proof. Let α : log(U )→ log(U ) be a multiplication by pi . Then

α∗2 : H 2
cts(U, log(U ))→ H 2

cts(U, log(U ))

is also the multiplication by pi . Hence kerα∗2 is contained in the torsion part of
H 2

cts(U, log(U )).
Since U is FP∞ and log(U ) is finitely generated as a Zp-module, we have

that H 2
cts(U, log(U )) is also finitely generated as a Zp-module. Hence the torsion

subgroup T of H 2
cts(U, log(U )) is finite. Applying Lemma 2.3, we conclude that

|H 1
cts(U, log(U )/pi log(U ))| 6 |H 1

cts(U, log(U ))||T |.

Thus, Proposition 2.4 implies Proposition 2.6.
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3. Proof of Theorem 1.1

The next example is the basis of our construction.

PROPOSITION 3.1 [27]. There exists a Lie Q-algebra M of dimension 41 such
that dim Z(M) = 1 and Der(M) consists only of inner derivations.

This proposition allows us to construct uniform pro-p groups considered in
Section 2.3. It is done in the following way.

The algebra M has a subring M0, such that M = M0⊗Z Q. Let L = p2(M0⊗Z
Zp). Then L is a uniform Lie Zp-algebra. If we put U = exp(L), then L = log(U )
and L(U ) ∼= L ⊗Zp Qp

∼= M ⊗Q Qp.

LEMMA 3.2. The Lie Qp-algebra L(U ) is of dimension 41, its center has
dimension 1, and Der(L(U )) consists only of inner derivations.

Proof. This easily follows from the fact L(U ) ∼= M ⊗Q Qp.

Let Ui = U/Upi . Denote by ρi, j : Aut(Ui)→ Aut(U j) (for i > j) the map

ρi, j(α)(uUp j
) = α(uUpi

)Up j
for α ∈ Aut(Ui), u ∈ U.

Now, we are ready to present the main step in our proof.

PROPOSITION 3.3. There exists a constant k such that, for all i > 2k,

ker ρi,k 6 Inn(Ui) ker ρi,i−k .

Proof. By Proposition 2.6, there exists k such that

pk H 1
cts(U, log(U )/pi log(U )) = 0

for all i . We will prove the proposition by induction on i . When i = 2k, the
proposition is clear. Assume that we have shown the proposition for i ; let us prove
it for i + 1.

Let φ ∈ ker ρi+1,k . Since ρi+1,i(φ) ∈ ker ρi,k , the inductive assumption implies
that φ ∈ ker ρi+1,i−k Inn Ui+1. Thus, without loss of generality, we may assume
that φ ∈ ker ρi+1,i−k .

Define the following function c : U → Upi−k
/Upi+1 :

c(u) = φ(uUpi+1
)u−1.

Then
c(u1u2) = φ(u1u2Upi+1

)u−1
2 u−1

1 = c(u1)u1c(u2)u−1
1 .

Thus c ∈ Z1
cts(U,U

pi−k
/Upi+1

).
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By Lemma 2.1, Upi−k
/Upi+1 is abelian, and it is isomorphic to log(U )/

pk+1log(U ) as a U -module. In particular,

pk H 1
cts(U,U

pi−k
/Upi+1

) = 0.

Consider the following exact sequence of U -modules:

1→ Upi−k+1
/Upi+1 α

−→ Upi−k
/Upi+1 β

−→ Upi
/Upi+1

→ 1,

where α is the inclusion and β is the pk th power map. Then β∗1 is multiplication
by pk and so, by Lemma 2.3, imα∗1 = H 1

cts(U,U
pi−k
/Upi+1

). Hence there are c′ ∈
Z1

cts(U,U
pi−k+1

/Upi+1
) and v ∈ Upi−k

/Upi+1 such that

c(u) = c′(u)vuv−1u−1 for every u ∈ U.

Thus, we obtain that

φ(uUpi+1
) = c(u)u = c′(u)vuv−1

= c′(u)vuUpi+1
v−1 for every u ∈ U.

But this implies that φ ∈ ker ρi+1,i+1−k Inn(Ui+1), and we are done.

COROLLARY 3.4. There exists a constant D such that

|Aut(Ui) : Inn(Ui)| 6 D for all i.

Proof. By the previous proposition, we have that

|Aut(Ui) : Inn(Ui)| 6 |Aut(Ui) : Inn(Ui) ker ρi,i−k ||Inn(Ui) ker ρi,i−k : Inn(Ui)|

6 |Aut(Ui) : ker ρi,k ||ker ρi,i−k | 6 |Aut(Uk)||ker ρi,i−k |.

Since the number of generators of Ui is 41 and |Upi−k
/Upi
| = p41k , we obtain that

|ker ρi,i−k | 6 p(41)2k . This finishes the proof of the corollary.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.2,

|Ui | = p41i .

Since Z(U ) is one dimensional, dim U/Z(U ) = 40. Hence

|Inn(Ui)| 6 |U/Upi
Z(U )| = p40i .

Now, the theorem follows from Corollary 3.4.

4. Final remarks

Let φ be the Euler totient function. It is not difficult to show that, for a finite
abelian group A, |Aut(A)| > φ(|A|). In [23, Problem 15.43], Deaconescu has
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asked if the same is true for an arbitrary finite group. The examples from [1, 2]
show that |Aut(G)|/φ(|G|) can be made arbitrarily small when G is a soluble or
perfect finite group. Our examples show that in fact

|Aut(G)|
φ(|G|)(40/41)+ε

can be made arbitrarily small for every ε > 0 when G is a finite nilpotent group.
This also provides a counterexample to a conjecture from [2] that says that, for

a finite nonnilpotent supersoluble group G, |Aut(G)| > φ(|G|). For this, simply
take a family {Ui} of five groups from Theorem 1.1, and consider the following
family of finite nonnilpotent supersoluble groups: {Σ3 ×Ui}.

As a consequence of the previous discussion, we would like to raise the
following question.

QUESTION 4.1. Does there exist a constant α > 0 such that, for every finite
group |G|,

|Aut(G)| > φ(|G|)α?

By a classical result of Ledermann and Neumann [21], there exists a function
g(h) having the property that |Aut(G)|p > ph whenever |G|p > pg(h). A quadratic
upper bound for g was established by Green [17], and until now only not
very important improvements of Green’s bound have been obtained (see, for
example, [19]).
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