
9

Incorporating hadrons

9.1 The mixing matrix

The weak interaction for the leptons was introduced into the theory by arranging
the left-handed leptons (chirality −1) in three generations of doublets and the right-
handed charged leptons into three singlets:(

νe

e−

)
L

,

(
νµ

µ−

)
L

,

(
ντ

τ−

)
L

; e−
R , µ−

R , τ−
R . (9.1)

The similarities of the interactions of leptons to those of quarks suggest that one
should similarly introduce for the quarks left-handed doublets and right-handed
singlets. The situation for the quarks is different, since all of them are massive. For
this reason each quark field has a right-handed component. The fields are classified
as three doublets,

q1′
L =

(
u′

d′

)
L

, q2′
L =

(
c′

s′

)
L

, and q3′
L =

(
t′

b′

)
L

; (9.2)

and six right-handed singlets, u′
R, d′

R, c′
R, s′

R, t′R, and b′
R. The superscripts denote

three generations and the primes indicate that they are gauge quarks. The part of
the Lagrangian which contains the kinetic terms and the couplings of the quarks to
W±, Z0, and photons is written as follows:

L = q̄ ′
Liγ

µ

{
i∂µ + g

2
�τ �W µ + g′

2
Y Bµ

}
q ′

Li + q̄ ′
Riγ

µ

{
i∂µ + g′

2
Y Bµ

}
q ′

Ri . (9.3)

The operator Y denotes the weak hypercharge, which has been defined already,

Y = 2(Q − I3). (9.4)

At this stage it is not clear whether the fields u′, d′, . . . stand for the physical states
because Eq. (9.3) contains only kinetic and interaction terms. Physical fields are
eigenstates of the mass matrix which will be introduced below. This is the reason
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9.1 The mixing matrix 79

why the quark fields in Eq. (9.3) have a prime and we referred to them as gauge
eigenstates or gauge quarks.

Masses for the quarks are generated through quark–Higgs Yukawa couplings. A
Yukawa interaction invariant under SU(2) ⊗ U(1) gauge transformations is easily
constructed:

Lmass = hi j
(d)(ū

′
i , d̄ ′

i )L

(
φ+

φ0

)
d jR + hi j

(u)(ū
′
i , d̄ ′

i )

(−φ̄0

φ−

)
u jR + h.c., (9.5)

where i, j = 1, 2, 3 and the Higgs fields are the same fields as those introduced in
Chapters 5 and 7. The matrices hi j

(u) and hi j
(d) denote couplings of i and j quarks of

the up and down types, respectively. The symmetry is broken by giving a vacuum
expectation value to φ0:

φ =
(

φ+

φ0

) −→
breaking

φ = 1√
2

(
0

v + η

)
(9.6)

and

φc = −iτ2φ
∗ =

(−φ̄0

φ−

) −→
breaking

− 1√
2

(
v + η

0

)
, (9.7)

with η the field fluctuation around the minimum. Spontaneous breaking of the
symmetry generates the mass terms

Lmass = v√
2

(
ū′

Li h
(u)
i j u′

R j + d̄ ′
R j + d̄ ′

Li h
(d)
i j d ′

R j

)
+ h.c. (9.8)

The expressions

M (u)
i j = v√

2
h(u)

i j and M (d)
i j = v√

2
h(d)

i j (9.9)

occurring above are called the mass matrices. From the way they were intro-
duced, there is no reason for them to be either symmetric or Hermitian. In fact
the Lagrangian in (9.5) is manifestly gauge-invariant and the mass matrices are
to a certain extent arbitrary. The mass matrices are very important because they
determine the masses and the flavor mixing of the quarks.

The quark fields that have been investigated up to now are, as has already been
mentioned, non-physical gauge eigenstates. To find the physical or mass eigenstates,
we must transform the quark-mass matrices into diagonal form.

Any square matrix can be diagonalized by a bi-unitary transformation. Therefore
it is always possible to find four matrices UL,R and DL,R that diagonalize the mass
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matrices,

M(u) = U+
L M (u)UR =

⎛
⎝mu 0 0

0 mc 0
0 0 m t

⎞
⎠, (9.10)

M(u) = D+
L M (d) DR =

⎛
⎝md 0 0

0 ms 0
0 0 mb

⎞
⎠. (9.11)

The mass eigenstates, to be denoted as unprimed fields, are related to the gauge
eigenstates by the transformations

uLi = (U+
L )i j u

′
L j , uRi = (U+

R )i j u
′
R j ,

(9.12)dLi = (D+
L )i j d

′
L j , dRi = (D+

R )i j d
′
R j .

In terms of the mass eigenstates the mass term is now diagonal. Therefore we can
substitute the physical fields everywhere in the Lagrangian and deduce the physical
couplings. The neutral couplings expressed in terms of physical quarks retain the
same form as they had with gauge quarks. The charge current after the substitution
becomes

j+
µ = ū′

Liγµd ′
Li = ūLiγµVi j dL j (9.13)

and the charged-current interaction is

Lcc = g√
2

(
j+
µ W −

µ + j−
µ W +

µ

)
, (9.14)

where V = U+
L DL and summation over repeated indices is understood. This matrix

is one of the most important quantities in the standard model, because it contains
information on all possible flavor-transitions and CP violation. It is called the flavor-
mixing matrix or the Cabibbo (1963)–Kobayashi–Maskawa (1973) (CKM) matrix.

By construction the flavor matrix is unitary, a property that will be used exten-
sively in the next section. The mixing matrix is derived directly from the mass
matrices, which shows that all information about it is included in the mass matri-
ces. A determination of the mass matrices from experimental data is impossible
because they contain 36 real parameters (9 complex numbers for each charge sector).
By contrast, there are only ten quantities that can be determined by experiment:
six quark masses and four independent mixing parameters. The fact that only four
parameters of the mixing matrix are relevant can be understood as follows: a unitary
N × N matrix may be expressed by N 2 real parameters. Among them N (N − 1)/2
can be chosen to be the rotation angles of an orthogonal matrix and the remaining
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9.1 The mixing matrix 81

N (N + 1)/2 taken as phase angles. Not all phases, however, are physical. Each
quark field has an arbitrary phase that can be used to eliminate a phase of the CKM
matrix, except for an overall phase. This means that one can arrange the phases of
the quark fields in such a way that they eliminate phases in Vi j of Eq. (9.14). An
exception to this rule is an overall phase that is lost when we square matrix elements
in order to produce probabilities. Thus N × N flavor mixing can be parametrized
by N (N − 1)/2 rotation angles and

N (N + 1)/2 − (2N − 1) = (N − 1)(N − 2)/2

phase angles. For three quark generations (N = 3) there remain three rotation
angles and one phase, which is responsible for CP violation. So in all there are four
parameters that describe the mixing matrix.

The unitarity of the mixing matrix that is required in gauge theories is a conse-
quence of the unitarity of the matrices UL and DL:

Vik(Vkj )
+ = Vik V ∗

jk = δi j . (9.15)

This relation expresses the orthogonality of rows and columns within the matrix.
As was shown above, the mixing matrix can be parametrized with four quan-

tities, but this does not determine the functional form of the matrix. The first
explicit parametrization was given by Kobayashi and Maskawa. They used Euler-
type angles for three-dimensional rotations in the flavor space and one phase:

VKM =
⎛
⎝ c1 −s1c3 −s1s3

s1c2 c1c2c3 − s2s3eiδ c1c2s3 + s2c3eiδ

s1s2 c1s2c3 + c2s3eiδ c1s2s3 − c2c3eiδ

⎞
⎠, (9.16)

where the abbreviations si = sin θi and ci = cos θi are used. The parameters are
chosen so that, for θ2 = θ3 = δ = 0, the three-dimensional mixing matrix is reduced
to the corresponding one for just two doublets. The angles θi may without loss of
generality be chosen to lie in the first quadrant, 0 ≤ θi < π/2. The phase angle δ

may take any value within the interval [−π, π].
This parametrization is just one possibility. Another one that is very customary

was given by Maiani. It is quite suitable for investigations of B-meson decays:

VM =
⎛
⎝ cβcθ cβsθ sβ

−sβsγ cθeiδ′ − sθcγ cγ cθ − sβsγ sθeiδ′
sγ cβeiδ′

−sβcγ cθ + sγ sθe−iδ′ −sβsθcγ − sγ cθe−iδ′
cβcγ

⎞
⎠. (9.17)

The quantity sγ is mainly the coupling for b → c and sβ is mainly for b → u.
Ranges for angles and the phase can be chosen as in the Kobayashi–Maskawa
parametrization.
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82 Incorporating hadrons

A further parametrization is the one by Wolfenstein. In this case the elements
are expanded in terms of a small parameter λ = sin θc exploiting the experimental
information about the smallness of the mixing angles. The structure of the matrix
is determined by the unitary conditions of the mixing matrix:

VW =

⎛
⎜⎝

1 − 1
2λ

2 λ Aλ3(ρ − iη + iη 1
2λ

2)

−λ 1 − 1
2λ

2 − iηA2λ4 Aλ2(1 + iηλ2)

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎟⎠. (9.18)

In contrast to the parametrizations discussed so far, the one by Wolfenstein is only
an approximation, being an expansion in a small parameter. The unitarity condition
is satisfied to a given order in λ. The real parts of the elements are correct to the
order λ3 and the imaginary parts to order λ5. The parameters A, η, and ρ are of
order unity or even smaller:

λ = 0.221 ± 0.002, A = 1.0 ± 0.1,
√

ρ2 + η2 = 0.46 ± 0.23. (9.19)

Magnitudes for elements of the mixing matrix are determined directly from ex-
periments. They in turn are translated into values for the rotation angles. We will
review the experiments and the corresponding values. It is much more difficult to
obtain values for δ, since it is related to CP-violating quantities. We shall return to
its determination in Chapters 15 and 16.

9.2 Flavor-changing neutral couplings (FCNCs)

The structure of the mixing matrix has another important consequence. The neutral
couplings of the theory preserve flavor to a large degree of accuracy. The suppression
of flavor-changing neutral couplings is required by many experimental results. For
instance, the decay KL → µ+µ− is highly suppressed. The branching ratio is

Br(KL → µ+µ−) = (7.2 ± 0.2) × 10−9.

The D0D̄0 mixing has not been observed at the 10−3 level. These properties and
others are incorporated into the theory by the construction described in Section 9.1.
In fact, FCNCs are absent at the tree level. The proof of this follows from the
structure of neutral currents. We can begin again with the Lagrangian in Eq. (8.10)
and substitute the ψs with quark fields. The couplings of the quarks to the Z and γ

are

Lnc = −e
3∑

i=1

q̄ i Qγ µqi Aµ + g

c

3∑
l=1

{
q̄ iτ3γ

µqi − s2q̄ iQγ µqi
}

Zµ. (9.20)
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Table 9.1. Couplings of quarks and leptons to Z0

States gV gA

Up quarks 1
2 − 4

3 sin2θW
1
2

Down quarks − 1
2 + 2

3 sin2θW − 1
2

Neutrinos 1
2

1
2

Charged leptons − 1
2 + 2 sin2θW − 1

2

W− W+

di V ∗
ji uj dkVkj

Figure 9.1. Vertices appearing in box diagrams.

At first sight the quarks occurring in (9.20) should have a prime, since they are still
gauge quarks, but Eq. (9.20) is diagonal in the quark fields and the unitary matrices
UL,R and VL,R will disappear when the quark fields are replaced by physical states.
Thus the omission of the prime is justified.

Next we introduce a convenient notation and write the neutral-current couplings
in the form

Lnc = g

2
√

2 c
q̄iγ µ(gV − gAγ5)qiZµ, (9.21)

with qi representing general states of up and down quarks or leptons. The couplings
are given in Table 9.1, where we also include the neutral couplings to neutrinos and
leptons. In this way neutral couplings are diagonal at the tree level.

The suppression that has been introduced so far is not sufficient. Flavor-changing
effects will now appear through higher-order corrections that involve charged cur-
rents. Higher-order effects are O(Gα) and this suppression is not sufficient. How-
ever, the method introduced so far suppresses FCNC to the level O(Gαm2

q/M2
W),

where mq is the mass of the quark in the intermediate state. We can see this by
considering the upper line of the box diagram shown in Fig. 9.1. The VKM matrix
elements which occur in this line include a mass-independent term,

V ∗
i j Vk j = Vkj V

+
j i = δki , (9.22)
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and a mass-dependent term

V ∗
i j Vk j

mq j

MW
= Vkj V

+
j i

mq j

MW
. (9.23)

The leading term vanishes by virtue of the unitarity of the mixing matrix and
the next term is proportional to the mass of the intermediate quark. This is the
famous Glashow–Iliopoulos–Maiani cancellation scheme (Glashow et al., 1970).
Processes involving quarks in intermediate states, which are light relative to MW,
give a very small contribution. The mechanism has important consequences for
box and penguin diagrams. These diagrams occur for K0–K̄0 mixing and the εK

parameter.
The above requirements for flavor conservation in neutral couplings determines

to a large extent the representation assignment of the fermion fields. There is a
general theorem, which states that, for a gauge theory based on the group SU(2) ×
U(1), the bounds of FCNC are satisfied if we classify (Paschos, 1977; Glashow and
Weinberg, 1977) the quarks into representations of the group in such a way that
quarks of the same charge and the same helicity have the same T (total weak isospin)
and T3 (third component of isospin). For quarks of only two charges (2/3, −1/3)
it implies that there must be equal numbers of up and down quarks.

We illustrate the implications of the result with some examples.

Example 1 Models with three quarks are not allowed, since they will produce
strangeness-changing neutral currents. To solve this problem Glashow, Iliopoulos,
and Maiani (Glashow et al., 1970) introduced a charmed quark. The matrix M is

M =
(

cos θ sin θ

−sin θ cos θ

)
(9.24)

and the charged current

J+
µ = (

ū c̄ d̄ s̄
)(0 M

0 0

)⎛
⎜⎜⎝

u
c
d
s

⎞
⎟⎟⎠ . (9.25)

Example 2 Models with five quarks, u, c, d, s, and b, produce flavor-changing
couplings. To eliminate these couplings the top quark was introduced. The charged-
current interactions are now described by Eqs. (9.13) and (9.14).

9.3 The elements of the mixing matrix

There are many processes that determine values for the elements of the mixing
matrix. They involve products of the weak couplings times hadronic matrix
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elements. Estimates of the latter require methods of strong interactions as they
apply to low or high energies. For the sake of brevity, the description of hadronic
methods given here is short. The aim is to give a general impression of the
methods and arrive quickly at the relevant numerical results. The interested
student will find more details in the references or in the following chapters,
especially Chapters 11–14.

9.3.1 Determination of Vud

For the weak interaction we introduced in Chapter 2 the Fermi coupling constant
GF, which is related to the SU(2) coupling by Eq. (8.14). It was also mentioned there
that its numerical value is determined by the muon lifetime. To obtain a precise value
for GF it is necessary to include radiative corrections from the exchange of photons
and gauge bosons, as well as the emission of photons. Such diagrams in general
introduce infinities, which must be treated with special care. The electroweak theory
is renormalizable and the infinities can be absorbed into a few coupling constants.
In this book we do not cover the method of renormalization, but refer to an article
and a book (Sirlin, 1978; Bardin and Passarino, 1999). The precise value for the
Fermi coupling constant is

Gµ = (1.166 32 ± 0.000 04) · 10−5 GeV−2, (9.26)

with the subscript indicating that it is obtained from the muon lifetime.
The method which was used to construct the hadronic Lagrangian requires that

the charged currents for quarks have the same coupling constant multiplied by the
quark mixing matrix, as is seen in Eq. (9.14). This property is called universality.
Thus the Vud coupling is given by the ratio of the coupling constant measured in
β-decay, to be denoted by GV , to the muon decay constant:

Vud = GV

Gµ
. (9.27)

The most accurate experiments for β-decay, so far, were done in nuclei and involve
0+ → 0+ transitions, also known as superallowed transitions. Their measurements
and analyses have a long history. Precise determination of GV must include radiative
and in addition nuclear corrections. It is beyond the scope of this chapter to describe
the corrections in detail. The result of the analyses is a very precise value,

Vud = 0.9740 ± 0.0003 ± 0.0015, (9.28)

where the first error is statistical and the second represents the theoretical uncer-
tainty.
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86 Incorporating hadrons

There are two other elementary transitions that are also relevant. The first is pion
β-decay,

π+ → π0 + e+ + ν.

The branching ratio for this decay has been measured to be

Br
(
π+ → π0 + e+ + ν

) = (1.025 ± 0.034) × 10−8, (9.29)

which has a 3% error and is not as accurate as ratios from nuclear β-decays. The
determination of Vud from this decay has no nuclear corrections but carries a larger
statistical error,

Vud = 0.965 ± 0.016. (9.30)

The second elementary transition is the decay of neutrons: n → p + e− + ν̄. This
decay depends both on the vector current and on the axial current, in contrast
to the previous two cases, to which only the vector current contributes. Precise
measurements of the neutron lifetime,

τn = 888.5 ± 0.8 s, (9.31)

give the value

Vud = 0.9801 ± 0.0030. (9.32)

We note that the three determinations are consistent with each other. The most
accurate one from the superallowed nuclear transitions will be used later on.

9.3.2 Determination of Vus

There are several ways to determine Vus, among which the Kl3 decays are the
cleanest. Hyperon decays give values that are almost as accurate. For the K-meson
decays we use the reactions

K0
L → π−e+νe and K+ → π0e+νe.

The transition is from a pseudoscalar to another pseudoscalar particle and only the
vector current contributes. Its matrix element can be written as

〈π (p′)|Jµ|K (p)〉 = C
[(

pµ + p′
µ

)
f+(q2) + (

pµ − p′
µ

)
f−(q2)

]
, (9.33)

where q2 = (p − p′)2, C is an isospin Clebsch–Gordan coefficient, and f±(q2)
are the form factors. In the SU(3)-symmetry limit at q2 = 0 the form factor
is known: f+(0) = 1. Corrections to this value were computed to account for
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symmetry-breaking effects. Then the width

� = G2
µM5

K

192π3
C2| f+(0)|2|Vus|2 (9.34)

determines Vus. The result including all corrections is

Vus = 0.220 ± 0.002. (9.35)

The analysis of hyperon decays studies the decays of many hyperons, for which
a χ2 fit is performed. They involve form factors of both vector and axial currents,
which are assumed to satisfy the SU(3) symmetry. The general fit is an impressive
success of the SU(3) symmetry since there is a single value Vus consistent with all
the hyperon data and the above value. It carries a slightly larger error arising from
the theoretical uncertainties.

9.3.3 Determination of |Vcd| and |Vcs|
One way to obtain the couplings |Vcd| and |Vcs| is to study the production of charmed
particles in deep inelastic neutrino–nucleon scattering. The particles produced
decay semileptonically and appear as events with opposite-sign dimuons. The
elementary interactions are

ν + d → µ− + c

↘ µ+ + ν + s, (9.36)

ν̄ + d̄ → µ+ + c̄

↘ µ− + ν̄ + s̄. (9.37)

The semileptonic decays involve a mixture of charmed particles whose branching
ratio is taken as Be = 7.1 ± 1.3%.

Thus it remains to compute the production rates for charm quarks, which are
discussed in Chapter 11. Here we mention that the original reactions are computed
in the parton model as follows

σ (νN → cX) = G2 M E

π

[
rd(U + D)|Vcd|2 + 2rsS|Vcs|2

]
, (9.38)

σ (ν̄N → c̄X) = G2 M E

π

[
rd̄(Ū + D̄)|Vcd|2 + 2rs̄ S̄|Vcs|2

]
. (9.39)

The r -coefficients measure the suppressions in the production of charmed quarks
due to phase-space restrictions. Estimates for the experiments at energies Eν =
220 GeV and Eν̄ = 150 GeV gave the values

rd (220 GeV) = 0.91, rs (220 GeV) = 0.72,
(9.40)

rd̄ (150 GeV) = 0.70, rs̄ (150 GeV) = 0.66.
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The capital letters U, D, . . . denote integrals of the quark distribution functions in
the proton. They are extracted from data on high-energy neutrino–nucleon scatter-
ing.

In Eqs. (9.38) and (9.39) we have two equations with two unknowns and thus
we can solve for Vcd and Vcs. The results are

|Vcd| = 0.22 ± 0.03, (9.41)

|Vcs| ≥ 0.75. (9.42)

Another source of information on |Vcs| is the semileptonic D-meson decays.
They are proportional to f D→K

+ (q2)|Vcs| and require estimates of the form factor
f D→K
+ (q2).

The values for |Vcs| obtained by these methods have large errors due to theoretical
uncertainties. These values have been superseded by measurements of W decays to
identified charmed hadrons and the subsequent decays. W bosons decay to the pairs
(uq̄) and (cq̄) with q̄ = d̄, s̄, b̄ antiquarks. The sum of the squares of the couplings
for the six decays should add up to the value of 2. Since five of the six couplings
are well measured or they are very small, LEP measurements can be converted into
a precise value of

|Vcs| = 0.996 ± 0.016.

Without the use of unitarity the central value from all measurements is consistent,
with 0.97 ± 0.10. With these values the upper-left-hand corner of the CKM matrix
is known to a high degree of accuracy.

9.3.4 B-Meson decays and the determination of Vcb and Vub

The relatively long-lived B mesons made possible the determination of two more
elements in the mixing matrix, Vcb and Vub. The decays of the B mesons proceed in
the spectator model with the decay of b quarks into c and u quarks. The total width
is the incoherent sum of the contributions from the above two decays, corrected, of
course, for the exchange of gluons as described by QCD. The method accounts for
the semileptonic and non-leptonic decays. Both decays were used in determining
Vcb, while the semileptonic spectrum is used for constraining the element Vub. In
these estimates theoretical uncertainties enter the calculation and we shall discuss
them in some detail.

The total width is given by

�tot = �0(r |Vub|2 + s|Vcb|2), (9.43)
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where r and s are products of phase space, color factors, and QCD corrections, and

�0 = G2m5
b

192π3
. (9.44)

There are theoretical uncertainties for r, s, and �0. For instance, the factor �0 is
sensitive to the b-quark mass:

1

�0
=

{
0.93 × 10−14 s for mb = 5.00 GeV,

1.22 × 10−14 s for mb = 4.75 GeV.
(9.45)

The spectator and parton models were used for analyzing, along these lines, the
lepton spectra of semileptonic decays. A consistent analysis determines two more
matrix elements, Vcb and Vub, with ≈20% error.

An alternative method considers exclusive B decays in the heavy-quark effective
theory (HQET). This is a systematic expansion in inverse powers of the heavy-quark
mass. When the mass of the heavy quark is taken to infinity, the decays B → D∗�ν̄
and B → D�ν become equal. Eperimentally the two branching ratios are different,
so corrections of O(1/mq) must be included. Consequently, specific final states are
selected to determine

|Vcb| = 0.041 ± 0.002 (9.46)

and

|Vub| = 0.004 ± 0.001. (9.47)

Some details for the calculations are included in Section 14.5. Finally, the discovery
of the top quark was achieved by observing semileptonic decays that provide an
approximate estimate of |Vtb|.

With the B-meson decays we close the discussion concerning the elements of
the CKM matrix, of which six elements are directly determined by experiments.
Values for the remaining three elements, involving couplings of the top quark, are
deduced from the unitarity of the matrix.

9.3.5 Summary and unitarity

In this chapter we were able to derive accurate values for the matrix elements from
tree-level constraints. We emphasize that we can determine only their magnitudes,
not their relative phases. In summary,

|Vud| = 0.9740 ± 0.0020, |Vus| = 0.220 ± 0.002,

|Vcd| = 0.22 ± 0.03, |Vcs| = 0.97 ± 0.10, (9.48)

|Vcb| = 0.041 ± 0.002, |Vub| = 0.004 ± 0.001.
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The unitarity of the mixing matrix restricts the matrix elements even further. The
tree constraints together with unitarity give the following ranges reported by the
Particle Data Group (Gilman et al., 2002):

|Vi j | =
⎛
⎝0.9741–0.9756 0.219–0.226 0.0025–0.0048

0.219–0.226 0.9732–0.9748 0.0038–0.004
0.004–0.014 0.037–0.044 0.9990–0.9993

⎞
⎠. (9.49)

The small values for many of the elements justify the small-angle approximation
and the Wolfenstein parametrization described in Section 9.1. Similarly, one obtains
values for the other parametrizations as was done in Eq. (9.19). The phase δ is
still undetermined. Its determination requires measurements of the CP parameters,
which we postpone until Chapters 15 and 16.

We are now in a position to test the unitarity of the mixing matrix. There are two
types of constraints.

(i) The sum of the squares of absolute values of the elements for each row or each column
must sum up to unity. This can be tested for the first row,

|Vud|2 + |Vus|2 + |Vub|2 = 0.9970 ± 0.0036, (9.50)

which is consistent with unity. The radiative corrections for the Vud element are very
crucial because without them the right-hand side in (9.50) would be greater than unity,
in fact

∑
i |Vui |2 = 1.020 ± 0.004.

(ii) A convenient and pictorial way to summarize the content of the CKM matrix is in terms
of unitarity triangles. Consider the entries of each row or column of the matrix as the
components of a vector. Then the unitarity condition applied to any two columns is the
dot product of one column with the complex conjugate of another column. For the first
and third columns the condition yields

VudV ∗
ub + VcdV ∗

cb + VtdV ∗
tb = 0. (9.51)

The unitarity triangle is a geometrical representation of this equation in the complex
plane. Each term in the equation is proportional to Aλ3 and, to leading order,

VcdV ∗
cb ≈ −Aλ3, VudV ∗

ub ≈ Aλ3(ρ + iη), and VtdV ∗
tb ≈ Aλ3(1 − ρ − iη).

(9.52)

We can choose to orient the triangle so that Vcd V ∗
cb lies on the x-axis and scale out the

common factor Aλ3 which is of order 1%. Now the coordinates for the vertices are
shown in Fig. 9.2. The angles α, β, and γ of the triangle are also referred to as φ2, φ1,
and φ3, respectively. It is evident from the construction of the triangle that β and γ are
the phases of the elements Vtd and Vub, respectively:

Vtd = |Vtd|e−iβ, Vub = |Vub|e−iγ. (9.53)
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Figure 9.2. The unitarity triangle.

Once Aλ3 is factored out, the triangle depends on ρ and η. Let us select the x-axis to be
ρ and the y-axis η. The shape of the triangle is now determined by three measurements.
The first constraint comes from the magnitude of Vub which determines a ring centered
at the origin. The CP parameter εK determines a second region. Finally, the mass
difference of the Bd mesons defines another ring; this time its center is at ρ = 1 (see
Eqs. (15.53), (16.26) and (16.27)). The three regions are shown in Fig. 9.2, where their
intersection defines the apex of the triangle. All additional measurements that depend
on parameters of the triangle must reproduce the unitarity triangle (see Section 16.5).

We have mentioned already that CP violation is attributed to the phase in the CKM
matrix. Quantitative predictions for CP asymmetries always contain

s1s2 s3 sin δ or sβsγ sθ sin δ′ (9.54)

as a multiplicative factor. For three generations of quarks there is a rephasing-
invariant measure of CP violation. In terms of the elements, it is given by

Jiα ≡ Im
{

Vjβ Vkγ (Vjγ Vkβ)∗
}
, (9.55)

where i , j , k and α, β, γ are cyclic permutations of 1, 2, 3, i.e. once we give
numerical values to i and α, the other indices are determined (Jarlskog, 1985).
There are nine such invariants, which are all equal to each other. Their explicit
form in the Maiani parametrization is

Jiα ≈ βγ sθ sin δ′. (9.56)

For the central values of the angles

Jiα ≈ 2.5 × 10−4sθ sin δ′. (9.57)
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The smallness of this quantity implies that CP parameters will in general be small.
There are also exceptions to this rule, which happen when the CP-violating quantity,
which is proportional to Jiα, is divided by another small quantity. It is evident from
this discussion that the CP asymmetries manifest themselves in two ways:

(i) processes in which the rates are large have small asymmetries; and
(ii) large asymmetries occur for observables when the branching ratios are small.

Both situations appear in K- and B-meson decays, for which CP asymmetries have
been observed.

Beyond the estimates of CKM elements discussed in this chapter, there are
additional limits from observations related to loop diagrams. The theoretical anal-
yses are now more complicated and involve additional theoretical assumptions.
The advantage, however, is that they investigate the quantum nature of the theory
and lead to a consistent picture. In fact, there are additional checks for the angles
(CP phases) of the unitarity triangle. We shall cover several of these exciting topics
in later chapters of the book.
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