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Abstract

Let G be a finite group and Irr(G) the set of all irreducible complex characters of G. Define the codegree
of χ ∈ Irr(G) as cod(χ) := |G : ker(χ)|/χ(1) and denote by cod(G) := {cod(χ) | χ ∈ Irr(G)} the codegree set
of G. Let H be one of the 26 sporadic simple groups. We show that H is determined up to isomorphism by
cod(H).
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1. Introduction

Let G be a finite group and Irr(G) the set of all irreducible complex characters of G. For
any χ ∈ Irr(G), define the codegree of χ by cod(χ) := |G : ker(χ)|/χ(1). Then define the
codegree set of G as cod(G) := {cod(χ) | χ ∈ Irr(G)}. The concept of codegrees was
originally considered in [7], where the codegree was defined as cod(χ) := |G|/χ(1),
and it was later modified to its current definition in [19] so that cod(χ) is the same for
G and G/N when N ≤ ker(χ).

The codegree set of a group is closely related to the character degree set of a group,
defined as cd(G) := {χ(1) | χ ∈ Irr(G)}. The relationship between the character degree
set and the group structure is an active area of research and many properties of group
structure are largely determined by the character degree set. In 1990, Huppert made
the following conjecture.
HUPPERT’S CONJECTURE. Let H be a finite nonabelian simple group and G a finite
group such that cd(H) = cd(G). Then, G � H × A, where A is an abelian group.

Huppert’s conjecture has been verified for many cases, including alternating groups,
sporadic groups and simple groups of Lie type with low rank, but it has yet to be
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verified for simple groups of Lie type with high rank. Recently, a similar conjecture
related to codegrees was posed in [16] as Question 20.79.
CODEGREE VERSION OF HUPPERT’S CONJECTURE. Let H be a finite nonabelian
simple group and G a finite group such that cod(H) = cod(G). Then, G � H.

This conjecture has been verified for PSL(2, q), PSL(3, 4), Alt7, J1, 2B2(22 f+1),
where f ≥ 1, M11, M12, M22, M23 and PSL(3, 3) (see [1, 4, 10]). The conjecture has
also been verified for PSL(3, q) and PSU(3, q) in [17] and 2G2(q) in [11]. Most of
these results concern simple groups with fewer than 21 character degrees [3]. We now
provide a general proof verifying this conjecture for all the sporadic simple groups.
The methods used may be generalised to simple groups of Lie type, giving promising
results for characterising all simple groups by their codegree sets.

THEOREM 1.1. Let H be a sporadic simple group and G a finite group. If cod(G) =
cod(H), then G � H.

Throughout the paper, we follow the notation used in Isaacs’ book [13] and the
ATLAS of Finite Groups [8].

2. Preliminary results

We first reproduce several lemmas which will be used in later proofs.

LEMMA 2.1 [18, Lemma 4.2]. Let S be a finite nonabelian simple group. Then there
exists χ ∈ Irr(S), χ � 1S, that extends to Aut(S).

LEMMA 2.2 [14, Theorem 4.3.34]. Let N be a minimal normal subgroup of G such
that N = S1 × · · · × St, where Si � S is a nonabelian simple group for each i = 1, . . . , t.
If χ ∈ Irr(S) extends to Aut(S), then χ × · · · × χ ∈ Irr(N) extends to G.

LEMMA 2.3 [10, Remark 2.6]. Let G be a finite group and H a finite nonabelian simple
group with cod(G) = cod(H). Then, G is a perfect group.

LEMMA 2.4 [12, Theorem C]. Let G be a finite group and S a finite nonabelian simple
group such that cod(S) ⊆ cod(G). Then, |S| divides |G|.

LEMMA 2.5. Let G be a finite group with N � G. Then, cod(G/N) ⊆ cod(G).

PROOF. We can define Irr(G/N) = {χ̂(gN) = χ(g) | χ ∈ Irr(G) and N ⊆ ker(χ)} by
[13, Lemma 2.22]. Take any χ̂ ∈ Irr(G/N). By definition, χ̂(1) = χ(1), so the
denominators of cod(χ̂) and cod(χ) are equal. In addition, ker(χ̂) � ker(χ)/N, so
that |ker(χ)| = |N | · |ker(χ̂)|. Thus, |G/N : ker(χ̂)| = |G|/|N |/|ker(χ)|/|N | = |G|/|ker(χ)|,
so that cod(χ̂) = cod(χ) and cod(G/N) ⊆ cod(G). �

LEMMA 2.6. Let G be a finite group with normal subgroups N and M such that N ≤ M.
Then, cod(G/M) ⊆ cod(G/N).

PROOF. By the third isomorphism theorem, G/M � (G/N)/(M/N) is a quotient of
G/N, and by Lemma 2.5, cod(G/M) ⊆ cod(G/N). �
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LEMMA 2.7. Let G and H be finite groups such that cod(G) ⊆ cod(H). Then there are
at least |cod(G)| elements in cod(H) which divide |G|.

PROOF. For each x ∈ cod(G), it is clear that x divides |G|. The lemma follows. �

3. Main results

THEOREM 3.1. Let H be a sporadic simple group and G a finite group with cod(G) =
cod(H). If N is a maximal normal subgroup of G, then G/N � H.

PROOF. By Lemma 2.3, G is perfect. Thus, G/N is a nonabelian simple group. By
Lemma 2.6, cod(G/N) ⊆ cod(G) = cod(H). We will prove that this cannot occur unless
G/N � H. We can easily check that cod(K) � cod(H) for any two non-isomorphic
sporadic groups H and K. Thus, G/N must belong to one of the 17 infinite families
of nonabelian simple groups.

Now, we work with each sporadic group in turn, computationally proving
there are no possible exceptions. To do this, we use the code file available
at https://github.com/zachslonim/Characterizing-Sporadic-Groups-by-Codegrees. All
the code referenced in this paper is written in Julia [5] and each file contains comments
providing further detail. In addition, we invite readers to contact the authors with any
questions. We walk through what the code does in detail for one example here,
namely, the Suzuki group, Suz. This group has order 448345497600. Using the order
formulae for the 17 infinite families of nonabelian simple groups [6], we first deduce
which simple groups have order dividing 448345497600. In this case, we get the
following list:

A5, A6, A7, A8, A9, A10, A11, A12, A13, PSL2(7), PSL2(11), PSL2(13), PSL2(25),
PSL2(27), PSL2(64), PSL3(3), PSL3(4), PSL3(9), PSL4(2), PSL4(3), O5(2)′,

O5(3), O7(2), O+8 (2), G2(2)′, G2(3), G2(4), PSU3(3),2 B2(8),2 F4(2)′.

By Lemma 2.4, if a simple group K has cod(K) ⊆ cod(Suz), then it must belong to
the above list. By Lemma 2.7, there must be at least |cod(K)| elements in cod(Suz)
which divide |K|. Then, from [2], any nonabelian simple group has |cod(K)| > 3.
Hence, if cod(K) ⊆ cod(Suz), then there are at least four elements of cod(Suz) that
divide the order of K. So, for each of the groups in the list above, we count the number
of codegrees of Suz that divide the order of the group. We find that there are less than
4 such codegrees in every case except for when K = O+8 (2) which has order divisible
by 5 of the codegrees of Suz. However, [3] shows that |cod(O+8 (2))| > 20, so we would
require that |O+8 (2)| is divisible by at least 20 of the codegrees of Suz, which is a
contradiction. Thus, if cod(K) ⊆ Suz for some simple group K, the only possibility is
K � Suz.

We repeat this process for all of the other sporadic simple groups. For each sporadic
group H, we first check which nonabelian simple groups K satisfy |K| divides |H|.
These lists are given in Table 1. Second, we check which of these possibilities have
order divisible by more than three codegrees of H. We find two more groups H
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TABLE 1. Possible simple groups K whose orders divide the order of the sporadic group G.

Sporadic Possible K
Group H

M11 A5, A6, PSL2(11), O5(2)′

M12 A5, A6, PSL2(11), O5(2)′

M22 A5, A6, A7, A8, PSL2(7), PSL2(8), PSL2(11), PSL3(4), O5(2)′

M23 A5, A6, A7, A8, PSL2(7), PSL2(8), PSL2(11), PSL2(23), PSL3(4), O5(2)′

M24 A5, A6, A7, A8, PSL2(7), PSL2(8), PSL2(11), PSL2(23), PSL3(4), O5(2)′,
G2(2)′, PSU3(3)

J1 A5, PSL2(7), PSL2(11)
J2 A5, A6, A7, A8, PSL2(7), PSL2(8), PSL3(4), O5(2)′, G2(2)′, PSU3(3)
J3 A5, A6, PSL2(16), PSL2(17), PSL2(19), O5(2)′, O5(3)
J4 A5, A6, A7, A8, PSL2(7), PSL2(8), PSL2(11), PSL2(23), PSL2(29), PSL2(31),

PSL2(32), PSL3(4), PSL5(2), O5(2)′, G2(2)′, PSU3(3)
Co3 A5, A6, A7, A8, A9, A10, A11, A12, PSL2(7), PSL2(8), PSL2(11), PSL2(23),

PSL3(4), O5(2)′, O5(3), O7(2), G2(2)′, PSU3(3)
Co2 A5, A6, A7, A8, A9, A10, A11, A12, PSL2(7), PSL2(8), PSL2(11), PSL2(23),

PSL3(4), O5(2)′, O5(3), O7(2), O+8 (2), G2(2)′, PSU3(3)
Co1 A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, PSL2(7), PSL2(8),

PSL2(11), PSL2(13), PSL2(23), PSL2(25), PSL2(27), PSL2(49), PSL2(64),
PSL3(3), PSL3(4), PSL3(9), PSL4(3), O5(2)′, O5(3), O5(5), O5(8), O7(2),
O7(3), PSp6(3), O+8 (2), G2(2)′, G2(3), G2(4), PSU3(3), PSU3(5), 3D4(2),
2B2(8), 2F4(2)′

Fi22 A5, A6, A7, A8, A9, A10, A11, A12, A13, PSL2(7), PSL2(8), PSL2(11), PSL2(13),
PSL2(25), PSL2(27), PSL2(64), PSL3(3), PSL3(4), PSL3(9), PSL4(3), O5(2)′,
O5(3), O7(2), O7(3), PSp6(3), O+8 (2), G2(2)′, G2(3), G2(4), PSU3(3), 2B2(8),
2F4(2)′

Fi23 A5, A6, A7, A8, A9, A10, A11, A12, A13, PSL2(7), PSL2(8), PSL2(11), PSL2(13),
PSL2(16), PSL2(17), PSL2(23), PSL2(25), PSL2(27), PSL2(64), PSL3(3),
PSL3(4), PSL3(9), PSL3(16), PSL4(3), PSL4(4), O5(2)′, O5(3), O5(4), O7(2),
O7(3), O9(2), PSp6(3), O+8 (2), O+8 (3), G2(2)′, G2(3), G2(4), PSU3(3), PSU3(4),
PSU5(2), PSU6(2), 2B2(8), 2F4(2)′

Fi24
′ A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, PSL2(7), PSL2(8), PSL2(11),

PSL2(13), PSL2(16), PSL2(17), PSL2(23), PSL2(25), PSL2(27), PSL2(29),
PSL2(49), PSL2(64), PSL3(3), PSL3(4), PSL3(9), PSL3(16), PSL4(3),
PSL4(4), O5(2)′, O5(3), O5(4), O5(8), O7(2), O7(3), O9(2), PSp6(3), O+8 (2),
O+8 (3), G2(2)′, G2(3), G2(4), PSU3(3), PSU3(4), PSU5(2), PSU6(2), 3D4(2),
2B2(8), 2F4(2)′

HS A5, A6, A7, A8, PSL2(7), PSL2(8), PSL2(11), PSL3(4), O5(2)′

McL A5, A6, A7, A8, A9, A10, A11, PSL2(7), PSL2(8), PSL2(11), PSL3(4), O5(2)′,
O5(3), G2(2)′, PSU3(3)

He A5, A6, A7, A8, PSL2(7), PSL2(8), PSL2(16), PSL2(17), PSL2(49), PSL3(4),
O5(2)′, O5(4), G2(2)′, PSU3(3)

Continued
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TABLE 1. Continued.

Sporadic Possible K
Group H

Ru A5, A6, A7, A8, PSL2(7), PSL2(8), PSL2(13), PSL2(25), PSL2(27), PSL2(29),
PSL2(64), PSL3(3), PSL3(4), O5(2)′, G2(2)′, G2(4), PSU3(3), PSU3(5),
2B2(8), 2F4(2)′

Suz A5, A6, A7, A8, A9, A10, A11, A12, A13, PSL2(7), PSL2(8), PSL2(11),
PSL2(13), PSL2(25), PSL2(27), PSL2(64), PSL3(3), PSL3(4), PSL3(9),
PSL4(3), O5(2)′, O5(3), O7(2), O+8 (2), G2(2)′, G2(3), G2(4), PSU3(3),
2B2(8), 2F4(2)′

O′N A5, A6, A7, A8, A9, PSL2(7), PSL2(8), PSL2(11), PSL2(19), PSL2(31),
PSL2(32), PSL3(4), PSL3(7), O5(2)′, O5(3), O7(2), G2(2)′, PSU3(3)

HN A5, A6, A7, A8, A9, A10, A11, A12, PSL2(7), PSL2(8), PSL2(11), PSL2(19),
PSL3(4), O5(2)′, O5(3), O7(2), O+8 (2), G2(2)′, PSU3(3)

LY A5, A6, A7, A8, A9, A10, A11, PSL2(7), PSL2(8), PSL2(11), PSL2(31), PSL2(32),
PSL2(125), PSL3(4), PSL3(5), O5(2)′, O5(3), G2(2)′, G2(5), PSU3(3)

Th A5, A6, A7, A8, A9, A10, PSL2(7), PSL2(8), PSL2(13), PSL2(19), PSL2(25),
PSL2(27), PSL2(31), PSL2(49), PSL2(64), PSL2(125), PSL3(3), PSL3(4),
PSL3(5), PSL3(9), PSL4(3), PSL5(2), PSL6(2), O5(2)′, O5(3), O5(8), O7(2),
O7(3), PSp6(3), O+8 (2), G2(2)′, G2(3), G2(4), PSU3(3), PSU3(5), PSU3(8),
3D4(2), 2B2(8), 2F4(2)′

B A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20,
PSL2(7), PSL2(8), PSL2(11), PSL2(13), PSL2(16), PSL2(17), PSL2(19),
PSL2(23), PSL2(25), PSL2(27), PSL2(31), PSL2(32), PSL2(47), PSL2(49),
PSL2(64), PSL2(125), PSL3(3), PSL3(4), PSL3(5), PSL3(9), PSL3(16),
PSL3(25), PSL4(3), PSL4(4), PSL4(5), PSL5(2), PSL5(4), PSL6(2), PSL6(4),
O5(2)′, O5(3), O5(4), O5(5), O5(8), O7(2), O7(3), O7(4), O9(2), O11(2),
O13(2), PSp6(3), O+8 (2), O+8 (3), O+10(2), O+12(2), F4(2), G2(2)′, G2(3), G2(4),
G2(5), PSU3(3), PSU3(4), PSU3(5), PSU3(8), PSU5(2), PSU6(2), 2E6(2),
3D4(2), 2B2(8), 2F4(2)′

M A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21,
A22, A23, A24, A25, A26, A27, A28, A29, A30, A31, A32, PSL2(7), PSL2(8),
PSL2(11), PSL2(13), PSL2(16), PSL2(17), PSL2(19), PSL2(23), PSL2(25),
PSL2(27), PSL2(29), PSL2(31), PSL2(32), PSL2(41), PSL2(47), PSL2(49),
PSL2(59), PSL2(64), PSL2(71), PSL2(81), PSL2(125), PSL2(1024), PSL3(3),
PSL3(4), PSL3(5), PSL3(7), PSL3(9), PSL3(16), PSL3(25), PSL4(3), PSL4(4),
PSL4(5), PSL4(7), PSL4(9), PSL5(2), PSL5(3), PSdL5(4), PSL6(2), PSL6(3),
PSL6(4), O5(2)′, O5(3), O5(4), O5(5), O5(7), O5(8), O5(9), O7(2), O7(3),
O7(4), O7(5), O9(2), O9(3), O11(2), O13(2), PSp6(3), PSp6(5), PSp8(3), O+8 (2),
O+8 (3), O+10(2), O+10(3), O+12(2), F4(2), G2(2)′, G2(3), G2(4), G2(5), PSU3(3),
PSU3(4), PSU3(5), PSU3(8), PSU4(3), PSU5(2), PSU6(2), O−10(2), O−12(2),
2E6(2), 3D4(2), 2B2(8), 2B2(32), 2F4(2)′
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such that the number of codegrees of H dividing |K| is more than three. These are
H � Fi23 with K � O+8 (3) and H � Ru with K � G2(4). In both cases, there are four
such codegrees. Again, however, [3] shows that |cod(K)| ≥ 18 in both cases, which is a
contradiction. Hence, for any sporadic group H, if cod(K) ⊆ H for some simple group
K, then K � H.

As G/N is simple and cod(G/N) ⊆ H, we see that G/N � H. �

PROOF OF THEOREM 1.1. Let G be a minimal counterexample and N a maximal
normal subgroup of G. By Lemma 2.3, G is perfect, and by Theorem 3.1, G/N � H.
In particular, N � 1 as G � H.

Step 1: N is a minimal normal subgroup of G.
Suppose L is a nontrivial normal subgroup of G with L < N. By Lemma 2.6,

cod(G/N) ⊆ cod(G/L) ⊆ cod(G). However, cod(G/N) = cod(H) = cod(G) so equality
must occur in each inclusion. Thus, cod(G/L) = cod(H) which implies that G/L � H,
since G is a minimal counterexample. This is a contradiction since we also have
G/N � H, but L < N.

Step 2: N is the only nontrivial, proper normal subgroup of G.
Assume U is another proper nontrivial normal subgroup of G. If N is included in U,

then U = N or U = G since G/N is simple, which is a contradiction. Then, N ∩ U = 1
and G = N × U. Since U is also a maximal normal subgroup of G, we have N � U �
H. Choose ψ1 ∈ Irr(N) and ψ2 ∈ Irr(U) such that cod(ψ1) = cod(ψ2) = max(cod(H)).
Set χ = ψ1 · ψ2 ∈ Irr(G). Then, cod(χ) = (max(cod(H)))2 � cod(G), which is a contra-
diction.

Step 3: For each nontrivial χ ∈ Irr(G|N) := Irr(G) − Irr(G/N), the character χ is
faithful.

By [13, Lemma 2.22], Irr(G/N) = {χ ∈ Irr(G) | N ≤ ker(χ)}. By the definition of
Irr(G|N), it follows that if χ ∈ Irr(G|N), then N � ker(χ). Since N is the unique non-
trivial, proper, normal subgroup of G, ker(χ) = G or ker(χ) = 1. Therefore, ker(χ) = 1
for all nontrivial χ ∈ Irr(G|N).

Step 4: N is an elementary abelian group.
Suppose that N is not abelian. Since N is a minimal normal subgroup, by [9,

Theorem 4.3A(iii)], N = Sn, where S is a nonabelian simple group and n ∈ Z+. By
Lemmas 2.1 and 2.2, there is a nontrivial character χ ∈ Irr(N) which extends to some
ψ ∈ Irr(G). Now, ker(ψ) = 1 by Step 3, so cod(ψ) = |G|/ψ(1) = |G/N | · |N |/χ(1). This
contradicts the fact that |G/N | is divisible by cod(ψ), as χ(1) < |N |, so N must be
abelian. Now to show that N is elementary abelian, let a prime p divide |N |. Then,
N has a p-Sylow subgroup K, and K is the unique p-Sylow subgroup of N since N is
abelian, so K is characteristic in N. Thus, K is a normal subgroup of G, so K = N as
N is minimal, so |N | = pn. Now, take the subgroup N p = {np | n ∈ N} of N which is
proper by Cauchy’s theorem. Since N p is characteristic in N, it must be normal in G,
so N p is trivial by the uniqueness of N. Therefore, every element of N has order p, so
N is elementary abelian.
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Step 5: CG(N) = N.
First, note that since N is normal, CG(N) � G. Additionally, since N is abelian by

Step 4, N ≤ CG(N), so by the maximality of N, we must have CG(N) = N or CG(N) =
G. If CG(N) = N, we are done.

If not, then CG(N) = G. Therefore, N must be in the centre of G. Since N is the
unique minimal normal subgroup of G by Step 2, |N | must be prime. For, if not, there
always exists a proper nontrivial subgroup K of N, and K is normal since it is contained
in Z(G), contradicting the minimality of N. Moreover, since G is perfect, Z(G) = N,
and N is isomorphic to a subgroup of the Schur multiplier of G/N [13, Corollary
11.20].

If H is isomorphic to any of M11, M23, M24, J1, J4, Co2, Co3, Fi22, Fi23, He, HN, Ly,
Th or M, then by [8], the Schur multiplier of H is trivial, so N = 1, which is a
contradiction.

If H is isomorphic to Co1, then G � 2.Co1 by [8]. However, 2.Co1 has a character
degree of 24, which gives a codegree of 219 · 38 · 54 · 72 · 11 · 13 · 23 ∈ cod(G), which
is a contradiction, since 219 · 38 · 54 · 72 · 11 · 13 · 23 � cod(H). If H is isomorphic to
Fi22, then G � 2.Fi22 or G � 3.Fi22 by [8]. If G � 2.Fi22, then 213 · 39 · 52 · 7 · 13 ∈
cod(G), which is a contradiction. If G � 3.Fi22, then 217 · 37 · 52 · 6 · 11 ∈ cod(G),
which is a contradiction.

Similarly, for any sporadic simple group H with nontrivial Schur multiplier, we
use [8] to reach a contradiction as above, by finding an element of cod(G) that is not
in cod(H). Thus, CG(N) = N.

Step 6: Let λ be a nontrivial character in Irr(N) and ϑ ∈ Irr(IG(λ)|λ), the set of
irreducible constituents of λIG(λ), where IG(λ) is the inertia group of λ in G. Then,
|IG(λ)|/ϑ(1) ∈ cod(G). Also, ϑ(1) divides |IG(λ)/N | and |N | divides |G/N |. Lastly,
IG(λ) < G, that is, λ is not G-invariant.

Let λ be a nontrivial character in Irr(N) and ϑ ∈ Irr(IG(λ)|λ). Let χ be an irreducible
constituent of ϑG. By [13, Corollary 5.4], χ ∈ Irr(G), and by [13, Definition 5.1],
χ(1) = (|G|/|IG(λ)|) · ϑ(1). Moreover, ker(χ) = 1 by Step 2, and thus cod(χ) =
|G|/χ(1) = |IG(λ)|/ϑ(1), so |IG(λ)|/ϑ(1) ∈ cod(G). Now, since N is abelian, λ(1) = 1,
so ϑ(1) = ϑ(1)/λ(1) which divides |IG(λ)|/|N |, so |N | divides |IG(λ)|/ϑ(1). Moreover,
cod(G) = cod(G/N) and all elements in cod(G/N) divide |G/N |, so |N | divides |G/N |.

Next, we show IG(λ) is a proper subgroup of G. To reach a contradiction, assume
IG(λ) = G. Then, ker(λ) � G. From Step 2, ker(λ) = 1, and from Step 4, N is a
cyclic group of prime order. Thus, by the normaliser-centraliser theorem, G/N =
NG(N)/CG(N) ≤ Aut(N) and so G/N is abelian, which is a contradiction.

Step 7: Final contradiction.
From Step 4, N is an elementary abelian group of order pn for some prime p and

integer n ≥ 1. By the normaliser-centraliser theorem, H � G/N = NG(N)/CG(N) ≤
Aut(N) and n > 1. Note that in general, Aut(N) = GL(n, p). By Step 6, |N | divides
|G/N |, so we only need to consider primes p such that p2 divides |H|.
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TABLE 2. Sporadic groups and p, n pairs such that pn divides |H| and |H| divides |GL(n, p)|.

Group p n Minimum Degree

He 2 9–10 51
Suz 2 12–13 110
Fi22 2, 3 14–17, 8–9 78, 77
Fi23 2 18 782
Co2 2 12–18 22
Co1 2 16–21 24
B 2 23–41 4370

We proceed computationally for each sporadic group separately. To do this, we
use the code file https://github.com/zachslonim/Characterizing-Sporadic-Groups-by-
Codegrees. Again, we explain here the computational steps for the Suzuki group, Suz.
This group has order 448345497600 = 213 · 37 · 42 · 7 · 11 · 13, so the possibilities for
p and n > 1 such that pn divides |Suz| are

22, 23, 24, 25, 26, 27, 28, 29, 210, 212, 212, 213, 32, 33, 34, 35, 36, 37, 42.

For each of these possible pn, we compute the order of GL(n, p) using the well-known
order formula:

|GL(n, p)| =
n−1∏

i=0

(pn − pi).

Then, we check which values of p and n satisfy the fact that |Suz| divides |GL(n, p)|. In
this case, we get only two exceptions, namely 212 and 213.

For each sporadic group H, we follow a similar procedure to check computationally
which possibilities of (p, n) satisfy pn divides |H| and |H| divides |GL(n, p)|. We
summarise these in Table 2. If a sporadic group is missing, this means there are no
possible exceptions. In other words, Table 2 gives all groups H and pairs (p, n) such
that pn divides |H| and |H| divides |GL(n, p)|.

Finally, in each of these seven cases, we refer to [15], which gives the minimum
degree of a faithful representation of the group H over a finite field of characteristic
p. We reproduce the relevant results in Table 2. We note that H � GL(n, p) implies
that we can embed H into GL(n, p), giving a degree n faithful representation of H over
a field of characteristic p. However, in each row of the table, any possible values of
p, n contradict the minimum degree of such a faithful representation. Thus, we reach a
contradiction for any sporadic simple group H. Therefore, N = 1 and G � H. �
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Lemma 2.4 was provided to Yang by Hung in a private communication in early
2022. After this paper was accepted, the authors learned of the preprint [12] containing
Lemma 2.4 and where Theorem 3.1 can be obtained as a special case by using [12,
Theorem D].
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