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Computing character tables of groups of type M.G.A

Thomas Breuer

Abstract

We describe a method for constructing the character table of a group of type M.G.A from the
character tables of the subgroup M.G and the factor group G.A, provided that A acts suitably
on M.G. This simplifies and generalizes a recently published method.

1. Introduction

In [2], a method based on the technique of Clifford matrices (see [6]) for computing the ordinary
character tables of groups with the structure (2× 2.G):2 is presented.

The aim of this paper is to show that a more appropriate approach to compute such character
tables is to use the underlying ‘Clifford theory’ directly. This yields a technically simpler and
more general method. It avoids the overhead of Clifford matrices and it covers more situations,
in particular it allows one to compute also Brauer character tables (see Remark 4 and the
examples in the Sections 3.3 and 3.4).

An implementation of our method is available in the computer algebra system GAP
at least since version 4.4.2 (see the functions PossibleCharacterTablesOfTypeMGA and
PossibleActionsForTypeMGA in [8]) and has been used, for example, to encode many character
tables from the Atlas of finite groups [4] in a compact way (see Section 3.1).

More examples and the description of similar methods for computing character tables
can be found at http://www.math.rwth-aachen.de/˜Thomas.Breuer/ctbllib/doc/, in the files
poster valencia 2009.pdf and ctblcons.pdf.

2. The method

For a finite group G, let Irr(G) denote the set of its complex irreducible characters. For a
normal subgroup N of G, χ ∈ Irr(N) and g ∈G, we define χg by χg(n) = χ(gng−1) for n ∈N .
This defines an action of G (which can be regarded as an action of G/N) on Irr(N), in which
the stabilizer of χ is IG(χ) = {g ∈G; χg = χ}. We will consider the following situation.

Hypothesis 1. Let H be a finite group, and let N and M be normal subgroups of H
such that M 6N holds. Let G=N/M , F =H/M , and A=H/N . In Atlas notation (see [4,
Chapter 6]), H has the structures M.F , N.A, and M.G.A. Set

X(N,M) = {χ ∈ Irr(N);M ⊆ ker(χ)} and Y (N,M) = Irr(N)\X(N,M),

where ker(χ) = {n ∈N ; χ(n) = χ(1)}. Assume that IH(χ) =N holds for any χ ∈ Y (N,M).
Equivalently, A acts semiregularly on Y (N,M), that is, any A-orbit on Y (N,M) has
length |A|.

Further assume that we know the character tables of F and N , together with the class fusions
that are induced by the embedding of G into F and the epimorphism from N to G, and that
we know also the orbits of the conjugation action of H on the classes of N .
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Our aim is to compute the character table of H. The main ingredients are the following.

Theorem 2. Let N be a normal subgroup of H.

(i) If IH(ϕ) =N for ϕ ∈ Irr(N) then the induced character ϕH is an irreducible character
of H (see [5, Lemma III 2.11] or [12, Corollary 3.6.4]).

(ii) The restriction of any irreducible character of H to N has the form e
∑

g ϕ
g for a

positive integer e and ϕ ∈ Irr(N), where the summation runs over a set of coset representatives
g of IH(ϕ) in H (see [5, Theorem III 2.12] or [12, Theorem 3.6.2]).

First we claim that Y (H,M) = {ϕH ; ϕ ∈ Y (N,M)} holds. For that, take χ ∈ Y (H,M) and
let ϕ be any irreducible constituent of the restriction of χ to N . Then M 6⊆ ker(ϕ), ϕH ∈ Irr(H),
and χ is a constituent of ϕH by Frobenius–Nakayama reciprocity (see [5, Theorem III 2.5]
or [12, Theorem 3.2.12]), thus χ= ϕH . The reverse inclusion follows from the general fact that
ker(ϕH)⊆ ker(ϕ) holds.

Hence all irreducible characters of H that are not inflated from F vanish outside N . Thus
the preimage of any conjugacy class in F\G under the natural epimorphism π from H to F
cannot split into several classes of H. Hence each conjugacy class of H is either the union of
an H-orbit of conjugacy classes of N or the full preimage of a conjugacy class of F\G under π.

This means that we know the class fusions from H to F and from N to H, from which we
can compute X(H,M) by inflating Irr(F ) to H and Y (H,M) by inducing Y (N,M) to H.

It remains to determine the power maps of H. For any prime p not dividing |A|, the p-power
map of H is determined by the p-power maps of N and F together with the assumed class
fusions. For a prime p that divides |A|, ambiguities in the p-power map of H can arise in the
case that gp lies inside N , for an element g ∈H\N , and that the coset gM contains elements
from several conjugacy classes of H. These ambiguities can in general not be avoided because
the input data do not determine the group H up to isomorphism. For example, let each of
M , G, A have order two, let N be cyclic of order four, and F be a Klein four group, such that
A swaps the two faithful irreducible characters of N . The group H can then be any of the two
non-abelian groups of order eight. These groups have different 2-power maps.

See Section 3.3 for another example where different 2-power maps arise. Under stronger
assumptions than those from Hypothesis 1, all power maps of H are determined by the input
data, see Section 3.1.

Remark 3. We have assumed that we know the orbits of the action of A on the classes
of N . When dealing only with character tables (and avoiding computations with the underlying
groups), a usual way to get this information is the following: the permutation of the classes of
N induced by the action of A leaves Irr(N) invariant and commutes with the power maps of N .
The character table of N determines the full group of these permutations (which are called
table automorphisms). Often it contains only few elements that act on the classes inside M in
the right way and that are compatible with the permutation of A on the classes of G, via the
epimorphism from N to G and the embedding of G into F (which we know by assumption).

Remark 4. Let p be a prime integer, and let IBrp(H) denote the set of irreducible
p-modular Brauer characters of H. The statements of Theorem 2 hold also for Brauer
characters, see [5] or [12]; for explicit computations with induced Brauer characters, see [12,
Theorem 4.3.7].

We assume Hypothesis 1 and additionally that p does not divide |M |, and set Y (N,M, p) =
{ϕ ∈ IBrp(N);M 6⊆ ker(ϕ)}.

For the case that p does not divide the order of A, one can show that A acts semiregularly on
Y (N,M, p), as follows. Without loss of generality A has prime order different from p. In this
case, the fact that the preimage of each conjugacy class in F\G is a single class of H implies
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that no character in Y (N,M, p) can extend to H; thus any character in Y (N,M, p) induces
to an irreducible character of H.

Alternatively, we can simply assume that A acts semiregularly on Y (N,M, p), without using
the semiregularity of the action on Y (N,M), cf. Section 3.4.

Then the same arguments as above yield Y (H,M, p) = {ϕH ; ϕ ∈ Y (N,M, p)}. Hence we can
use our method for computing IBrp(H) from IBrp(N) and IBrp(F ).

3. Examples

3.1. Fixed point free action of A on M

In this section, let us assume that M is central in N and that A acts semiregularly on the
non-identity elements of M .

By Brauer’s permutation lemma [9, Theorem 6.32], A acts semiregularly on the non-trivial
irreducible characters of M . The restriction of any χ ∈ Y (N,M) to M is a multiple of an
irreducible character of M , so already the restrictions of the characters in the A-orbit of χ
to M are |A| different characters. This implies that A acts semiregularly on Y (N,M), hence
Hypothesis 1 holds.

The easiest examples for the situation of this section are Frobenius groups H (cf. [9,
Chapter 7]) with abelian kernel N =M and complement isomorphic with A∼= F , so G is
trivial in these cases. If H is a dihedral group of order not divisible by four then N is the
unique index two subgroup. Examples with non-cyclic complement A are the primitive groups
of the structure p2 : Q8 and degree p2, where p is an odd prime integer, N =M is an elementary
abelian group of order p2, and F ∼=A is the quaternion group of order eight.

Now let us assume that A is a cyclic group of prime order p, say. We claim that the p-power
map and hence the element orders of H are uniquely determined by the input data. For that,
take g ∈H\N such that gp ∈N holds. The action of A on the classes of N is given by the
action of 〈g〉, so A acts on the coset gpM in the same way as it acts on M . That is, gp is the
only fixed point. In other words, the class containing the p-power of g is the unique class of H
that is a preimage of the F -class containing gpM and that consists of a single class of N .

The Atlas of finite groups [4] contains many examples which have the structure 3.G.2 or
22.G.3, for a simple group G. In the first case, G has an involutory outer automorphism that
lifts to an automorphism of the triple cover 3.G of G and inverts the central elements in this
cover. In the second case, G possesses a central extension N = 22.G by a Klein four group and
an outer automorphism of order three that lifts to N such that the three involutions in the
Klein four group are permuted cyclicly.

3.2. The examples from Barraclough’s paper

In [2], the construction of the ordinary character tables of groups of the shape (2× 2.G):2
from the character tables of the groups 2.G and 2.G.2 is described. Also our method can be
used for this purpose, by choosing N to be the subgroup of type 2× 2.G called G0 in [2], and
M the subgroup called 〈z〉 in [2]. Hence F corresponds to the factor group called 〈x〉 ×G:〈σ〉
in [2]. The set Y (N,M) consists of those irreducible characters of N whose kernels contain
x or xz but not z, and by the general assumption of [2] that σ conjugates x and xz, σ acts
semiregularly on Y (N,M). Thus Hypothesis 1 holds if we know the orbits of the action of σ
on the classes of N , and these orbits can be derived from the class fusion of 2.G into 2.G.2,
which is part of the input data of the construction in [2].

Concerning the main example in [2], let Fi22 and 2.Fi22 denote the smallest sporadic
simple Fischer group and its double cover, respectively. The group H whose character table is
computed in [2] has the structure (2× 2.Fi22):2. We construct the character table of H from the
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character tables of N ∼= 2× 2.Fi22 and F ∼= 2× Fi22.2, where Fi22.2 denotes the automorphism
group of Fi22. The character tables of (the direct factors of) N and F are known (see [4,
pp. 156–161]), and the table of N admits a unique involutory table automorphism that is
compatible with the action of F on the classes of G∼= 2× Fi22 and does not centralize the
normal Klein four group of N . Also the 2-power map of H is determined by the input data in
this example.

Remark 5. Contrary to the approach used in [2], our construction does not require the
knowledge of the character tables of the 2.Fi22.2 type subgroups in H. Note that the character
table of N turned out to provide enough information for determining the action of H on the
classes of N .

One consequence of the smaller input data of our method compared to the one in [2] is that
also character tables such as that of (2× 2.A6).23 mentioned in [2] can be computed, in this
case from the character tables of N ∼= 2× 2.A6 and the subdirect product F of M10 =A6.23

with a cyclic group of order four. (The character table of N admits three table automorphisms
that could belong to the action of F but only one of them leads to a consistent character table.)

Remark 6. The group H occurs as a maximal subgroup of the automorphism group Fi24
of the sporadic simple Fischer group Fi′24, and the intersection of H with Fi′24 has the structure
2.Fi22.2 (see [4, p. 207]). The action of Fi24 on Fi′24 lifts to the triple cover 3.Fi′24 and inverts its
center. Hence there is a group 3.Fi24 that satisfies the conditions of Section 3.1. If we consider
H as a subgroup of Fi24 then its preimage 3.H in 3.Fi24 has the structure (S3 × 2.Fi22).2
and occurs as a subgroup of the sporadic simple Monster group M. Namely, 3.H is the full
normalizer of an element x in the class 6A of M and thus is contained in the centralizer of x3 in
M, which has the structure 2.B, the double cover of the sporadic simple Baby Monster group.
In fact, 3.H is a maximal subgroup of 2.B (see [4, p. 217]).

Also the character table of 3.H can be computed using our method, from the character tables
of its normal subgroup of the type S3 × 2.Fi22 and its factor group of the type S3 × Fi22.2.
This construction can be found in the file ctblcons.pdf mentioned in Section 1. (This table
is available in GAP’s character table library since version 1.1, see [3].)

3.3. The character table of the subgroup 4.HS.2 of HN.2

The sporadic simple Harada–Norton group HN contains a maximal subgroup of the type 2.HS.2
that extends to a group H of the structure 4.HS.2 in the automorphism group HN.2 of HN
(see [4, p. 166]). The subgroup H is the normalizer of a 4D element g ∈HN.2\HN. The center
of H is M = 〈g2〉, and the centralizer N of g has the structure 4.HS, a central product of
2.HS and the cyclic group 〈g〉 of order four, with respect to the common subgroup M of order
two. We have F =H/M ∼= HS.2× 2 and G=N/M ∼= 2×HS. Conjugation with any element
in H\N inverts g, so H acts semiregularly on the faithful irreducible characters of N .

Thus we are in the situation of Hypothesis 1, and we construct the character table of H
using our method. The character tables of N and F can be derived from the known character
tables of 2.HS and HS.2 (see [4, p. 81]). The table of N has two table automorphisms that are
compatible with the induced action of F on G. One of these permutations leads to a result
table that does not admit a 2-power map. The other permutation yields two different possible
character tables for H, which belong to non-isomorphic groups that are isoclinic in the sense
of [4, Chapter 6.7]. Only one of the two tables admits a class fusion into HN.2.

Remark 7. The group 4.HS.2 occurs as the normalizer of a radical 2-chain in HN.2, so it is
interesting for the computations in [1, Section 6]. In fact only the irreducible degrees are needed
for that, and the authors of that paper compute them by first determining the permutation
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induced by the action of 〈g〉 on the classes of 2.HS.2, and then deriving the corresponding
permutation of irreducible characters of 2.HS.2, using Brauer’s permutation lemma. In our
construction of the character table of 4.HS.2, we did not use the table of 2.HS.2.

Remark 8. All Brauer character tables of 2.HS and HS.2 are known, see [10, pp. 210–
214]. So also the Brauer character tables of N = 4.HS and F = 2×HS.2 can be written down
easily. Hence we can use our method to construct all Brauer character tables of H = 4.HS.2.
The ordinary character tables admit 32 possibilities for the class fusion from H to HN.2, and
the 5- and 7-modular tables of H and HN.2 impose additional conditions, which exclude 16
possibilities in each case. It turns out that the choice for the 5-modular table of HN.2 made
in [11, last paragraph] is not compatible with the 7-modular table of HN.2 that is available
in [3].

3.4. Constructions only for Brauer character tables

If a group H has normal subgroups M and N as in Hypothesis 1 such that A does not act
semiregularly on Y (N,M) then the ordinary character table of H cannot be constructed with
our method. However, it may happen that the p-modular variant of Hypothesis 1 as sketched
in Remark 4 is satisfied for some p-modular Brauer table, so we can construct this Brauer table
with our method. In such cases, all classes of F\G that split into several classes of H\N with
respect to the natural epimorphism from H to F are p-singular.

Examples are the group 2.Fi22.2 (cf. Section 3.2), for p= 3, the double cover 2.A6.21
∼= ΣL2(9)

of the symmetric group on six points, for p= 3 (see [10, p. 4]), and the group 2.L2(25).22 =
ΣL2(25), for p= 5 (see [10, p. 31]). It is straightforward to show that for any odd prime p, the
semilinear group ΣL2(p2) is an example in characteristic p — exactly p+ 4 conjugacy classes
of the group ΣL2(p2) are not contained in SL2(p2) = 2.L2(p2), the number of conjugacy classes
in PΣL2(p2) = L2(p2).2 not contained in L2(p2) is p+ 2, and the two outer classes of PΣL2(p2)
whose preimages in ΣL2(p2) split into two classes are p-singular.

3.5. A pseudo character table

We can apply our method to the character tables of groups M.G and G.A where no common
group of the structure M.G.A exists such that A acts on M as required in Hypothesis 1. This
may yield a table which has many properties of a character table but which is not the character
table of a group, cf. [7].

For example, let G be the alternating group on six points, let M.G be its triple cover, and
G.A be the non-split extension of G by an outer automorphism σ of order two. The group G.A
is known as M10, it occurs as a subgroup of index 11 in the sporadic simple Mathieu group
M11. The automorphism σ of G lifts to M.G but any such lift centralizes M .

However, the character table of M.G admits a table automorphism that lifts the permutation
of classes of G induced by σ and swaps the classes of non-identity elements in M . Furthermore,
the output table of our method satisfies the orthogonality relations, any tensor product of
two ‘irreducible characters’ decomposes into ‘irreducibles’ such that the coefficients are non-
negative integers, the ‘class multiplication coefficients’ are non-negative integers, and also the
nth symmetrizations of ‘irreducible characters’ decompose into ‘irreducibles’, for n6 5.

In general, tables obtained this way do not have all these properties.
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